1
|
Zhang J, Dong W, Yang Q, Liu LN, Cai XL, Wang D, Yan GJ, Xiyang YB, Hu T, Zhang J. Dysregulation of G6PD by HPV E6 exacerbates cervical cancer by activating the STAT3/PLOD2 pathway. Carcinogenesis 2025; 46:bgaf005. [PMID: 39943705 DOI: 10.1093/carcin/bgaf005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 04/27/2025] Open
Abstract
High-risk human papillomavirus (HPV) infection is strongly linked to the initiation and progression of cervical cancer (CC), yet the precise molecular mechanisms involved remain partially understood. This investigation examined differential protein expression profiles in various cohorts, including healthy controls and HPV-positive CC patients with different expression levels of glucose-6-phosphate dehydrogenase (G6PD), shedding light on the dysregulation of oncogenic proteins by HPV. Proteomic analysis of cervical tissues revealed specific protein signatures, indicating significant upregulation of HPV E6, G6PD, STAT3, phosphorylated STAT3, and procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in HPV-infected CC tissues and cell lines. Functional experiments, involving the manipulation of G6PD and STAT3 activities in CC cells with HPV E6 modulation, demonstrated that dysregulated G6PD enhanced cell proliferation, migration, and invasion while suppressing apoptosis, primarily through the STAT3/PLOD2 pathway. Integrating these findings with the existing literature underscores the role of G6PD as an oncogene, potentially under STAT3 regulation, and highlights the role of PLOD2 as a pivotal factor in CC progression. This study also proposed a mechanism in which HPV E6-induced dysregulation of G6PD activates the STAT3-PLOD2 axis to promote CC progression. Understanding the intricate interplay between HPV E6, G6PD, STAT3, and PLOD2 offers valuable insights into the molecular landscape of CC. These findings may pave the way for targeted therapeutic approaches aimed at disrupting this axis to mitigate the progression of CC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, the First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
- Department of Obstetrics and Gynecology, The First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
| | - Wei Dong
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, the First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
- Department of Obstetrics and Gynecology, The First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
| | - Qin Yang
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, the First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
- Department of Obstetrics and Gynecology, The First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
| | - Li-Na Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, P. R. China
- Department of Pathology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, P. R. China
| | - Xi-Lun Cai
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, the First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
- Department of Obstetrics and Gynecology, The First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
| | - Dan Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, P. R. China
| | - Guo-Ji Yan
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, P. R. China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, P. R. China
| | - Tao Hu
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming 650200, P. R. China
| | - Jie Zhang
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, the First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
- Medical School, Kunming University of Science and Technology, Kunming 650100, P. R. China
- Department of Hematology, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, the First People's Hospital of Yunnan Province, Kunming 650100, P. R. China
| |
Collapse
|
2
|
Sakano Y, Matoba D, Noda T, Kobayashi S, Yamada D, Tomimaru Y, Takahashi H, Uemura M, Doki Y, Eguchi H. Clinical significance of ribosomal protein S15 expression in patients with colorectal cancer liver metastases. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:611-624. [PMID: 38838053 PMCID: PMC11503462 DOI: 10.1002/jhbp.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Liver metastasis is the most frequently observed distant metastasis of colorectal cancer, and the residual liver recurrence rate after hepatic resection is still high. To explore the mechanism of liver metastasis to discover potential new treatments, we assessed the relationship between the expression of differentially expressed genes (DEGs) and prognosis in patients with colorectal cancer liver metastasis (CRLM). METHODS The gene expression dataset was extracted from The Cancer Genome Atlas and the Gene Expression Omnibus. Significance analysis of DEGs between tumor and normal samples of colorectum, liver, and lung was conducted. A total of 80 CRLM patients were studied to assess the expression of RPS15, characteristics, and outcomes. We examined the relationships of RPS15 expression to cell viability and apoptosis in vitro and vivo. RESULTS Significance analysis identified 33 DEGs. In our cohorts, the overall survival rates were significantly lower in the high-RPS15-expression group, and high expression of RPS15 was an independent and unfavorable prognostic factor in recurrence-free survival and overall survival. Knockdown of RPS15 expression reduced the proliferative capacity of colorectal cancer cells and increased BAX-induced apoptotic cell death. CONCLUSIONS RPS15 expression is an independent prognostic factor for CRLM patients and might be a novel therapeutic target for CRLM.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daijiro Matoba
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
3
|
Frame G, Leong H, Haas R, Huang X, Wright J, Emmenegger U, Downes M, Boutros PC, Kislinger T, Liu SK. Targeting PLOD2 suppresses invasion and metastatic potential in radiorecurrent prostate cancer. BJC REPORTS 2024; 2:60. [PMID: 39184453 PMCID: PMC11338830 DOI: 10.1038/s44276-024-00085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024]
Abstract
Background Metastatic relapse of prostate cancer after radiotherapy is a significant cause of prostate cancer-related morbidity and mortality. PLOD2 is a mediator of invasion and metastasis that we identified as being upregulated in our highly aggressive radiorecurrent prostate cancer cell line. Methods Patient dataset analysis was conducted using a variety of prostate cancer cohorts. Prostate cancer cell lines were treated with siRNA, or the drug PX-478 prior to in vitro invasion, migration, or in vivo chick embryo (CAM) extravasation assay. Protein levels were detected by western blot. For RNA analysis, RNA sequencing was conducted on PLOD2 knockdown cells and validated by qRT-PCR. Results PLOD2 is a negative prognostic factor associated with biochemical relapse, driving invasion, migration, and extravasation in radiorecurrent prostate cancer. Mechanistically, HIF1α upregulation drives PLOD2 expression in our radiorecurrent prostate cancer cells, which is effectively inhibited by HIF1α inhibitor PX-478 to reduce invasion, migration, and extravasation. Finally, the long non-coding RNA LNCSRLR acts as a promoter of invasion downstream of PLOD2. Conclusions Together, our results demonstrate for the first time the role of PLOD2 in radiorecurrent prostate cancer invasiveness, and point towards its potential as a therapeutic target to reduce metastasis and improve survival outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Hon Leong
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Roni Haas
- University of California Los Angeles, Los Angeles, CA USA
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Jessica Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Urban Emmenegger
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Michelle Downes
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | | | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
4
|
Pan H, Liu Y, Fuller AM, Williams EF, Fraietta JA, Eisinger TSK. Collagen modification remodels the sarcoma tumor microenvironment and promotes resistance to immune checkpoint inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601055. [PMID: 39005330 PMCID: PMC11244930 DOI: 10.1101/2024.06.28.601055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Molecular mechanisms underlying immune checkpoint inhibitor (ICI) response heterogeneity in solid tumors, including soft tissue sarcomas (STS), remain poorly understood. Herein, we demonstrate that the collagen-modifying enzyme, procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (Plod2), which is over-expressed in many tumors relative to normal tissues, promotes immune evasion in undifferentiated pleomorphic sarcoma (UPS), a relatively common and aggressive STS subtype. This finding is consistent with our earlier observation that Plod2 promotes tumor metastasis in UPS, and its enzymatic target, collagen type VI (ColVI), enhances CD8+ T cell dysfunction. We determined that genetic and pharmacologic inhibition of Plod2 with the pan-Plod transcriptional inhibitor minoxidil, reduces UPS growth in an immune competent syngeneic transplant system and enhances the efficacy of anti-Pd1 therapy. These findings suggest that PLOD2 is an actionable cancer target and its modulation could augment immunotherapy responses in patients with UPS, and potentially other sarcomas and carcinomas.
Collapse
|
5
|
Kato K, Noda T, Kobayashi S, Sasaki K, Iwagami Y, Yamada D, Tomimaru Y, Takahashi H, Uemura M, Asaoka T, Shimizu J, Doki Y, Eguchi H. KLK10 derived from tumor endothelial cells accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. Cancer Sci 2024; 115:1520-1535. [PMID: 38475666 PMCID: PMC11093189 DOI: 10.1111/cas.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor endothelial cells (TECs), which are thought to be structurally and functionally different from normal endothelial cells (NECs), are increasingly attracting attention as a therapeutic target in hypervascular malignancies. Although colorectal liver metastasis (CRLM) tumors are hypovascular, inhibitors of angiogenesis are a key drug in multidisciplinary therapy, and TECs might be involved in the development and progression of cancer. Here, we analyzed the function of TEC in the CRLM tumor microenvironment. We used a murine colon cancer cell line (CT26) and isolated TECs from CRLM tumors. TECs showed higher proliferation and migration than NECs. Coinjection of CT26 and TECs yielded rapid tumor formation in vivo. Immunofluorescence analysis showed that coinjection of CT26 and TECs increased vessel formation and Ki-67+ cells. Transcriptome analysis identified kallikrein-related peptide 10 (KLK10) as a candidate target. Coinjection of CT26 and TECs after KLK10 downregulation with siRNA suppressed tumor formation in vivo. TEC secretion of KLK10 decreased after KLK10 downregulation, and conditioned medium after KLK10 knockdown in TECs suppressed CT26 proliferative activity. Double immunofluorescence staining of KLK10 and CD31 in CRLM tissues revealed a significant correlation between poor prognosis and positive KLK10 expression in TECs and tumor cells. On multivariate analysis, KLK10 expression was an independent prognostic factor in disease-free survival. In conclusion, KLK10 derived from TECs accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. KLK10 in TECs might offer a promising therapeutic target in CRLM.
Collapse
Affiliation(s)
- Kazuya Kato
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Junzo Shimizu
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
6
|
Liu Q, Han M, Wu Z, Fu W, Ji J, Liang Q, Tan M, Zhai L, Gao J, Shi D, Jiang Q, Sun Z, Lai Y, Xu Q, Sun Y. DDX5 inhibits hyaline cartilage fibrosis and degradation in osteoarthritis via alternative splicing and G-quadruplex unwinding. NATURE AGING 2024; 4:664-680. [PMID: 38760576 PMCID: PMC11108786 DOI: 10.1038/s43587-024-00624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.
Collapse
Affiliation(s)
- Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mingrui Han
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhigui Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Jun Ji
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingqing Liang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- Department of Orthopaedics, Jinling Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Shi Y, Ye R, Gao Y, Xia F, Yu XF. A prognostic and immune related risk model based on zinc homeostasis in hepatocellular carcinoma. iScience 2024; 27:109389. [PMID: 38510110 PMCID: PMC10951649 DOI: 10.1016/j.isci.2024.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The dysfunction of zinc homeostasis participates in the early and advancing malignancy of HCC. However, the prognostic ability of zinc homeostasis in HCC has not been clarified yet. Here, we showed a zinc-homeostasis related risk model in HCC. Five signature genes including ADAMTS5, PLOD2, PTDSS2, KLRB1, and UCK2 were screened out via survival analyses and regression algorithms to construct the nomogram with clinical characteristics. Experimental researches indicated that UCK2 participated in the progression of HCC. Patients with higher risk scores always had worse outcomes and were more associated with immune suppression according to the analyses of immune related-pathway activation, cell infiltration, and gene expression. Moreover, these patients were likely to exhibit more sensitivity to sorafenib and other antitumor drugs. This study highlights the significant prognostic role of zinc homeostasis and suggests potential treatment strategies in HCC.
Collapse
Affiliation(s)
- Yifei Shi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
| | - Runxin Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
| | - Yuan Gao
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing 312035, P.R. China
| | - Fengyan Xia
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310016, P.R. China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou 310016, P.R. China
- Cancer Center of Zhejiang University, Hangzhou 310016, P.R. China
| |
Collapse
|
8
|
Qi W, Zhang Q. Insights on epithelial cells at the single-cell level in hepatocellular carcinoma prognosis and response to chemotherapy. Front Pharmacol 2023; 14:1292831. [PMID: 38044951 PMCID: PMC10690771 DOI: 10.3389/fphar.2023.1292831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) originates from Epithelial cells, and epithelial lineage plasticity has become a promising research direction for advancing HCC treatment. This study aims to focus on Epithelial cells to provide target insights for detecting HCC prognosis and response to drug therapy. Methods: Single-cell RNA sequencing (scRNA-seq) data from GSE149614 were clustered using Seurat, and the differentiation and evolution of epithelial cells were analyzed by Monocle 2. Scissor+ and Scissor- Epithelial cells associated with the prognostic phenotypes of bulk RNA-seq of HCC were screened using the Scissor algorithm for differential analysis to screen candidate genes. Candidate genes were overlapped with prognostic related genes screened by univariate Cox regression, and the Least Absolute Shrinkage and Selection Operator (LASSO) sparse penalty was imposed on the intersection genes to construct a risk assessment system. Results: Eight major cell subpopulations of HCC were identified, among which the proportion of epithelial cells in non-tumor liver tissues and HCC tissues was significantly different, and its proportion increased with advanced clinical stage. During the progression of HCC, the whole direction of epithelial cells differentiation trajectory was towards enhanced cell proliferation. Differential analysis between Scissor+ and Scissor- epithelial cells screened 1,265 upregulated and 191 downregulated prognostic candidate genes. Wherein, the upregulated genes were enriched in Cell processes, Genetic information processing, Metabolism and Human disease with Infection. Nevertheless, immune system related pathways took the main proportions in downregulated genes enriched pathways. There were 17 common genes between upregulated candidate genes and prognostic risk genes, of which CDC20, G6PD and PLOD2 were selected as components for constructing the risk assessment system. Risk score showed a significant correlation with tumor stage, epithelial-mesenchymal transition (EMT) related pathways and 22 therapeutic drugs, and was an independent prognostic factor for HCC. Conclusion: This study revealed the cellular composition of HCC, the differentiation evolution and functional landscape of epithelial cells in the further deterioration of HCC, and established a 3-gene risk model, which was closely related to clinical features, EMT, and drug sensitivity prediction. These findings provided insights in patient prognosis and drug therapy detection for HCC.
Collapse
Affiliation(s)
| | - Qian Zhang
- Department of digestive, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Li K, Niu Y, Li K, Zhong C, Qiu Z, Yuan Y, Shi Y, Lin Z, Huang Z, Zuo D, Yuan Y, Li B. Dysregulation of PLOD2 Promotes Tumor Metastasis and Invasion in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1094-1105. [PMID: 37577214 PMCID: PMC10412693 DOI: 10.14218/jcth.2022.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 02/22/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Metastasis is a major factor associated with high recurrence and mortality in hepatocellular carcinoma (HCC) patients while the underlying mechanism of metastasis remains elusive. In our study, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was shown to be involved in the process of metastasis in HCC. Methods The Cancer Genome Atlas (TCGA) database and HCC tissue microarrays were used to evaluate the expression of genes. In vitro migration, invasion, in vivo subcutaneous tumor model and in vivo lung metastasis assays were used to determine the role of PLOD2 in tumor growth and metastasis in HCC. RNA sequencing and gene set enrichment analysis were performed to uncover the downstream factor of PLOD2 in HCC cells. A luciferase reporter assay was performed to evaluate the interaction between PLOD2 and interferon regulatory factor 5 (IRF5). Results The expression of PLOD2 in HCC tissues was higher than that in adjacent tissues, and increased PLOD2 expression was often found in advanced tumors and was correlated with poor prognosis in HCC patients. In vitro experiments, knockdown of PLOD2 reduced the migration and invasion of human HCC cells. Loss of PLOD2 suppressed human HCC growth and metastasis in a subcutaneous tumor model and a lung metastasis model. Baculoviral IAP repeat containing 3 (BIRC3) was proven to be the downstream factor of PLOD2 in human HCC cells. In addition, PLOD2 was transcriptionally regulated by IRF5 in HCC cells. Conclusions High expression of PLOD2 was regulated by IRF5, which was correlated with the poor survival of HCC patients. PLOD2 enhanced HCC metastasis via BIRC3, suggesting that PLOD2 might be a valuable prognostic biomarker for HCC treatment.
Collapse
Affiliation(s)
- Keren Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kai Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Yao Y, Lv J, Wang G, Hong X. Multi-omics analysis and validation of the tumor microenvironment of hepatocellular carcinoma under RNA modification patterns. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18318-18344. [PMID: 38052560 DOI: 10.3934/mbe.2023814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Multiple types of RNA modifications are associated with the prognosis of hepatocellular carcinoma (HCC) patients. However, the overall mediating effect of RNA modifications on the tumor microenvironment (TME) and the prognosis of patients with HCC is unclear. METHODS Thoroughly analyze the TME, biological processes, immune infiltration and patient prognosis based on RNA modification patterns and gene patterns. Construct a prognostic model (RNA modification score, RNAM-S) to predict the overall survival (OS) in HCC patients. Analyze the immune status, cancer stem cell (CSC), mutations and drug sensitivity of HCC patients in both the high and low RNAM-S groups. Verify the expression levels of the four characteristic genes of the prognostic RNAM-S using in vitro cell experiments. RESULTS Two modification patterns and two gene patterns were identified in this study. Both the high-expression modification pattern and the gene pattern exhibited worse OS. A prognostic RNAM-S model was constructed based on four featured genes (KIF20A, NR1I2, NR2F1 and PLOD2). Cellular experiments suggested significant dysregulation of the expression levels of these four genes. In addition, validation of the RNAM-S model using each data set showed good predictive performance of the model. The two groups of HCC patients (high and low RNAM-S groups) exhibited significant differences in immune status, CSC, mutation and drug sensitivity. CONCLUSION The findings of the study demonstrate the clinical value of RNA modifications, which provide new insights into the individualized treatment for patients with HCC.
Collapse
Affiliation(s)
- Yuanqian Yao
- Guangxi University of Chinese medicine, NanNing 530000, China
| | - Jianlin Lv
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guangyao Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaohua Hong
- Guangxi University of Chinese medicine, NanNing 530000, China
| |
Collapse
|
11
|
Gao S, Zhang L, Wang H. Characterizing the key genes of COVID-19 that regulate tumor immune microenvironment and prognosis in hepatocellular carcinoma. Funct Integr Genomics 2023; 23:262. [PMID: 37540264 DOI: 10.1007/s10142-023-01184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Hepatocellular carcinoma (HCC), a highly heterogeneous malignant tumor associated with a poor prognosis, is a common cause of cancer-related deaths worldwide, with a limited survival benefit for patients despite ongoing therapeutic breakthroughs. Coronavirus disease 2019 (COVID-19), a severe infectious disease caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), is a global pandemic and a serious threat to human health. The increased susceptibility to SARS-CoV-2 infection and a poor prognosis in patients with cancer necessitate the exploration of the potential link between the two. No studies have investigated the relationship of COVID-19 genes with the prognosis and tumor development in patients with HCC. We screened prognosis-related COVID-19 genes in HCC, performed molecular typing, developed a stable and reliable COVID-19 genes signature for predicting survival, characterized the immune microenvironment in HCC patients, and explored new molecular therapeutic targets. Datasets of HCC patients, including RNA sequencing data and clinical information, were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Prognosis-related COVID-19 genes were identified by univariate Cox analysis. Molecular typing of HCC was performed using the consensus non-negative matrix factorization method (cNMF), followed by the analysis of survival, tumor microenvironment, and pathway enrichment for each subtype. Prognostic signatures were constructed using LASSO-Cox regression models, and receiver operating characteristic (ROC) curves were used to validate the predictive performance of the signature. The same approach was used for the test and external validation sets. Seven software packages were applied to determine the abundance of immune infiltration in HCC patients and investigate its relationship with the risk scores. Gene set enrichment analysis (GSEA) was used to explore the potential mechanisms by which the COVID-19 genes affect hepatocarcinogenesis and prognosis. Three types of machine learning methods were combined to identify the most critical genes in the signature and localize their expression at the single cell level. We identified 53 prognosis-related COVID-19 genes and classified HCC into two molecular subtypes (C1, C2) by using the NMF method. The prognosis of C2 was significantly better than that of C1, and the two subtypes differed remarkably in terms of the tumor immune microenvironment and biological functions. The 17 COVID-19 genes were screened using the LASSO regression method to develop a 17 COVID-19 genes signature, which demonstrated a good predictive performance for 1-, 2- and 3-year OS of patients with HCC. The risk score as an independent prognostic factor for HCC has better predictive accuracy than traditional clinical variables. Patients in the TCGA cohort were categorized by risk score into the high- and low-risk groups, with the high-risk group mainly enriched in the immune modulation-related pathways and the low-risk group mainly enriched in the metabolism-related pathways, suggesting that the COVID-19 genes may affect disease progression and prognosis by regulating the tumor immune microenvironment and metabolism in HCC. NOL10 was identified as the most critical gene in the signature and hypothesized to be a potential therapeutic target for HCC. Objectively, the COVID-19 genes signature developed in this study, as an independent prognostic factor in HCC patients, is closely associated with the prognosis and tumor immune microenvironment of HCC patients and indicates that they may regulate the development of HCC in multiple ways, providing us with new perspectives for understanding the molecular mechanisms of HCC and finding effective therapeutic targets.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, Ward 4 of the Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lei Zhang
- Department of Oncology Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233080, Anhui, China
| | - Huiyan Wang
- Division of Life Sciences and Medicine, Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
12
|
Gong X, Wang A, Song W. Clinicopathological significances of PLOD2, epithelial-mesenchymal transition markers, and cancer stem cells in patients with esophageal squamous cell carcinoma. Medicine (Baltimore) 2022; 101:e30112. [PMID: 36042592 PMCID: PMC9410680 DOI: 10.1097/md.0000000000030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To examine the expression level of procollagen-lysine2-oxoglutarate 5-dioxygenase 2 (PLOD2) in esophageal squamous cell carcinoma (ESCC) and analyze its correlation with clinicopathological parameters, in order to explore the mechanism of PLOD2 in regulating invasion and metastasis of ESCC. METHODS Immunohistochemistry was used to detect the expression level of PLOD2 in tumor tissues and paired adjacent tissues of 172 patients with ESCC, and the relationship between PLOD2 expression and clinicopathological parameters was analyzed. The deposition of collagen fibers in tumor was detected by Sirius red staining. The correlation between tumor stem cells and epithelial-mesenchymal transition (EMT) markers ZEB1 was analyzed by multivariate logistic regression. RESULTS The expression level of PLOD2 in tumor tissues of patients with ESCC (70.35%, 121/172) was significantly higher than that in paired adjacent tissues (29.65%, 51/172; P < .01). The positive expression rate of PLOD2 in ESCC was related to T classification, lymph node metastasis, and pathological tumor node metastasis of a tumor. The expression rates of ZEB1, CD44, and CD133 in ESCC were correlated with T classification, lymph node metastasis and pathological tumor node metastasis. Scarlet red staining showed that collagen fiber deposition in ESCC tissues with high expression of PLOD2 was significantly higher than that in tissues with low expression of PLOD2 (P < .01). A positive correlation was observed between the expression of PLOD2 and CD133, PLOD2 and CD44, and PLOD2 and N-cadherin (P < .01). Moreover, a negative correlation was noted between the expression of PLOD2 and E-cadherin (P < .01). The combined expression of PLOD2 and ZEB1 were independent prognostic factors for the total survival time of patients with ESCC. CONCLUSION PLOD2 is highly expressed in ESCC and is closely related to tumor invasion and metastasis. The mechanism of PLOD2 for promoting invasion and metastasis of ESCC may be related to activation of the EMT signaling pathway to promote EMT and tumor stem cell transformation.
Collapse
Affiliation(s)
- Xiaomeng Gong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Ailian Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
- *Correspondence: Wenqing Song, Department of Pathology, Bengbu Medical College, Bengbu, Anhui 233000, China (e-mail: )
| |
Collapse
|
13
|
Scietti L, Moroni E, Mattoteia D, Fumagalli M, De Marco M, Negro L, Chiapparino A, Serapian SA, De Giorgi F, Faravelli S, Colombo G, Forneris F. A Fe2+-dependent self-inhibited state influences the druggability of human collagen lysyl hydroxylase (LH/PLOD) enzymes. Front Mol Biosci 2022; 9:876352. [PMID: 36090047 PMCID: PMC9453210 DOI: 10.3389/fmolb.2022.876352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multifunctional human collagen lysyl hydroxylase (LH/PLOD) enzymes catalyze post-translational hydroxylation and subsequent glycosylation of collagens, enabling their maturation and supramolecular organization in the extracellular matrix (ECM). Recently, the overexpression of LH/PLODs in the tumor microenvironment results in abnormal accumulation of these collagen post-translational modifications, which has been correlated with increased metastatic progression of a wide variety of solid tumors. These observations make LH/PLODs excellent candidates for prospective treatment of aggressive cancers. The recent years have witnessed significant research efforts to facilitate drug discovery on LH/PLODs, including molecular structure characterizations and development of reliable high-throughput enzymatic assays. Using a combination of biochemistry and in silico studies, we characterized the dual role of Fe2+ as simultaneous cofactor and inhibitor of lysyl hydroxylase activity and studied the effect of a promiscuous Fe2+ chelating agent, 2,2’-bipyridil, broadly considered a lysyl hydroxylase inhibitor. We found that at low concentrations, 2,2’-bipyridil unexpectedly enhances the LH enzymatic activity by reducing the inhibitory effect of excess Fe2+. Together, our results show a fine balance between Fe2+-dependent enzymatic activity and Fe2+-induced self-inhibited states, highlighting exquisite differences between LH/PLODs and related Fe2+, 2-oxoglutarate dioxygenases and suggesting that conventional structure-based approaches may not be suited for successful inhibitor development. These insights address outstanding questions regarding druggability of LH/PLOD lysyl hydroxylase catalytic site and provide a solid ground for upcoming drug discovery and screening campaigns.
Collapse
Affiliation(s)
- Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| | - Elisabetta Moroni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC-CNR), Milano, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| |
Collapse
|
14
|
Sakano Y, Noda T, Kobayashi S, Kitagawa A, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Asaoka T, Tanemura M, Umeshita K, Mimori K, Doki Y, Eguchi H. Clinical Significance of Acylphosphatase 1 Expression in Combined HCC-iCCA, HCC, and iCCA. Dig Dis Sci 2022; 67:3817-3830. [PMID: 34626299 DOI: 10.1007/s10620-021-07266-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Combined hepatocellular and cholangiocarcinoma is a rare primary liver cancer with histological features of both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Little is known about the prognostic features and molecular mechanism of cHCC-iCCA. Acylphosphatase 1 is a cytosolic enzyme that produces acetic acid from acetyl phosphate and plays an important role in cancer progression. AIMS We evaluated the clinical significance of ACYP1 expression in cHCC-iCCA, HCC, and iCCA. METHODS ACYP1 immunohistochemistry was performed in 39 cases diagnosed with cHCC-iCCA. The prognosis was evaluated in three different cohorts (cHCC-iCCA, HCC, and iCCA). The relationships between ACYP1 expression and cell viability, migration, invasiveness, and apoptosis were examined using siRNA methods in vitro. In vivo subcutaneous tumor volumes and cell apoptosis were evaluated after downregulation of ACYP1 expression. RESULTS Almost half of the patients with cHCC-iCCA were diagnosed with high ACYP1 expression. In all three cohorts, the cases with high ACYP1 expression had significantly lower overall survival, and high ACYP1 expression was identified as an independent prognostic factor. Downregulation of ACYP1 reduced the proliferative capacity, migration, and invasiveness of both HCC and iCCA cells. Moreover, knockdown of ACYP1 increased the ratio of apoptotic cells and decreased the expression of anti-apoptosis proteins. In vivo tumor growth was significantly inhibited by the transfection of ACYP1 siRNA, and the number of apoptotic cells increased. CONCLUSION High ACYP1 expression could influence the prognosis of cHCC-iCCA, HCC, and iCCA patients. In vitro ACYP1 expression influences the tumor growth and cell viability in both HCC and iCCA by regulating anti-apoptosis proteins.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akihiro Kitagawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Koji Umeshita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Huo J, Cai J, Wu L. Comprehensive analysis of metabolic pathway activity subtypes derived prognostic signature in hepatocellular carcinoma. Cancer Med 2022; 12:898-912. [PMID: 35651292 PMCID: PMC9844627 DOI: 10.1002/cam4.4858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Metabolic reprogramming is one of the hallmarks of cancer, but metabolic pathway activity-related subtypes of hepatocellular carcinoma (HCC) have not been identified. METHODS Based on the quantification results of 41 metabolic pathway activities by gene set variation analysis, the training cohort (n = 609, merged by TCGA and GSE14520) was clustered into three subtypes (C1, C2, and C3) with the nonnegative matrix factorization method. Totally 1371 differentially expressed genes among C1, C2, and C3 were identified, and an 8-gene risk score was established by univariable Cox regression analysis, least absolute shrinkage and selection operator method, and multivariable Cox regression analysis. RESULTS C1 had the strongest metabolic activity, good prognosis, the highest CTNNB1 mutation rate, with massive infiltration of eosinophils and natural killer cells. C2 had the weakest metabolic activity, poor prognosis, was younger, was inclined to vascular invasion and advanced stage, had the highest TP53 mutation rate, exhibited a higher expression level of immune checkpoints, accompanied by massive infiltration of regulatory T cells. C3 had moderate metabolic activity and prognosis, the highest LRP1B mutation rate, and a higher infiltration level of neutrophils and macrophages. Internal cohorts (TCGA, n = 370; GSE14520, n = 239), external cohorts (ICGC, n = 231; GSE116174, n = 64), and clinical subgroup validation showed that the risk score was applicable for patients with diverse clinical features and was effective in predicting the prognosis and malignant progression of patients with HCC. Compared with the low-risk group, the high-risk group had a poor prognosis, enhanced cancer stem cell characteristics, activated DNA damage repair, weakened metabolic activity, cytolytic activity, and interferon response. CONCLUSION We identified HCC subtypes from the perspective of metabolism-related pathway activity and proposed a robust prognostic signature for HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jinzhen Cai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Liqun Wu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
16
|
PLOD2 Is a Prognostic Marker in Glioblastoma That Modulates the Immune Microenvironment and Tumor Progression. Int J Mol Sci 2022; 23:ijms23116037. [PMID: 35682709 PMCID: PMC9181500 DOI: 10.3390/ijms23116037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the role of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) in glioblastoma (GBM) pathophysiology. To this end, PLOD2 protein expression was assessed by immunohistochemistry in two independent cohorts of patients with primary GBM (n1 = 204 and n2 = 203, respectively). Association with the outcome was tested by Kaplan−Meier, log-rank and multivariate Cox regression analysis in patients with confirmed IDH wild-type status. The biological effects and downstream mechanisms of PLOD2 were assessed in stable PLOD2 knock-down GBM cell lines. High levels of PLOD2 significantly associated with (p1 = 0.020; p2< 0.001; log-rank) and predicted (cohort 1: HR = 1.401, CI [95%] = 1.009−1.946, p1 = 0.044; cohort 2: HR = 1.493; CI [95%] = 1.042−2.140, p2 = 0.029; Cox regression) the poor overall survival of GBM patients. PLOD2 knock-down inhibited tumor proliferation, invasion and anchorage-independent growth. MT1-MMP, CD44, CD99, Catenin D1 and MMP2 were downstream of PLOD2 in GBM cells. GBM cells produced soluble factors via PLOD2, which subsequently induced neutrophils to acquire a pro-tumor phenotype characterized by prolonged survival and the release of MMP9. Importantly, GBM patients with synchronous high levels of PLOD2 and neutrophil infiltration had significantly worse overall survival (p < 0.001; log-rank) compared to the other groups of GBM patients. These findings indicate that PLOD2 promotes GBM progression and might be a useful therapeutic target in this type of cancer.
Collapse
|
17
|
Du Y, Khan M, Fang N, Ma F, Du H, Tan Z, Wang H, Yin S, Wei X. Berberine Attenuates Cell Motility via Inhibiting Inflammation-Mediated Lysyl Hydroxylase-2 and Glycolysis. Front Pharmacol 2022; 13:856777. [PMID: 35559258 PMCID: PMC9086160 DOI: 10.3389/fphar.2022.856777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Lysyl hydroxylase-2 (LH2) involves in the hydroxylation of telopeptide lysine residues during collagen deposition. Recent studies indicate that interleukin (IL)-6 generated by the chronic inflammation disease may trigger the LH2 expression to accelerate cell motility. Berberine is the alkaloid derived from the traditional Chinese medicine Coptis chinensis, which displays potential anti-inflammatory activity in multiple diseases. The anti-inflammatory activity of berberine has been confirmed by reducing proinflammatory cytokines such as IL-6, IL-8, and IFN-γ. However, whether and how berberine inhibits cellular motility against metastatic spread in triple-negative breast cancer (TNBC) has not been demonstrated, and the underlying mechanism remains unclear. We investigated the effects of berberine on the inflammatory cytokine secretion, cell proliferation, and migration in vitro and further explored the effect of berberine on growth and metastasis in vivo. Berberine restrained TNBC cell proliferation, motility, and glycolysis process in a dose-dependent way. The secretion of IL-6 was abrogated by berberine in TNBC cells, and IL-6-stimulated cell migration was inhibited by berberine. Mechanistically, berberine remarkably suppressed LH2 expression at both mRNA and protein levels. LH2 depletion led to decreasing the antimotility effect of berberine, and this phenomenon was related to the suppressed glycolysis after LH2 inhibition. Conversely, ectopic restoration of LH2 could further increase the antimotility effect of berberine. Moreover, berberine was confirmed to inhibit cell growth and motility in vivo, and the expression of LH2 and glycolytic enzymes was also blocked by berberine in vivo. Collectively, this study indicated that berberine could be a promising therapeutic drug via regulating LH2 for TNBC.
Collapse
Affiliation(s)
- Yishan Du
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Muhammad Khan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nana Fang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Ma
- Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Xiaohui Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Chen J, Wang H, Zhou L, Liu Z, Chen H, Tan X. A necroptosis-related gene signature for predicting prognosis, immune landscape, and drug sensitivity in hepatocellular carcinoma. Cancer Med 2022; 11:5079-5096. [PMID: 35560794 PMCID: PMC9761093 DOI: 10.1002/cam4.4812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a growing threat to global health. Necroptosis is a newly discovered form of cell necrosis that plays a vital role in cancer development. Thus, we conducted this study to identify a predictive signature of HCC based on necroptosis-related genes. METHODS The tumor samples in the liver hepatocellular carcinoma (LIHC) cohort from The Cancer Genome Atlas (TCGA) database were subtyped using the consensus clustering algorithm. Univariate Cox regression and LASSO-Cox analysis were performed to identify a gene signature from genes differentially expressed between tumor clusters. Then, we integrated the TNM stage and the prognostic model to build a nomogram. The gene signature and the nomogram were externally validated in the GSE14520 cohort from the Gene Expression Omnibus (GEO) and the LIRP-JP cohort from the International Cancer Genome Consortium (ICGC). Evaluations of predictive performance evaluations were conducted using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, principal component analyses, concordance indices, and decision curve analyses. The tumor microenvironment was estimated using eight published methods. Finally, we forecasted the sensitivity of HCC patients to immunotherapy and chemotherapy based on this gene signature. RESULTS We identified two necroptosis-related clusters and a 10-gene signature (MTMR2, CDCA8, S100A9, ANXA10, G6PD, SLC1A5, SLC2A1, SPP1, PLOD2, and MMP1). The gene signature and the nomogram had good predictive ability in the TCGA, ICGC, and GEO cohorts. The risk score was positively associated with the levels of necroptosis and immune cell infiltrations (especially of immunosuppressive cells). The high-risk group could benefit more from immunotherapy and some chemotherapeutics than the low-risk group. CONCLUSION The necroptosis-related gene signature provides a new method for the risk stratification and treatment optimization of HCC. The nomogram can further improve predictive accuracy.
Collapse
Affiliation(s)
- Junliang Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Huaitao Wang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Lei Zhou
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhihao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Hui Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaodong Tan
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
19
|
Morbid Obesity in Women Is Associated with an Altered Intestinal Expression of Genes Related to Cancer Risk and Immune, Defensive, and Antimicrobial Response. Biomedicines 2022; 10:biomedicines10051024. [PMID: 35625760 PMCID: PMC9138355 DOI: 10.3390/biomedicines10051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Little is known about the relation between morbid obesity and duodenal transcriptomic changes. We aimed to identify intestinal genes that may be associated with the development of obesity regardless of the degree of insulin resistance (IR) of patients. Material and Methods: Duodenal samples were assessed by microarray in three groups of women: non-obese women and women with morbid obesity with low and high IR. Results: We identified differentially expressed genes (DEGs) associated with morbid obesity, regardless of IR degree, related to digestion and lipid metabolism, defense response and inflammatory processes, maintenance of the gastrointestinal epithelium, wound healing and homeostasis, and the development of gastrointestinal cancer. However, other DEGs depended on the IR degree. We mainly found an upregulation of genes involved in the response to external organisms, hypoxia, and wound healing functions in women with morbid obesity and low IR. Conclusions: Regardless of the degree of IR, morbid obesity is associated with an altered expression of genes related to intestinal defenses, antimicrobial and immune responses, and gastrointestinal cancer. Our data also suggest a deficient duodenal immune and antimicrobial response in women with high IR.
Collapse
|
20
|
Han L, Wang M, Yang Y, Xu H, Wei L, Huang X. Detection of Prognostic Biomarkers for Hepatocellular Carcinoma through CircRNA-associated CeRNA Analysis. J Clin Transl Hepatol 2022; 10:80-89. [PMID: 35233376 PMCID: PMC8845162 DOI: 10.14218/jcth.2020.00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The prognosis of hepatocellular carcinoma (HCC) is extremely poor; therefore, there is an urgent need for novel prognostic molecular biomarkers of HCC. The current investigation utilized circular (circ)RNA-associated competing endogenous (ce)RNAs analysis in order to identify significant prognostic biomarkers of HCC. METHODS CircRNAs and mRNAs that were differentially expressed between normal and HCC tissues were identified. Their respective functions were predicted with Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. A nomogram was used for model verification. RESULTS A ceRNA network composed of differentially expressed circRNAs and mRNAs was constructed. Significant hub nodes in the ceRNA network were hsa_circ_0004662, hsa_circ_0005735, hsa_circ_0006990, hsa_circ_0018403 and hsa_circ_0100609. By using this information, a prognostic risk assessment tool was developed based on the expressions of seven genes (PLOD2, TARS, RNF19B, CCT2, RAN, C5orf30 and MCM10). Furthermore, multivariate Cox regression analysis revealed risk and T-stage parameters as independent prognostic factors. The nomograms that were constructed from risk and T-stage groups were used to further assess the prediction of HCC patient survival rates. The nomogram, which consisted of risk and T-stage scores assessment models, was found to be an independent factor for predicting prognosis of HCC. CONCLUSIONS Five circRNAs, including hsa_circ_0004662, hsa_circ_0005735, hsa_circ_0006990, hsa_circ_0018403 and hsa_circ_0100609, that may play key roles in the progression of HCC were identified. Seven gene signatures were identified, which were associated with the aforementioned circRNAs, including PLOD2, TARS, RNF19B, CCT2, RAN, C5orf30 and MCM10, all of which were significant genes involved in the pathophysiology of HCC. These genes may be used as a prognosticating tool in HCC patients.
Collapse
Affiliation(s)
- Li Han
- Department of Nursing, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Maolong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuling Yang
- Department of Infectious diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Wei
- Department of Nursing, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Huang
- Department of Nursing, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Correspondence to: Xia Huang, Department of Nursing, Affiliated Hospital of Qingdao University, 16Jiangsu Road, Qingdao, Shandong 266000, China. Tel: +86-18661807107, Fax: +86-532-82911875, E-mail:
| |
Collapse
|
21
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Clinical Prognostic Value of the PLOD Gene Family in Lung Adenocarcinoma. Front Mol Biosci 2022; 8:770729. [PMID: 35265665 PMCID: PMC8899219 DOI: 10.3389/fmolb.2021.770729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence has implicated members of the procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) gene family, PLOD1, PLOD2, and PLOD3, in cancer progression and metastasis. However, their expression, prognostic value, and mechanisms underlying their roles in lung adenocarcinoma (LUAD) have not yet been reported. We downloaded PLOD data for LUAD and normal tissues from The Cancer Genome Atlas (TCGA). PLOD1-3 protein expression was evaluated using the Clinical Proteomics Tumor Analysis Consortium and Human Protein Atlas. Survival analysis was performed using the Kaplan–Meier method. A protein–protein interaction network was constructed using STRING software. The “ClusterProfiler” package was used for functional-enrichment analysis. The relationship between PLOD mRNA expression and immune infiltration was analyzed using the Tumor Immunity Assessment Resource and Tumor Immune System Interaction Database. The expression of PLODs in LUAD tissues was significantly upregulated compared with that in adjacent normal tissues. PLOD mRNA overexpression is associated with lymph node metastasis and high TNM staging. Receiver operating characteristic curve analysis showed that when the cut-off level was 6.073, the accuracy, sensitivity, and specificity of PLOD1 in distinguishing LUAD from adjacent controls were 84.4, 79.7, and 82.6%, respectively. The accuracy, sensitivity, and specificity of PLOD2 in distinguishing LUAD from adjacent controls were 81.0, 98.3, and 68.0%, respectively, at a cut-off value of 4.360. The accuracy, sensitivity, and specificity of PLOD3 in distinguishing LUAD from adjacent controls were 69.0, 86.4, and 52.0%, respectively, with a cut-off value of 5.499. Kaplan–Meier survival analysis demonstrated that LUAD patients with high PLODs had a worse prognosis than those with low PLODs. Correlation analysis showed that PLOD mRNA expression was related to immune infiltration and tumor purity. Upregulation of PLOD expression was significantly associated with poor survival and immune cell infiltration in LUAD. Our research shows that PLOD family members have potential as novel biomarkers for poor prognosis and as potential immunotherapy targets for LUAD.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Tao Yu, ; Haozhe Piao,
| |
Collapse
|
22
|
Huo J, Fan X, Qi B, Sun P. A Five-Gene Signature Associated With DNA Damage Repair Molecular Subtype Predict Overall Survival for Hepatocellular Carcinoma. Front Genet 2022; 13:771819. [PMID: 35126478 PMCID: PMC8811360 DOI: 10.3389/fgene.2022.771819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Background: DNA damage repair (DDR) is an important mechanism for the occurrence and development of hepatocellular carcinoma (HCC), but its impact on prognosis has not been fully understood.Materials and methods: A total of 904 HCC patients were included in our study, TCGA (n = 370) and GSE14520 (n = 239) were merged into a large-sample training cohort (n = 609). The training cohort was clustered into C1 and C2 based on prognostic DDR-related genes, the differentially expressed genes (DEGs) between C1 and C2 were identified by the Wilcoxon signed-rank test referred to criteria (|log2FC|≥1 and FDR< 0.05). The univariate Cox analysis was used to screen the prognostic-related DEGs, and Lasso penalized Cox regression analysis was used to construct the risk score. The patients were clarified into high- and low-risk groups based on the median risk score. ICGC (n = 231) and GSE116174 (n = 64) cohorts were used for external validation of the risk score’s prognostic value.Results: The Kaplan–Meier survival analysis showed that the high-risk group had a significantly reduced overall survival (OS) compared to the low-risk group in the three independent cohorts, and the time-dependent ROC curve showed that the five-gene (STMN1, PON1, PLOD2, MARCKSL1, and SPP1) risk score with a high accuracy in predicting OS. The patients with AFP >300 ng/ml, tumor poor differentiation (grade 3–4), micro and macro vascular tumor invasion, advanced stage (AJCC III-IV, BCLC stage B-C, and CLIP score >2) exhibited a higher risk score. Subgroup survival analysis found that the risk score was applicable to patients with different clinical characteristics. GO and KEGG functional enrichment analysis revealed that cell cycle, p53 signaling, TNF signaling-related pathways were upregulated in the high-risk group. The higher infiltration level of activated CD4 T cell, CD56 bright natural killer cell, plasmacytoid dendritic cell, and type 2 T helper cells were found to lead an unfavorable impact on the OS of HCC patients, and these four kinds of immune cells exhibited a higher infiltration level in the high-risk group.Conclusion: The five-gene risk score proposed in the research may provide new insights into the individualized evaluation of HCC prognosis.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinyi Fan
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingxin Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobilary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Peng Sun,
| |
Collapse
|
23
|
Huang P, Zhang B, Zhao J, Li MD. Integrating the Epigenome and Transcriptome of Hepatocellular Carcinoma to Identify Systematic Enhancer Aberrations and Establish an Aberrant Enhancer-Related Prognostic Signature. Front Cell Dev Biol 2022; 10:827657. [PMID: 35300417 PMCID: PMC8921559 DOI: 10.3389/fcell.2022.827657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Recently, emerging evidence has indicated that aberrant enhancers, especially super-enhancers, play pivotal roles in the transcriptional reprogramming of multiple cancers, including hepatocellular carcinoma (HCC). In this study, we performed integrative analyses of ChIP-seq, RNA-seq, and whole-genome bisulfite sequencing (WGBS) data to identify intergenic differentially expressed enhancers (DEEs) and genic differentially methylated enhancers (DMEs), along with their associated differentially expressed genes (DEE/DME-DEGs), both of which were also identified in independent cohorts and further confirmed by HiC data. Functional enrichment and prognostic model construction were conducted to explore the functions and clinical significance of the identified enhancer aberrations. We identified a total of 2,051 aberrant enhancer-associated DEGs (AE-DEGs), which were highly concurrent in multiple HCC datasets. The enrichment results indicated the significant overrepresentations of crucial biological processes and pathways implicated in cancer among these AE-DEGs. A six AE-DEG-based prognostic signature, whose ability to predict the overall survival of HCC was superior to that of both clinical phenotypes and previously published similar prognostic signatures, was established and validated in TCGA-LIHC and ICGC-LIRI cohorts, respectively. In summary, our integrative analysis depicted a landscape of aberrant enhancers and associated transcriptional dysregulation in HCC and established an aberrant enhancer-derived prognostic signature with excellent predictive accuracy, which might be beneficial for the future development of epigenetic therapy for HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- *Correspondence: Ming D. Li,
| |
Collapse
|
24
|
Huo J, Cai J, Guan G, Liu H, Wu L. A Ferroptosis and Pyroptosis Molecular Subtype-Related Signature Applicable for Prognosis and Immune Microenvironment Estimation in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:761839. [PMID: 34869350 PMCID: PMC8634890 DOI: 10.3389/fcell.2021.761839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Due to the heterogeneity of tumors and the complexity of the immune microenvironment, the specific role of ferroptosis and pyroptosis in hepatocellular carcinoma (HCC) is not fully understood, especially its impact on prognosis. Methods: The training set (n = 609, merged by TCGA and GSE14520) was clustered into three subtypes (C1, C2, and C3) based on the prognosis-related genes associated with ferroptosis and pyroptosis. The intersecting differentially expressed genes (DEGs) among C1, C2, and C3 were used in univariate Cox and LASSO penalized Cox regression analysis for the construction of the risk score. The median risk score served as the unified cutoff to divide patients into high- and low-risk groups. Results: Internal (TCGA, n = 370; GSE14520, n = 239) and external validation (ICGC, n = 231) suggested that the 12-gene risk score had high accuracy in predicting the OS, DSS, DFS, PFS, and RFS of HCC. As an independent prognostic indicator, the risk score could be applicable for patients with different clinical features tested by subgroup (n = 26) survival analysis. In the high-risk patients with a lower infiltration abundance of activated B cells, activated CD8 T cells, eosinophils, and type I T helper cells and a higher infiltration abundance of immature dendritic cells, the cytolytic activity, HLA, inflammation promotion, and type I IFN response in the high-risk group were weaker. The TP53 mutation rate, TMB, and CSC characteristics in the high-risk group were significantly higher than those in the low-risk group. Low-risk patients have active metabolic activity and a more robust immune response. The high- and low-risk groups differed significantly in histology grade, vascular tumor cell type, AFP, new tumor event after initial treatment, main tumor size, cirrhosis, TNM stage, BCLC stage, and CLIP score. Conclusion: The ferroptosis and pyroptosis molecular subtype-related signature identified and validated in this work is applicable for prognosis prediction, immune microenvironment estimation, stem cell characteristics, and clinical feature assessment in HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinzhen Cai
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huan Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Identification and Validation of PLOD2 as an Adverse Prognostic Biomarker for Oral Squamous Cell Carcinoma. Biomolecules 2021; 11:biom11121842. [PMID: 34944486 PMCID: PMC8699216 DOI: 10.3390/biom11121842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a key enzyme that catalyzes the hydroxylation of lysine, plays a crucial role in the progression of several solid tumors. However, its spatial expression profile and prognostic significance in oral squamous cell carcinoma (OSCC) have not been revealed. Materials: Mass spectrometry was used to explore amino acid perturbations between OSCC tumor tissues and paired normal tissues of 28 patients. Then, PLOD2 mRNA and protein levels were assessed using several public databases and 18 pairs of OSCC patients’ tissues. Additionally, PLOD2 spatial expression profiles were investigated in 100 OSCC patients by immunohistochemistry and its diagnostic and prognostic values were also evaluated. Lastly, gene set enrichment analysis (GSEA) was used to investigate the potential functions of PLOD2 in OSCC. Results: Lysine was significantly elevated in OSCC tissues and could effectively distinguish tumor from normal tissues (AUC = 0.859, p = 0.0035). PLOD2 mRNA and protein levels were highly increased in tumor tissues of head and neck squamous cell carcinoma (HNSCC) (p < 0.001) and OSCC compared with those in nontumor tissues (p < 0.001). Histopathologically, PLOD2 was ubiquitously expressed in tumor cells (TCs) and fibroblast-like cells (FLCs) of OSCC patients but absent in tumor-infiltrating lymphocytes (TILs). Patients with highly expressed PLOD2 in TCs (PLOD2TCs) and FLCs (PLOD2FLCs) showed poor differentiation, a worse pattern of invasion (WPOI) and more lymph node metastasis (LNM), contributing to higher postoperative metastasis risk and poor survival time. However, PLOD2FLCs rather than PLOD2TCs was an independent risk factor for survival outcomes in OSCC patients. Molecularly, GSEA demonstrated highly expressed PLOD2 was mainly enriched in epithelial–mesenchymal transformation (EMT), TGF-beta signaling and hypoxia pathway, which are associated with poor clinical outcomes of OSCC patients. Conclusions: PLOD2 was a poor prognostic biomarker for OSCC patients and may affect the metastasis of OSCC through EMT pathway. These findings might shed novel sights for future research in PLOD2 targeted OSCC therapy.
Collapse
|
26
|
PLOD2 Is a Potent Prognostic Marker and Associates with Immune Infiltration in Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5512340. [PMID: 34258263 PMCID: PMC8260295 DOI: 10.1155/2021/5512340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Background PLOD2 is overexpressed in diverse tumors and plays a vital role in tumorigenesis. However, the prognostic value of PLOD2 in cervical cancer (CESC) remains unclear. Methods PLOD2 expression and CESC patients' survival data were collected from the Oncomine, GEPIA, UALCAN, and Kaplan-Meier Plotter databases; immunohistochemistry (IHC) was used to validate the expression of PLOD2 in CESC; Gene Set Enrichment Analysis was performed using the STRING and DAVID databases; and the correlations between PLOD2 and cancer immune infiltrates were investigated using the TIMER and TISIDB databases. Results We found that the expression level of PLOD2 was increased in various cancers, and meta-analysis in the Oncomine database revealed that PLOD2 was significantly upregulated in CESC compared to that in normal tissues (P < 0.001). In addition, the high expression of PLOD2 was closely related to poor overall survival (OS) and disease-free survival (DFS) in patients with CESC (OS HR = 1.73, P = 0.029; DFS HR = 2.60, P = 0.018). Functional annotations indicated that differentially expressed PLOD2 were primarily related to protein digestion and absorption pathways and to the collagen fibril organization process. Immune infiltration analysis showed that PLOD2 was highly correlated with B cells, CD4+ T cells, T helper type 2 (Th2) cells, and eosinophils in CESC. Conclusion PLOD2 is positively associated with poor prognosis and might be considered a novel diagnostic and prognostic marker for CESC patients.
Collapse
|
27
|
Pan Y, Hu GY, Jiang S, Xia SJ, Maher H, Lin ZJ, Mao QJ, Zhao J, Cai LX, Xu YH, Xu JJ, Cai XJ. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021; 11:637971. [PMID: 34094917 PMCID: PMC8169983 DOI: 10.3389/fonc.2021.637971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly tumor with high heterogeneity. Aerobic glycolysis is a common indicator of tumor growth and plays a key role in tumorigenesis. Heterogeneity in distinct metabolic pathways can be used to stratify HCC into clinically relevant subgroups, but these have not yet been well-established. In this study, we constructed a model called aerobic glycolysis index (AGI) as a marker of aerobic glycolysis using genomic data of hepatocellular carcinoma from The Cancer Genome Atlas (TCGA) project. Our results showed that this parameter inferred enhanced aerobic glycolysis activity in tumor tissues. Furthermore, high AGI is associated with poor tumor differentiation and advanced stages and could predict poor prognosis including reduced overall survival and disease-free survival. More importantly, the AGI could accurately predict tumor sensitivity to Sorafenib therapy. Therefore, the AGI may be a promising biomarker that can accurately stratify patients and improve their treatment efficacy.
Collapse
Affiliation(s)
- Yu Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Geng-Yuan Hu
- Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Shi Jiang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun-Jie Xia
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Hendi Maher
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Jie Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Jiang Mao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Liu-Xin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Ying-Hua Xu
- Department of Oncology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jun-Jie Xu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, China.,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
28
|
PLOD2-driven IL-6/STAT3 signaling promotes the invasion and metastasis of oral squamous cell carcinoma via activation of integrin β1. Int J Oncol 2021; 58:29. [PMID: 33887877 PMCID: PMC8057293 DOI: 10.3892/ijo.2021.5209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
We previously reported that high expression of procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2) leads to stabilization and plasma membrane translocation of integrin β1 to promote the invasion and metastasis of oral squamous cell carcinoma (SCC). The present study aimed to further understand the relationship between PLOD2-integrin β1 signaling and the tumor microenvironment. This study provided further advanced insights indicating that elevated interleukin (IL)-6 in the tumor microenvironment acts as a key molecule that triggers PLOD2-integrin β1 axis-derived acceleration of tumor invasion and metastasis. It was found using the dual-luciferase reporter assay system that signal transducer and activator of transcription 3 (STAT3) activation by IL-6 was essential for increasing the expression levels of PLOD2 through direct activation of the PLOD2 promoter in oral SCC, whereas IL-6 stimulation did not contribute to integrin β1 expression or the subsequent maturation process towards a functional form on the plasma membrane. Furthermore, the expression of IL-6 in oral SCC tissues was mainly observed in the tumor stroma. Finally, with double immunofluorescence staining, it was found that IL-6 expression occurred in CD163-positive M2 macrophages distributed around the tumor nest. These results combined with our previous results indicate that as IL-6 significantly increases STAT3-mediated PLOD2 promoter activity, IL-6 released by M2-type tumor-associated macrophages is a crucial factor that promotes PLOD2-integrin β1 axis-enhanced invasion and metastasis of oral SCC cells.
Collapse
|
29
|
Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. Sci Rep 2021; 11:8659. [PMID: 33883562 PMCID: PMC8060395 DOI: 10.1038/s41598-021-87380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023] Open
Abstract
In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.
Collapse
|
30
|
Identification of hepatocellular carcinoma prognostic markers based on 10-immune gene signature. Biosci Rep 2021; 40:226069. [PMID: 32789471 PMCID: PMC7457228 DOI: 10.1042/bsr20200894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Due to the heterogeneity of hepatocellular carcinoma (HCC), hepatocelluarin-associated differentially expressed genes were analyzed by bioinformatics methods to screen the molecular markers for HCC prognosis and potential molecular targets for immunotherapy. Methods: RNA-seq data and clinical follow-up data of HCC were downloaded from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis and Lasso regression were used to identify robust immunity-related genes. Finally, a risk prognosis model of immune gene pairs was established and verified by clinical features, test set and Gene Expression Omnibus (GEO) external validation set. Results: A total of 536 immune-related gene (IRGs) were significantly associated with the prognosis of patients with HCC. Ten robust IRGs were finally obtained and a prognostic risk prediction model was constructed by feature selection of Lasso. The risk score of each sample is calculated based on the risk model and is divided into high risk group (Risk-H) and low risk group (Risk-L). Risk models enable risk stratification of samples in training sets, test sets, external validation sets, staging and subtypes. The area under the curve (AUC) in the training set and the test set were all >0.67, and there were significant overall suvival (OS) differences between the Risk-H and Risk-L samples. Compared with the published four models, the traditional clinical features of Grade, Stage and Gender, the model performed better on the risk prediction of HCC prognosis. Conclusion: The present study constructed 10-gene signature as a novel prognostic marker for predicting survival in patients with HCC.
Collapse
|
31
|
Cheriyamundath S, Kumar A, Gavert N, Brabletz T, Ben-Ze’ev A. The Collagen-Modifying Enzyme PLOD2 Is Induced and Required during L1-Mediated Colon Cancer Progression. Int J Mol Sci 2021; 22:3552. [PMID: 33805564 PMCID: PMC8038063 DOI: 10.3390/ijms22073552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
The overactivation of Wnt/β-catenin signaling is a hallmark of colorectal cancer (CRC) development. We identified the cell adhesion molecule L1CAM (L1) as a target of β-catenin-TCF transactivation in CRC cells. The overexpression of L1 in CRC cells confers enhanced proliferation, motility, tumorigenesis and liver metastasis, and L1 is exclusively localized in the invasive areas of human CRC tissue. A number of genes are induced after L1 transfection into CRC cells by a mechanism involving the cytoskeletal protein ezrin and the NF-κB pathway. When studying the changes in gene expression in CRC cells overexpressing L1 in which ezrin levels were suppressed by shRNA to ezrin, we discovered the collagen-modifying enzyme lysyl hydroxylase 2 (PLOD2) among these genes. We found that increased PLOD2 expression was required for the cellular processes conferred by L1, including enhanced proliferation, motility, tumorigenesis and liver metastasis, since the suppression of endogenous PLOD2 expression, or its enzymatic activity, blocked the enhanced tumorigenic properties conferred by L1. The mechanism involved in increased PLOD2 expression by L1 involves ezrin signaling and PLOD2 that affect the SMAD2/3 pathway. We found that PLOD2 is localized in the colonic crypts in the stem cell compartment of the normal mucosa and is found at increased levels in invasive areas of the tumor and, in some cases, throughout the tumor tissue. The therapeutic strategies to target PLOD2 expression might provide a useful approach for CRC treatment.
Collapse
Affiliation(s)
- Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.C.); (A.K.); (N.G.)
| | - Anmol Kumar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.C.); (A.K.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.C.); (A.K.); (N.G.)
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.C.); (A.K.); (N.G.)
| |
Collapse
|
32
|
Xiao S, Hu J, Hu N, Sheng L, Rao H, Zheng G. Identification of a Novel Epithelial-to-Mesenchymal-related Gene Signature in Predicting Survival of Patients with Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2021; 25:1254-1270. [PMID: 33655854 DOI: 10.2174/1386207324666210303093629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transformation (EMT) promotes cancer metastasis including hepatocellular carcinoma. Therefore, EMT-related gene signature was explored. OBJECTIVE The present study was designed to develop an EMT-related gene signature for predicting the prognosis of patients with hepatocellular carcinoma. METHODS We conducted an integrated gene expression analysis based on tumor data of the patients with hepatocellular carcinoma from The Cancer Genome Atlas (TCGA), HCCDB18 and GSE14520 dataset. An EMT-related gene signature was constructed by least absolute shrinkage and selection operator (LASSO) and COX regression analysis of univariate and multivariate survival. RESULTS A 3-EMT gene signature was developed and validated based on gene expression profiles of hepatocellular carcinoma from three microarray platforms. Patients with a high risk score had a significantly worse overall survival (OS) than those with low risk scores. The EMT-related gene signature showed a high performance in accurately predicting prognosis and in examining the clinical characteristics and immune score analysis. Univariate and multivariate Cox regression analyses confirmed that the EMT-related gene signature was an independent prognostic factor for predicting survival in hepatocellular carcinoma patients. Compared with the existing models, our EMT-related gene signature reached higher area under curve (AUC). CONCLUSION Our findings provide novel insight into understanding EMT and help identify hepatocellular carcinoma patients with poor prognosis.
Collapse
Affiliation(s)
- Simeng Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Na Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Lei Sheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Hui Rao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| | - Guohua Zheng
- Key Laboratory for Chinese Medicine Resource and Compound Prescription of Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065. China
| |
Collapse
|
33
|
Yokota Y, Noda T, Okumura Y, Kobayashi S, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Takeda Y, Tanemura M, Murakami T, Umeshita K, Doki Y, Eguchi H. Serum exosomal miR-638 is a prognostic marker of HCC via downregulation of VE-cadherin and ZO-1 of endothelial cells. Cancer Sci 2021; 112:1275-1288. [PMID: 33426736 PMCID: PMC7935782 DOI: 10.1111/cas.14807] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer‐related death. High recurrence rates after curative resection and the lack of specific biomarkers for intrahepatic metastases are major clinical problems. Recently, exosomal microRNAs (miRNAs) have been reported to have a role in the formation of the pre‐metastatic niche and as promising biomarkers in patients with malignancy. Here we aimed to clarify the molecular mechanisms of intrahepatic metastasis and to identify a novel biomarker miRNA in patients with HCC. A highly intrahepatic metastatic cell line (HuH‐7M) was established by in vivo selection. HuH‐7M showed increased proliferative ability and suppression of apoptosis and anoikis. HuH‐7M and the parental cell (HuH‐7P) showed the similar expression of epithelial‐mesenchymal transition markers and cancer stem cell markers. In vivo, mice treated with exosomes derived from HuH‐7M showed increased tumorigenesis of liver metastases. Exosomes from HuH‐7M downregulated endothelial cell expression of vascular endothelial‐cadherin (VE‐cadherin) and zonula occludens‐1 (ZO‐1) in non‐cancerous regions of liver and increased the permeability of FITC‐dextran through the monolayer of endothelial cells. The miRNAs (miR‐638, miR‐663a, miR‐3648, and miR‐4258) could attenuate endothelial junction integrity by inhibiting VE‐cadherin and ZO‐1 expression. In patients with HCC, higher serum exosomal miR‐638 expression was associated with tumor recurrence. In conclusion, the miRNAs secreted from a highly metastatic cancer cell can promote vascular permeability via downregulation of endothelial expression of VE‐cadherin and ZO‐1. Serum exosomal miR‐638 expression holds potential for serving as a significant and independent prognostic marker in HCC.
Collapse
Affiliation(s)
- Yuki Yokota
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Okumura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Surgery, Kansai Rosai Hospital, Amagasaki, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Surgery, Rinku General Medical Center, Izumisano, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Iruma, Japan
| | - Koji Umeshita
- Division of Health Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
34
|
Matsumoto K, Noda T, Kobayashi S, Sakano Y, Yokota Y, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Takeda Y, Tanemura M, Umeshita K, Doki Y, Eguchi H. Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma. Cancer Lett 2020; 500:29-40. [PMID: 33307155 DOI: 10.1016/j.canlet.2020.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Glycolysis emerges as a new therapeutic target for malignancies. The inhibition of glycolytic activator, PFKFB3, repairs tumor endothelial cell function, and normalizing the tumor microenvironment. We aimed to investigate the significance of PFKFB3 in HCC, and the effects of the PFKFB3 inhibitor, PFK15, in HCC tumor cells and tumor endothelial cells. Double immunofluorescent staining of PFKFB3 and CD31 in HCC tissues revealed that high PFKFB3 expression in both tumor cells and tumor endothelial cells was significantly correlated with poor prognosis. Multivariate analysis identified PFKFB3 expression as an independent prognostic factor. PFK15 suppressed proliferation of HCC cell line and tumor endothelial cells in vitro. In a subcutaneous tumor model of the HCC cell line with tumor endothelial cells, PFK15 suppressed tumor growth and induced apoptosis. Moreover, PFK15 treatment induced tumor vessel normalization, decreasing vessel diameter with pericyte attachment and improving vessel perfusion. High PFKFB3 expression in both tumor cells and tumor endothelial cells was identified as a novel prognostic marker in HCC. Targeting PFKFB3 via PFK15 might be a promising strategy for suppressing tumor growth and inducing tumor vessel normalization.
Collapse
Affiliation(s)
- Kenichi Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yuki Yokota
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Department of Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Department of Surgery, Rinku General Medical Center, Osaka, 598-8577, Japan
| | - Koji Umeshita
- Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
35
|
Berglund A, Amankwah EK, Kim YC, Spiess PE, Sexton WJ, Manley B, Park HY, Wang L, Chahoud J, Chakrabarti R, Yeo CD, Luu HN, Pietro GD, Parker A, Park JY. Influence of gene expression on survival of clear cell renal cell carcinoma. Cancer Med 2020; 9:8662-8675. [PMID: 32986937 PMCID: PMC7666730 DOI: 10.1002/cam4.3475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10%‐20% of patients with clinically localized clear cell renal cell carcinoma (ccRCC) at time of surgery will subsequently experience metastatic progression. Although considerable progression was seen in the systemic treatment of metastatic ccRCC in last 20 years, once ccRCC spreads beyond the confines of the kidney, 5‐year survival is less than 10%. Therefore, significant clinical advances are urgently needed to improve overall survival and patient care to manage the growing number of patients with localized ccRCC. We comprehensively evaluated expression of 388 candidate genes related with survival of ccRCC by using TCGA RNAseq (n = 515), Total Cancer Care (TCC) expression array data (n = 298), and a well characterized Moffitt RCC cohort (n = 248). We initially evaluated all 388 genes for association with overall survival using TCGA and TCC data. Eighty‐one genes were selected for further analysis and tested on Moffitt RCC cohort using NanoString expression analysis. Expression of nine genes (AURKA, AURKB, BIRC5, CCNE1, MK167, MMP9, PLOD2, SAA1, and TOP2A) was validated as being associated with poor survival. Survival prognostic models showed that expression of the nine genes and clinical factors predicted the survival in ccRCC patients with AUC value: 0.776, 0.821 and 0.873 for TCGA, TCC and Moffitt data set, respectively. Some of these genes have not been previously implicated in ccRCC survival and thus potentially offer insight into novel therapeutic targets. Future studies are warranted to validate these identified genes, determine their biological mechanisms and evaluate their therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ernest K Amankwah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
| | - Young-Chul Kim
- Department of Biostatistics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brandon Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyun Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Chang D Yeo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hung N Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giuliano D Pietro
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao, Brazil
| | - Alexander Parker
- University of Florida College of Medicine, Jacksonville, FL, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
36
|
Feng Z, Shi M, Li K, Ma Y, Jiang L, Chen H, Peng C. Development and validation of a cancer stem cell-related signature for prognostic prediction in pancreatic ductal adenocarcinoma. J Transl Med 2020; 18:360. [PMID: 32958051 PMCID: PMC7507616 DOI: 10.1186/s12967-020-02527-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer stem cells (CSCs) are crucial to the malignant behaviour and poor prognosis of pancreatic ductal adenocarcinoma (PDAC). In recent years, CSC biology has been widely studied, but practical prognostic signatures based on CSC-related genes have not been established or reported in PDAC. Methods A signature was developed and validated in seven independent PDAC datasets. The MTAB-6134 cohort was used as the training set, while one local Chinese cohort and five other public cohorts were used for external validation. CSC-related genes with credible prognostic roles were selected to form the signature, and their predictive performance was evaluated by Kaplan–Meier survival, receiver operating characteristic (ROC), and calibration curves. Correlation analysis was employed to clarify the potential biological characteristics of the gene signature. Results A robust signature comprising DCBLD2, GSDMD, PMAIP1, and PLOD2 was developed. It classified patients into high-risk and low-risk groups. High-risk patients had significantly shorter overall survival (OS) and disease-free survival (DFS) than low-risk patients. Calibration curves and Cox regression analysis demonstrated powerful predictive performance. ROC curves showed the better survival prediction by this model than other models. Functional analysis revealed a positive association between risk score and CSC markers. These results had cross-dataset compatibility. Impact This signature could help further improve the current TNM staging system and provide data for the development of novel personalized therapeutic strategies in the future.
Collapse
Affiliation(s)
- Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kexian Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Ma
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
37
|
Yamauchi M, Gibbons DL, Zong C, Fradette JJ, Bota-Rabassedas N, Kurie JM. Fibroblast heterogeneity and its impact on extracellular matrix and immune landscape remodeling in cancer. Matrix Biol 2020; 91-92:8-18. [PMID: 32442601 DOI: 10.1016/j.matbio.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is marked by dense collagenous matrix accumulations that dynamically reorganize to accommodate a growing and invasive tumor mass. Cancer-associated fibroblasts (CAFs) play an essential role in matrix remodeling and influence other processes in the tumor microenvironment, including angiogenesis, immunosuppression, and invasion. These findings have spawned efforts to elucidate CAF functionality at the single-cell level. Here, we will discuss how those efforts have impacted our understanding of the ways in which CAFs govern matrix remodeling and the influence of matrix remodeling on the development of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NS, United States
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
38
|
Wang X, Guo J, Dai M, Wang T, Yang T, Xiao X, Tang Q, Zhang L, Jia L. PLOD2 increases resistance of gastric cancer cells to 5-fluorouracil by upregulating BCRP and inhibiting apoptosis. J Cancer 2020; 11:3467-3475. [PMID: 32284742 PMCID: PMC7150456 DOI: 10.7150/jca.41828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common cancers, and it is the third most common cause of cancer-related mortality worldwide. Fluorouracil (5-FU)-based chemotherapy is frequently used for the treatment of advanced GC. However, a substantial proportion of patients eventually experience refractory disease due to drug resistance. PLOD2 was reported to increase invasion and migration in several GC cell lines, but the roles of PLOD2 in chemoresistance are still unclear. The present study aimed to determine whether PLOD2 could confer 5-FU resistance in GC. Methods: The expression of PLOD2 in GC cell lines was assessed by Western blotting. The cells were transfected by lentiviral transduction. The IC50 values were determined by the CCK-8 assay. The migration and invasion abilities of cells were analyzed by the Transwell assay. The proportion of apoptotic cells was assessed by flow cytometry. The protein levels of P-gp (MDR1), MRP1, BCRP (ABCG2), Bax and Bcl2 were analyzed by Western blotting. Furthermore, tumor xenograft models in nude mice were established to test tumor growth and weight. Result: The knockdown of PLOD2 in BGC823 cells significantly decreased the IC50 values of 5-FU. It also contributed to reducing the cell migration and invasion and promoting the apoptosis of GC cells. The opposite results appeared in PLOD2-overexpressing MGC803 GC cells. In vivo experiments showed that the knockdown of PLOD2 increased the growth inhibition of transplanted tumors in nude mice in response to 5-FU. Our mechanistic studies revealed that PLOD2-overexpressing cells appear to be resistant to the therapeutic characteristics of 5-FU in GC cells by upregulating BCRP and that PLOD2 confers resistance to 5-FU-induced apoptosis in GC cells by affecting the expression of Bax and Bcl2. Conclusion: PLOD2 contributed to increasing resistance of gastric cancer cells to 5-fluorouracil by upregulating BCRP and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xiaohui Wang
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Department of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jiaojiao Guo
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Meng Dai
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Bayannur Clinical Medical College, Inner Mongolia Medical University, Bayannur, Inner Mongolia, PR China
| | - Tengqi Wang
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Bayannur Clinical Medical College, Inner Mongolia Medical University, Bayannur, Inner Mongolia, PR China
| | - Tingting Yang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Xuejun Xiao
- Department of Pharmacology, Xinjiang Medical University, Wulumuqi, Xinjiang, PR China
| | - Qi Tang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, PR China
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Bayannur Clinical Medical College, Inner Mongolia Medical University, Bayannur, Inner Mongolia, PR China
| |
Collapse
|
39
|
Wan J, Qin J, Cao Q, Hu P, Zhong C, Tu C. Hypoxia-induced PLOD2 regulates invasion and epithelial-mesenchymal transition in endometrial carcinoma cells. Genes Genomics 2019; 42:317-324. [PMID: 31872384 DOI: 10.1007/s13258-019-00901-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was induced in hypoxia and participated in cancer development. However, the role of PLOD2 in endometrial carcinoma remains unclear. OBJECTIVE To explore the influences and regulation mechanism of PLOD2 in endometrial carcinoma under hypoxic condition. METHODS The small interfering RNA (siRNA) targeting to PLOD2 and pcDNA3.1-PLPD2 were transfected to endometrial carcinoma cells to alter PLOD2 expression. Cell proliferation ability was determined by colony formation assay. Wound healing assay used to detect cell migration ability. Transwell invasion assay was used to detect cell invasion ability. RESULTS PLOD2 and Hypoxia-inducible factor-1α (HIF-1α) were induced by hypoxia. Down-regulation of PLOD2 did not affect endometrial carcinoma cell proliferation ability, while inhibited cell migration, invasion under hypoxic condition. Besides, down-regulation of PLOD2 increased the levels of γ-catenin and E-cadherin and decreased levels of Fibronectin and Snail under hypoxic condition. Down-regulation of PLOD2 also inactivated Src and phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) signaling under hypoxic condition. The promoting effects of PLOD2 overexpression on migration, invasion and epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells were reversed by Akt inhibitor (MK2206) under hypoxic condition. CONCLUSION PLOD2 expression was increased in endometrial carcinoma cells under hypoxic condition. PLOD2 modulated migration, invasion, and EMT of endometrial carcinoma cells via PI3K/Akt signaling. PLOD2 may be a potential therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Junhui Wan
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Nanchang University, 17# Yongwai Zheng Street, Nanchang City, Jiangxi Province, 330006, China
| | - Junli Qin
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Nanchang University, 17# Yongwai Zheng Street, Nanchang City, Jiangxi Province, 330006, China
| | - Qinyue Cao
- Department of Obstetrics and Gynecology, Medical College of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Ping Hu
- Department of Obstetrics and Gynecology, Medical College of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Chunmei Zhong
- Department of Obstetrics and Gynecology, Medical College of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Chunhua Tu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Nanchang University, 17# Yongwai Zheng Street, Nanchang City, Jiangxi Province, 330006, China.
| |
Collapse
|
40
|
Sheng X, Li Y, Li Y, Liu W, Lu Z, Zhan J, Xu M, Chen L, Luo X, Cai G, Zhang S. PLOD2 contributes to drug resistance in laryngeal cancer by promoting cancer stem cell-like characteristics. BMC Cancer 2019; 19:840. [PMID: 31455288 PMCID: PMC6712771 DOI: 10.1186/s12885-019-6029-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Advanced stage laryngeal squamous cell carcinoma (LSCC) presents a poor prognosis; thus, there is a great need to identify novel prognostic molecular markers. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) is thought to be a novel prognostic factor in several cancers, but its role in LSCC remains unknown. Cancer stem cells (CSCs) are responsible for most instances of tumor recurrence and the development of drug resistance and have been proven to be present in head and neck cancers. Our preliminary study indicated that PLOD2 was elevated in LSCC tissues; therefore, we hypothesized that PLOD2 is related to the prognosis of LSCC patients and aimed to explore the role and underlying mechanism of PLOD2 in LSCC. METHODS We validated the prognostic role of PLOD2 in 114 LSCC patients by immunohistochemistry. Stable PLOD2-overexpressing Hep-2 and FaDu cells were established and assessed by molecular biology and biochemistry methods both in vitro and in vivo. RESULTS We confirmed that PLOD2 overexpression was correlated with poor prognosis in LSCC patients. PLOD2 overexpression strengthened the CSC-like properties of Hep-2 and FaDu cells, activated the Wnt signaling pathway and conferred drug resistance in LSCC in vitro and in vivo. CONCLUSIONS We found that PLOD2 could serve as a prognostic marker in patients with LSCC and confer drug resistance in LSCC by increasing CSC-like traits; in addition, a Wnt-responsive CSC pathway was identified.
Collapse
Affiliation(s)
- Xiaoli Sheng
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Yunxian Li
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yixuan Li
- Head and Neck Surgery of Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenlin Liu
- Department of Otorhinolaryngology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Zhongming Lu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Jiandong Zhan
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Mimi Xu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Liangsi Chen
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Xiaoning Luo
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Gang Cai
- The Fifth Affiliated Hospital of Guangzhou Medical University, No.621, Gangwan Road, Guangzhou, 510700, Guangdong Province, China.
| | - Siyi Zhang
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, No.106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
41
|
Xu WH, Xu Y, Wang J, Tian X, Wu J, Wan FN, Wang HK, Qu YY, Zhang HL, Ye DW. Procollagen-lysine, 2-oxoglutarate 5-dioxygenases 1, 2, and 3 are potential prognostic indicators in patients with clear cell renal cell carcinoma. Aging (Albany NY) 2019; 11:6503-6521. [PMID: 31446433 PMCID: PMC6738415 DOI: 10.18632/aging.102206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Intratumoral fibrosis is a frequent histologic finding in highly vascularized clear cell renal cell carcinoma (ccRCC). Here, we investigated the expression of a family of collagen-modifying enzymes, procollagen-lysine, 2-oxoglutarate 5-dioxygenases 1, 2, and 3 (PLOD1/2/3), in ccRCC tissues and assessed the prognostic value of wild-type and genetically mutated PLOD1/2/3 for ccRCC patients. Normal kidney and ccRCC mRNA and protein expression datasets were obtained from Oncomine, The Cancer Genome Atlas, and Human Protein Atlas databases. Associations between PLOD1/2/3 expression, clinicopathological variables, and patient survival were evaluated using Cox regression and Kaplan–Meier analyses. PLOD1/2/3 mRNA and protein expression levels were significantly elevated in ccRCC tissues compared with normal kidney. Increased PLOD1/2/3 mRNA expression was significantly associated with advanced tumor stage, high pathological grade, and shorter progression-free and overall survival (all p<0.01). Genetic mutation of PLOD1/2/3 was present in ~3% of ccRCC patients and was associated with significantly poorer prognosis compared with expression of wild-type PLOD1/2/3 (p<0.001). This study thus identifies tumor expression of wild-type or mutated PLOD1/2/3 mRNA as a potential predictive biomarker for ccRCC patients and sheds light on the underlying molecular pathogenesis of ccRCC.
Collapse
Affiliation(s)
- Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yue Xu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou 215000, P.R. China
| | - Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
42
|
Lewis DM, Pruitt H, Jain N, Ciccaglione M, McCaffery JM, Xia Z, Weber K, Eisinger-Mathason TSK, Gerecht S. A Feedback Loop between Hypoxia and Matrix Stress Relaxation Increases Oxygen-Axis Migration and Metastasis in Sarcoma. Cancer Res 2019; 79:1981-1995. [PMID: 30777851 PMCID: PMC6727644 DOI: 10.1158/0008-5472.can-18-1984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/23/2018] [Accepted: 02/13/2019] [Indexed: 01/28/2023]
Abstract
Upregulation of collagen matrix crosslinking directly increases its ability to relieve stress under the constant strain imposed by solid tumor, a matrix property termed stress relaxation. However, it is unknown how rapid stress relaxation in response to increased strain impacts disease progression in a hypoxic environment. Previously, it has been demonstrated that hypoxia-induced expression of the crosslinker procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), in sarcomas has resulted in increased lung metastasis. Here, we show that short stress relaxation times led to increased cell migration along a hypoxic gradient in 3D collagen matrices, and rapid stress relaxation upregulated PLOD2 expression via TGFβ-SMAD2 signaling, forming a feedback loop between hypoxia and the matrix. Inhibition of this pathway led to a decrease in migration along the hypoxic gradients. In vivo, sarcoma primed in a hypoxic matrix with short stress relaxation time enhanced collagen fiber size and tumor density and increased lung metastasis. High expression of PLOD2 correlated with decreased overall survival in patients with sarcoma. Using a patient-derived sarcoma cell line, we developed a predictive platform for future personalized studies and therapeutics. Overall, these data show that the interplay between hypoxia and matrix stress relaxation amplifies PLOD2, which in turn accelerates sarcoma cell motility and metastasis. SIGNIFICANCE: These findings demonstrate that mechanical (stress relaxation) and chemical (hypoxia) properties of the tumor microenvironment jointly accelerate sarcoma motility and metastasis via increased expression of collagen matrix crosslinker PLOD2.
Collapse
Affiliation(s)
- Daniel M Lewis
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland
| | - Hawley Pruitt
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland
| | - Nupur Jain
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland
| | - Mark Ciccaglione
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland
| | - J Michael McCaffery
- Department of Biology and Integrated Imaging Center, Johns Hopkins University, Baltimore, Maryland
| | - Zhiyong Xia
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - T S Karin Eisinger-Mathason
- Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Zhong T, Wu M, Ma S. Examination of Independent Prognostic Power of Gene Expressions and Histopathological Imaging Features in Cancer. Cancers (Basel) 2019; 11:E361. [PMID: 30871256 PMCID: PMC6468814 DOI: 10.3390/cancers11030361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer prognosis is of essential interest, and extensive research has been conducted searching for biomarkers with prognostic power. Recent studies have shown that both omics profiles and histopathological imaging features have prognostic power. There are also studies exploring integrating the two types of measurements for prognosis modeling. However, there is a lack of study rigorously examining whether omics measurements have independent prognostic power conditional on histopathological imaging features, and vice versa. In this article, we adopt a rigorous statistical testing framework and test whether an individual gene expression measurement can improve prognosis modeling conditional on high-dimensional imaging features, and a parallel analysis is conducted reversing the roles of gene expressions and imaging features. In the analysis of The Cancer Genome Atlas (TCGA) lung adenocarcinoma and liver hepatocellular carcinoma data, it is found that multiple individual genes, conditional on imaging features, can lead to significant improvement in prognosis modeling; however, individual imaging features, conditional on gene expressions, only offer limited prognostic power. Being among the first to examine the independent prognostic power, this study may assist better understanding the "connectedness" between omics profiles and histopathological imaging features and provide important insights for data integration in cancer modeling.
Collapse
Affiliation(s)
- Tingyan Zhong
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Chen TM, Lai MC, Li YH, Chan YL, Wu CH, Wang YM, Chien CW, Huang SY, Sun HS, Tsai SJ. hnRNPM induces translation switch under hypoxia to promote colon cancer development. EBioMedicine 2019; 41:299-309. [PMID: 30852162 PMCID: PMC6444133 DOI: 10.1016/j.ebiom.2019.02.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Background Hypoxia suppresses global protein production, yet certain essential proteins are translated through alternative pathways to survive under hypoxic stress. Translation via the internal ribosome entry site (IRES) is a means to produce proteins under stress conditions such as hypoxia; however, the underlying mechanism remains largely uncharacterized. Methods Proteomic and bioinformatic analyses were employed to identify hnRNPM as an IRES interacting factor. Clinical specimens and mouse model of tumorigenesis were used for determining the expression and correlation of hnRNPM and its target gene. Transcriptomic and translatomic analyses were performed to profile target genes regulated by hnRNPM. Findings Hypoxia increases cytosolic hnRNPM binding onto its target mRNAs and promotes translation initiation. Clinical colon cancer specimens and mouse carcinogenesis model showed that hnRNPM is elevated during the development of colorectal cancer, and is associated with poor prognosis. Genome-wide transcriptomics and translatomics analyses revealed a unique set of hnRNPM-targeted genes involved in metabolic processes and cancer neoplasia are selectively translated under hypoxia. Interpretation These data highlight the critical role of hnRNPM-IRES-mediated translation in transforming hypoxia-induced proteome toward malignancy. Fund This work was supported by the Ministry of Science and Technology, Taiwan (MOST 104–2320-B-006-042 to HSS and MOST 105–2628-B-001-MY3 to TMC).
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Ming-Chih Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Han Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ling Chan
- Institute of Bioinformatics and Biosignaling, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hao Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ming Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Chien
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
45
|
Baek JH, Yun HS, Kwon GT, Kim JY, Lee CW, Song JY, Um HD, Kang CM, Park JK, Kim JS, Kim EH, Hwang SG. PLOD3 promotes lung metastasis via regulation of STAT3. Cell Death Dis 2018; 9:1138. [PMID: 30442941 PMCID: PMC6237925 DOI: 10.1038/s41419-018-1186-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3), a membrane-bound homodimeric enzyme, hydroxylates lysyl residues in collagen-like peptides; however, its role in lung cancer is unknown. This study aimed to investigate the role of PLOD3 as a pro-metastatic factor and to elucidate the underlying mechanism. First, we experimentally confirmed the release of PLOD3 in circulation in animal models, rendering it a potential serum biomarker for lung cancer in humans. Thereafter, we investigated the effects of PLOD3 overexpression and downregulation on cancer cell invasion and migration in vitro and in vivo, using human lung cancer cell lines and a mouse tumor xenograft model, respectively. Further, PLOD3 levels were determined in lung tissue samples from lung cancer patients. Functional analyses revealed that PLOD3 interacts with STAT3, thereby expressing matrix metalloproteinases (MMP-2 and MMP-9) and with urokinase plasminogen activator (uPA) to enhance tumor metastasis. PLOD3 and the STAT3 pathway were significantly correlated in the metastatic foci of lung cancer patients; PLOD3–STAT3 levels were highly correlated with a poor prognosis. These results indicate that PLOD3 promotes lung cancer metastasis in a RAS-MAP kinase pathway-independent manner. Therefore, secreted PLOD3 serves as a potent inducer of lung cancer metastasis and a potential therapeutic target to enhance survival in lung cancer.
Collapse
Affiliation(s)
- Jeong-Hwa Baek
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Hong Shik Yun
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Gyoo Taik Kwon
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Ju-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Hong-Duck Um
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Chang-Mo Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Eun Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.
| |
Collapse
|
46
|
Okumura Y, Eguchi H. ASO Author Reflections: Hypoxia-Induced PLOD2 Is a Key Regulator in Epithelial-Mesenchymal Transition and Chemoresistance in Biliary Tract Cancer. Ann Surg Oncol 2018; 25:3738-3739. [PMID: 30167909 DOI: 10.1245/s10434-018-6722-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yuichiro Okumura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
47
|
Okumura Y, Noda T, Eguchi H, Sakamoto T, Iwagami Y, Yamada D, Asaoka T, Wada H, Kawamoto K, Gotoh K, Kobayashi S, Takeda Y, Tanemura M, Umeshita K, Doki Y, Mori M. Hypoxia-Induced PLOD2 is a Key Regulator in Epithelial-Mesenchymal Transition and Chemoresistance in Biliary Tract Cancer. Ann Surg Oncol 2018; 25:3728-3737. [PMID: 30105440 DOI: 10.1245/s10434-018-6670-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The prognosis of biliary tract cancer (BTC) is unfavorable due to its chemoresistance. Hypoxia triggers epithelial-to-mesenchymal transition (EMT), which is closely related to drug resistance. In this study, we focused on the functional roles of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a hypoxia-induced gene, in BTC, and assessed the clinical significance of PLOD2. METHODS The expression of PLOD2 under hypoxia was assessed in BTC cell lines. Gemcitabine-resistant (GR) BTC cell lines were transfected with small interfering RNA (siRNA) against PLOD2, and EMT markers and chemoresistance were evaluated. PLOD2 expression was also characterized using immunohistochemistry in BTC clinical specimens following resection. Patient survival was analyzed and the role of PLOD2 expression was examined. RESULTS The expression of PLOD2 was induced by hypoxia in vitro and was upregulated in BTC-GR cell lines, which had low expression of epithelial markers and high expression of mesenchymal markers. Downregulation of PLOD2 by siRNA resulted in improved chemoresistance, recovery of epithelial markers, and reduction of mesenchymal markers. In the resected BTC samples, PLOD2 expression was significantly correlated with lymph node metastasis (p = 0.037) and stage (p = 0.001). Recurrence-free survival (p = 0.011) and overall survival (p < 0.001) rates were significantly lower in patients with high expression of PLOD2. PLOD2 expression was an independent prognostic factor for overall survival (p = 0.019). CONCLUSIONS The expression of PLOD2 influenced chemoresistance through EMT, and high expression of PLOD2 was a significant unfavorable prognostic factor in BTC patients. PLOD2 might be a potential therapeutic target for overcoming chemoresistance.
Collapse
Affiliation(s)
- Yuichiro Okumura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Takuya Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Koji Umeshita
- Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
48
|
Qi Y, Xu R. Roles of PLODs in Collagen Synthesis and Cancer Progression. Front Cell Dev Biol 2018; 6:66. [PMID: 30003082 PMCID: PMC6031748 DOI: 10.3389/fcell.2018.00066] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Collagen is the major component of extracellular matrix. Collagen cross-link and deposition depend on lysyl hydroxylation, which is catalyzed by procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD). Aberrant lysyl hydroxylation and collagen cross-link contributes to the progression of many collagen-related diseases, such as fibrosis and cancer. Three lysyl hydroxylases (LH1, LH2, and LH3) are identified, encoded by PLOD1, PLOD2, and PLOD3 genes. Expression of PLODs is regulated by multiple cytokines, transcription factors and microRNAs. Dysregulation of PLODs promotes cancer progression and metastasis, suggesting that targeting PLODs is potential strategy for cancer treatment. Here, we summarize the recent progress in the investigation of function and regulation of PLODs in normal tissue development and disease progression, especially in cancer.
Collapse
Affiliation(s)
- Yifei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
49
|
Kiyozumi Y, Iwatsuki M, Kurashige J, Ogata Y, Yamashita K, Koga Y, Toihata T, Hiyoshi Y, Ishimoto T, Baba Y, Miyamoto Y, Yoshida N, Yanagihara K, Mimori K, Baba H. PLOD2 as a potential regulator of peritoneal dissemination in gastric cancer. Int J Cancer 2018; 143:1202-1211. [PMID: 29603227 DOI: 10.1002/ijc.31410] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Peritoneal dissemination is the most common metastatic pattern in advanced gastric cancer (GC) and has a very poor prognosis. However, its molecular mechanism has not been elucidated. Our study investigated genes associated with peritoneal dissemination of GC. We performed combined expression analysis of metastatic GC cell lines and identified Procollagen-lysine, 2-oxoglutarate 5-dioxygenase2 (PLOD2) as a potential regulator of peritoneal dissemination. PLOD2 is regulated by hypoxia-inducible factor-1 (HIF-1) and mediates extracellular matrix remodeling, alignment, and mechanical properties. We analyzed PLOD2 expression immunohistochemically in 179 clinical samples, and found high PLOD2 expression to be significantly associated with peritoneal dissemination, leading to poor prognosis. In an in vivo-collected metastatic cell line, downregulation of PLOD2 by siRNA reduced invasiveness and migration. Hypoxia upregulated PLOD2 mediated by HIF-1, and promoted invasiveness and migration. After exposure to hypoxia, a cell line transfected with siPLOD2 exhibited significantly suppressed invasiveness and migration, despite high HIF-1 expression. These findings indicate that PLOD2 is a regulator of, and candidate therapeutic target for peritoneal dissemination of GC. Although peritoneal dissemination of GC has a very poor prognosis, its molecular mechanism has not been elucidated. We identified PLOD2 regulated by HIF-1 as a potential regulator of peritoneal dissemination of GC. Finally, we showed that PLOD2 promotes cell invasiveness and migration in GC under hypoxia and lead to peritoneal dissemination of GC.
Collapse
Affiliation(s)
- Yuki Kiyozumi
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuki Koga
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kazuyoshi Yanagihara
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| |
Collapse
|
50
|
Song Y, Zheng S, Wang J, Long H, Fang L, Wang G, Li Z, Que T, Liu Y, Li Y, Zhang X, Fang W, Qi S. Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma. Oncotarget 2018; 8:41947-41962. [PMID: 28410212 PMCID: PMC5522040 DOI: 10.18632/oncotarget.16710] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most common form of malignant primary brain tumors with poor 5-year survival rate. Dysregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was observed in gliomas, but the specific role and molecular mechanism of PLOD2 in glioma have not been reported yet. In this study, PLOD2 was found to be frequently up-regulated in glioma and could serve as an independent prognostic marker to identify patients with poor clinical outcome. Knockdown of PLOD2 inhibited proliferation, migration and invasion of glioma cells in vitro and in vivo. Mechanistically, inhibition of PLOD2 inactivated PI3K/AKT signaling pathway and thus regulated the expression of its downstream epithelial–mesenchymal transition (EMT)-associated regulators, including E-cadherin, vimentin, N-cadherin, β-catenin, snail and slug in glioma cells. Moreover, PLOD2 could be induced by hypoxia-inducible factor-1α (HIF-1α) via hypoxia, thereby promoting hypoxia-induced EMT in glioma cells. Our data suggests that PLOD2 may be a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Shihao Zheng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Jizhou Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Luxiong Fang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Tianshi Que
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yi Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yilei Li
- Department of Pharmacology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xi'an Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Weiyi Fang
- Cancer Center, TCM-Integrated Hospital, Southern Medical University Guangzhou, Guangdong, 510515, PR China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| |
Collapse
|