1
|
Pilling D, Gomer RH. The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol 2018; 9:2328. [PMID: 30459752 PMCID: PMC6232687 DOI: 10.3389/fimmu.2018.02328] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics. Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal fibrosis are associated with 30-45% of deaths in the US. Fibrosis involves both fibrocyte differentiation and profibrotic macrophage differentiation, and possibly because SAP inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI) involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model. Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing SAP from wound fluid speeds wound healing in animal models, and blocking SAP binding to one of its receptors makes cultured macrophages more aggressive toward tuberculosis bacteria. These results suggest that modulating pentraxin signaling might be useful for a variety of diseases.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
White MJV, Galvis-Carvajal E, Gomer RH. A brief exposure to tryptase or thrombin potentiates fibrocyte differentiation in the presence of serum or serum amyloid p. THE JOURNAL OF IMMUNOLOGY 2014; 194:142-50. [PMID: 25429068 DOI: 10.4049/jimmunol.1401777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A key question in both wound healing and fibrosis is the trigger for the initial formation of scar tissue. To help form scar tissue, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but fibrocyte differentiation is strongly inhibited by the plasma protein serum amyloid P (SAP), and healthy tissues contain very few fibrocytes. In wounds and fibrotic lesions, mast cells degranulate to release tryptase, and thrombin mediates blood clotting in early wounds. Tryptase and thrombin are upregulated in wound healing and fibrotic lesions, and inhibition of these proteases attenuates fibrosis. We report that tryptase and thrombin potentiate human fibrocyte differentiation at biologically relevant concentrations and exposure times, even in the presence of concentrations of serum and SAP that normally completely inhibit fibrocyte differentiation. Fibrocyte potentiation by thrombin and tryptase is mediated by protease-activated receptors 1 and 2, respectively. Together, these results suggest that tryptase and thrombin may be an initial trigger to override SAP inhibition of fibrocyte differentiation to initiate scar tissue formation.
Collapse
Affiliation(s)
- Michael J V White
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
3
|
Cox N, Pilling D, Gomer RH. Distinct Fcγ receptors mediate the effect of serum amyloid p on neutrophil adhesion and fibrocyte differentiation. THE JOURNAL OF IMMUNOLOGY 2014; 193:1701-8. [PMID: 25024390 DOI: 10.4049/jimmunol.1400281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The plasma protein serum amyloid P (SAP) reduces neutrophil adhesion, inhibits the differentiation of monocytes into fibroblast-like cells called fibrocytes, and promotes phagocytosis of cell debris by macrophages. Together, these effects of SAP reduce key aspects of inflammation and fibrosis, and SAP injections improve lung function in pulmonary fibrosis patients. SAP functions are mediated, in part, by FcγRs, but the contribution of each FcγR is not fully understood. We found that aa Q55 and E126 in human SAP affect human fibrocyte differentiation and SAP binding to FcγRI. E126, K130, and Q128 affect neutrophil adhesion and SAP affinity for FcγRIIa. Q128 also affects phagocytosis by macrophages and SAP affinity for FcγRI. All the identified functionally significant amino acids in SAP form a binding site that is distinct from the previously described SAP-FcγRIIa binding site. Blocking FcγRI with an IgG-blocking Ab reduces the SAP effect on fibrocyte differentiation, and ligating FcγRIIa with Abs reduces neutrophil adhesion. Together, these results suggest that SAP binds to FcγRI on monocytes to inhibit fibrocyte differentiation, and binds to FcγRIIa on neutrophils to reduce neutrophil adhesion.
Collapse
Affiliation(s)
- Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
4
|
Cox N, Pilling D, Gomer RH. Serum amyloid P: a systemic regulator of the innate immune response. J Leukoc Biol 2014; 96:739-43. [PMID: 24804675 DOI: 10.1189/jlb.1mr0114-068r] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The pentraxin SAP reduces neutrophil adhesion to ECM proteins, inhibits the differentiation of monocytes into fibrocytes, attenuates profibrotic macrophages, activates the complement pathway, and promotes phagocytosis of cell debris. Together, these effects of SAP regulate key aspects of inflammation and set a threshold for immune cell activation. Here, we present a review of SAP biology with an emphasis on SAP receptor interactions and how the effect of SAP on monocytes and macrophages has been explored to develop this protein as a therapeutic for renal and lung injuries. We also discuss how there remain many unanswered questions about the role of SAP in innate immunity.
Collapse
Affiliation(s)
- Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Pilling D, Gomer RH. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/-) knockout mice. PLoS One 2014; 9:e93730. [PMID: 24695531 PMCID: PMC3973556 DOI: 10.1371/journal.pone.0093730] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/10/2014] [Indexed: 01/06/2023] Open
Abstract
Fibrosing diseases, such as pulmonary fibrosis, cardiac fibrosis, myelofibrosis, liver fibrosis, and renal fibrosis are chronic and debilitating conditions and are an increasing burden for the healthcare system. Fibrosis involves the accumulation and differentiation of many immune cells, including macrophages and fibroblast-like cells called fibrocytes. The plasma protein serum amyloid P component (SAP; also known as pentraxin-2, PTX2) inhibits fibrocyte differentiation in vitro, and injections of SAP inhibit fibrosis in vivo. SAP also promotes the formation of immuno-regulatory Mreg macrophages. To elucidate the endogenous function of SAP, we used bleomycin aspiration to induce pulmonary inflammation and fibrosis in mice lacking SAP. Compared to wildtype C57BL/6 mice, we find that in Apcs-/- “SAP knock-out” mice, bleomycin induces a more persistent inflammatory response and increased fibrosis. In both C57BL/6 and Apcs-/- mice, injections of exogenous SAP reduce the accumulation of inflammatory macrophages and prevent fibrosis. The types of inflammatory cells present in the lungs following bleomycin-aspiration appear similar between C57BL/6 and Apcs-/- mice, suggesting that the initial immune response is normal in the Apcs-/- mice, and that a key endogenous function of SAP is to promote the resolution of inflammation and fibrosis.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (DP); (RHG)
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (DP); (RHG)
| |
Collapse
|
6
|
Cox N, Pilling D, Gomer RH. NaCl potentiates human fibrocyte differentiation. PLoS One 2012; 7:e45674. [PMID: 23029177 PMCID: PMC3445484 DOI: 10.1371/journal.pone.0045674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/24/2012] [Indexed: 12/25/2022] Open
Abstract
Excessive NaCl intake is associated with a variety of fibrosing diseases such as renal and cardiac fibrosis. This association has been attributed to increased blood pressure as the result of high NaCl intake. However, studies in patients with high NaCl intake and fibrosis reveal a connection between NaCl intake and fibrosis that is independent of blood pressure. We find that increasing the extracellular concentration of NaCl to levels that may occur in human blood after high-salt intake can potentiate, in serum-free culture conditions, the differentiation of freshly-isolated human monocytes into fibroblast-like cells called fibrocytes. NaCl affects the monocytes directly during their adhesion. Potassium chloride and sodium nitrate also potentiate fibrocyte differentiation. The plasma protein Serum Amyloid P (SAP) inhibits fibrocyte differentiation. High levels of extracellular NaCl change the SAP Hill coefficient from 1.7 to 0.8, and cause a four-fold increase in the concentration of SAP needed to inhibit fibrocyte differentiation by 95%. Together, our data suggest that NaCl potentiates fibrocyte differentiation. NaCl-increased fibrocyte differentiation may thus contribute to NaCl-increased renal and cardiac fibrosis.
Collapse
Affiliation(s)
- Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Crawford JR, Pilling D, Gomer RH. FcγRI mediates serum amyloid P inhibition of fibrocyte differentiation. J Leukoc Biol 2012; 92:699-711. [PMID: 22493081 DOI: 10.1189/jlb.0112033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrotic diseases, such as cardiac and pulmonary fibrosis, have a poor prognosis with no FDA approved therapies. Monocyte-derived, fibroblast-like cells, called fibrocytes, participate in the formation of fibrotic lesions. The conserved pentraxin protein SAP inhibits fibrocyte differentiation in cell culture, and injections of SAP significantly reduce fibrosis in several animal models. SAP binds to the receptors for the Fc portion of IgG (FcγR) and has been crystallized bound to FcγRIIa (CD32a). The in vivo activity of SAP appears to be dependent on the FcRγ. We find that mutagenesis of the residues critical for SAP binding to FcγRIIa only moderately decreases the ability of SAP to inhibit fibrocyte differentiation. In murine cells, deletion of FcRγ or FcγRI (CD64) significantly reduced sensitivity to SAP. Deletion of the combination of FcγRIIb, FcγRIIIa, and FcγRIV did not significantly affect sensitivity to SAP, whereas deletion of just the inhibitory receptor FcγRIIb (CD32b) increased sensitivity to SAP. In human cells, siRNA-mediated reduction of FcRγ or FcγRI levels significantly decreased sensitivity to SAP, whereas reduction of FcγRIIb levels increased sensitivity to SAP. These observations suggest that SAP, at least in part, uses FcγRI and FcRγ to inhibit fibrocyte differentiation.
Collapse
Affiliation(s)
- Jeffrey R Crawford
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
8
|
Pilling D, Gomer RH. Differentiation of circulating monocytes into fibroblast-like cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 904:191-206. [PMID: 22890933 DOI: 10.1007/978-1-61779-943-3_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes are produced in the bone marrow and enter the blood. They generally leave the blood and enter a tissue, and then become macrophages. In healing wounds, circulating monocytes also enter the tissue and instead of becoming macrophages, can differentiate into fibroblast-like cells called fibrocytes. Fibrocytes are also present in the lesions associated with fibrosing diseases such as congestive heart failure, end stage kidney disease, and pulmonary fibrosis. We have found that culturing blood monocytes, or white blood cell preparations containing monocytes, in serum-free media permits some of the monocytes to differentiate into fibrocytes within 5 days, and that this differentiation is inhibited by the blood plasma protein serum amyloid P.
Collapse
|
9
|
Brain serum amyloid P levels are reduced in individuals that lack dementia while having Alzheimer's disease neuropathology. Neurochem Res 2011; 37:795-801. [PMID: 22205573 DOI: 10.1007/s11064-011-0674-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/02/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
The neuropathological signs of Alzheimer's disease (AD) include beta amyloid plaques and neurofibrillary tangles. There is a significant population of individuals that have these key hallmarks but show no signs of cognitive impairment, termed non-demented with AD neuropathology (NDAN). The protective mechanism allowing these individuals to escape dementia is unknown. Serum amyloid P (SAP) is a serum protein associated with wound repair that is elevated in the brains of Alzheimer's patients and binds to amyloid plaques. Using immunoblotting and immunohistochemistry, we evaluated SAP levels in postmortem samples of hippocampus and frontal cortex in age-matched controls, AD, and NDAN individuals. AD individuals had significantly increased SAP levels compared to normal controls, while NDAN samples had no significant difference in SAP levels compared to normal controls. Our results suggest that low levels of SAP in plaques marks the brains of individuals that escape dementia despite the presence of beta amyloid plaques and tangles.
Collapse
|
10
|
Abstract
The social amoeba Dictyostelium discoideum is one of the leading model systems used to study how cells count themselves to determine the number and/or density of cells. In this review, we describe work on three different cell-density sensing systems used by Dictyostelium. The first involves a negative feedback loop in which two secreted signals inhibit cell proliferation during the growth phase. As the cell density increases, the concentrations of the secreted factors concomitantly increase, allowing the cells to sense their density. The two signals act as message authenticators for each other, and the existence of two different signals that require each other for activity may explain why previous efforts to identify autocrine proliferation-inhibiting signals in higher eukaryotes have generally failed. The second system involves a signal made by growing cells that is secreted only when they starve. This then allows cells to sense the density of just the starving cells, and is an example of a mechanism that allows cells in a tissue to sense the density of one specific cell type. The third cell density counting system involves cells in aggregation streams secreting a signal that limits the size of fruiting bodies. Computer simulations predicted, and experiments then showed, that the factor increases random cell motility and decreases cell-cell adhesion to cause streams to break up if there are too many cells in the stream. Together, studies on Dictyostelium cell density counting systems will help elucidate how higher eukaryotes regulate the size and composition of tissues.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, ILSB MS 3474, Texas A&M University, College Station, Texas 77843-3474, USA.
| | | | | |
Collapse
|
11
|
Zhang YM, Fang YD, Wang YC, Wang SL, Lei ZY, Liu XW, Mao TC, Fan DL. Role of serum amyloid P in skin graft survival and wound healing in burned patients receiving skin grafts. Clin Chim Acta 2010; 412:227-9. [PMID: 20932823 DOI: 10.1016/j.cca.2010.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/12/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recent studies in animal models suggest that serum amyloid P (SAP) can affect burn wound healing. However, the role of SAP in a clinical setting remains unknown. METHODS We enrolled 88 patients with third degree burn wounds. All the patients were candidates for auto-skin graft procedure using stamp skin graft. The complete graft healing time and the number of survived grafts were recorded. Serum SAP levels were assessed 1 day before operation. RESULTS There was no significant difference in SAP level between controls and patients. There were no significant differences noted among the patients with different burn surface area. However, when the patients in each group were stratified by SAP levels, the mean complete healing time of grafted wound and the mean numbers of survived skin grafts were significantly different. Spearman's analyses showed that the serum SAP levels negatively correlated with the complete wound healing time and mean numbers of survived skin grafts. Logistic regression analysis showed that the serum SAP levels and mean numbers of survived skin grafts were potent independent factors contributing to wound healing. CONCLUSIONS The results of this study suggest that the serum SAP levels may be an easy detected predictor for the healing of burn wounds.
Collapse
Affiliation(s)
- Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|