1
|
Suppression of seizure in childhood absence epilepsy using robust control of deep brain stimulation: a simulation study. Sci Rep 2023; 13:461. [PMID: 36627375 PMCID: PMC9832016 DOI: 10.1038/s41598-023-27527-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is a promising technique to relieve the symptoms in patients with intractable seizures. Although the DBS therapy for seizure suppression dates back more than 40 years, determining stimulation parameters is a significant challenge to the success of this technique. One solution to this challenge with application in a real DBS system is to design a closed-loop control system to regulate the stimulation intensity using computational models of epilepsy automatically. The main goal of the current study is to develop a robust control technique based on adaptive fuzzy terminal sliding mode control (AFTSMC) for eliminating the oscillatory spiking behavior in childhood absence epilepsy (CAE) dynamical model consisting of cortical, thalamic relay, and reticular nuclei neurons. To this end, the membrane voltage dynamics of the three coupled neurons are considered as a three-input three-output nonlinear state delay system. A fuzzy logic system is developed to estimate the unknown nonlinear dynamics of the current and delayed states of the model embedded in the control input. Chattering-free control input (continuous DBS pulses) without any singularity problem is the superiority of the proposed control method. To guarantee the bounded stability of the closed-loop system in a finite time, the upper bounds of the external disturbance and minimum estimation errors are updated online with adaptive laws without any offline tuning phase. Simulation results are provided to show the robustness of AFTSMC in the presence of uncertainty and external disturbances.
Collapse
|
2
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
3
|
Zhang H, Chen Y, Xie Y, Chai Y. Closed-loop controller based on reference signal tracking for absence seizures. Sci Rep 2022; 12:6730. [PMID: 35468988 PMCID: PMC9038751 DOI: 10.1038/s41598-022-10803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Absent epilepsy is a kind of refractory epilepsy, which is characterized by 2–4 Hz spike and wave discharges (SWDs) in electroencephalogram. Open-loop deep brain stimulation (DBS) targeting the thalamic reticular nucleus (TRN) is an effective method to treat absent epilepsy by eliminating SWDs in the brain. Compared with open-loop DBS, closed-loop DBS has been recognized by researchers for its advantages of significantly inhibiting seizures and having fewer side effects. Since traditional trial-and-error methods for adjusting closed-loop controller parameters are too dependent on the experience of doctors, in this paper we designed two proportional integral (PI) controllers based on the basal ganglia-cortical-thalamic model, whose PI parameters are calculated from the stability of the system. The two PI controllers can automatically adjust the frequency and amplitude of DBS respectively according to the change of the firing rate detected by substantia nigra pars reticulata (SNr). The parameters of the PI controller are calculated based on the Routh-Hurwitz stability criterion of a linear system which transformed by the original system using controlled auto-regressive (CAR) model and recursive least squares (RLS) method. Numerical simulation results show that both PI controllers significantly destroy the SWDs of the cerebral cortex and restore it to the other two normal discharge modes according to the different target firing rate, which supplies a promising brain stimulation strategy.
Collapse
Affiliation(s)
- Hudong Zhang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuting Chen
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yan Xie
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
4
|
Khan M, Paktiawal J, Piper RJ, Chari A, Tisdall MM. Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review. J Neurosurg Pediatr 2022; 29:208-217. [PMID: 34678764 DOI: 10.3171/2021.8.peds21201] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In children with drug-resistant epilepsy (DRE), resective, ablative, and disconnective surgery may not be feasible or may fail. Neuromodulation in the form of deep brain stimulation (DBS) and responsive neurostimulation (RNS) may be viable treatment options, however evidence for their efficacies in children is currently limited. This systematic review aimed to summarize the literature on DBS and RNS for the treatment of DRE in the pediatric population. Specifically, the authors focused on currently available data for reported indications, neuromodulation targets, clinical efficacy, and safety outcomes. METHODS PRISMA guidelines were followed throughout this systematic review (PROSPERO no. CRD42020180669). Electronic databases, including PubMed, Embase, Cochrane Library, OpenGrey, and CINAHL Plus, were searched from their inception to February 19, 2021. Inclusion criteria were 1) studies with at least 1 pediatric patient (age < 19 years) who underwent DBS and/or RNS for DRE; and 2) retrospective, prospective, randomized, or nonrandomized controlled studies, case series, and case reports. Exclusion criteria were 1) letters, commentaries, conference abstracts, and reviews; and 2) studies without full text available. Risk of bias of the included studies was assessed using the Cochrane ROBINS-I (Risk of Bias in Non-randomised Studies - of Interventions) tool. RESULTS A total of 35 studies were selected that identified 72 and 46 patients who underwent DBS and RNS, respectively (age range 4-18 years). Various epilepsy etiologies and seizure types were described in both cohorts. Overall, 75% of patients had seizure reduction > 50% after DBS (among whom 6 were seizure free) at a median (range) follow-up of 14 (1-100) months. In an exploratory univariate analysis of factors associated with favorable response, the follow-up duration was shorter in those patients with a favorable response (18 vs 33 months, p < 0.05). In the RNS cohort, 73.2% of patients had seizure reduction > 50% after RNS at a median (range) follow-up of 22 (5-39) months. On closer inspection, 83.3% of patients who had > 50% reduction in seizures actually had > 75% reduction, with 4 patients being seizure free. CONCLUSIONS Overall, both DBS and RNS showed favorable response rates, indicating that both techniques should be considered for pediatric patients with DRE. However, serious risks of overall bias were found in all included studies. Many research needs in this area would be addressed by conducting high-quality clinical trials and establishing an international registry of patients who have undergone pediatric neuromodulation, thereby ensuring robust prospective collection of predictive variables and outcomes.
Collapse
Affiliation(s)
- Mehdi Khan
- 1University College London Medical School, London, United Kingdom
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
| | - Jaber Paktiawal
- 2Medical University Pleven, Pleven, Bulgaria
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
| | - Rory J Piper
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Aswin Chari
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Martin M Tisdall
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Vetkas A, Fomenko A, Germann J, Sarica C, Iorio-Morin C, Samuel N, Yamamoto K, Milano V, Cheyuo C, Zemmar A, Elias G, Boutet A, Loh A, Santyr B, Gwun D, Tasserie J, Kalia SK, Lozano AM. Deep brain stimulation targets in epilepsy: Systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia 2022; 63:513-524. [PMID: 34981509 DOI: 10.1111/epi.17157] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation (DBS) is a neuromodulatory treatment used in patients with drug-resistant epilepsy (DRE). The primary goal of this systematic review and meta-analysis is to describe recent advancements in the field of DBS for epilepsy, to compare the results of published trials, and to clarify the clinical utility of DBS in DRE. A systematic literature search was performed by two independent authors. Forty-four articles were included in the meta-analysis (23 for anterior thalamic nucleus [ANT], 8 for centromedian thalamic nucleus [CMT], and 13 for hippocampus) with a total of 527 patients. The mean seizure reduction after stimulation of the ANT, CMT, and hippocampus in our meta-analysis was 60.8%, 73.4%, and 67.8%, respectively. DBS is an effective and safe therapy in patients with DRE. Based on the results of randomized controlled trials and larger clinical series, the best evidence exists for DBS of the anterior thalamic nucleus. Further randomized trials are required to clarify the role of CMT and hippocampal stimulation. Our analysis suggests more efficient deep brain stimulation of ANT for focal seizures, wider use of CMT for generalized seizures, and hippocampal DBS for temporal lobe seizures. Factors associated with clinical outcome after DBS for epilepsy are electrode location, stimulation parameters, type of epilepsy, and longer time of stimulation. Recent advancements in anatomical targeting, functional neuroimaging, responsive neurostimulation, and sensing of local field potentials could potentially lead to improved outcomes after DBS for epilepsy and reduced sudden, unexpected death of patients with epilepsy. Biomarkers are needed for successful patient selection, targeting of electrodes and optimization of stimulation parameters.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurology Clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Centre de recherché du CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
6
|
Israely S, Leisman G. Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke? Rev Neurosci 2020; 30:821-837. [PMID: 31194694 DOI: 10.1515/revneuro-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Individuals post-stroke sustain motor deficits years after the stroke. Despite recent advancements in the applications of non-invasive brain stimulation techniques and Deep Brain Stimulation in humans, there is a lack of evidence supporting their use for rehabilitation after brain lesions. Non-invasive brain stimulation is already in use for treating motor deficits in individuals with Parkinson's disease and post-stroke. Deep Brain Stimulation has become an established treatment for individuals with movement disorders, such as Parkinson's disease, essential tremor, epilepsy, cerebral palsy and dystonia. It has also been utilized for the treatment of Tourette's syndrome, Alzheimer's disease and neuropsychiatric conditions such as obsessive-compulsive disorder, major depression and anorexia nervosa. There exists growing scientific knowledge from animal studies supporting the use of Deep Brain Stimulation to enhance motor recovery after brain damage. Nevertheless, these results are currently not applicable to humans. This review details the current literature supporting the use of these techniques to enhance motor recovery, both from human and animal studies, aiming to encourage development in this domain.
Collapse
Affiliation(s)
- Sharon Israely
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gerry Leisman
- Department of Physiotherapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Universidad de Ciencias Médicas Instituto de Neurología y Neurocirugía, Neurofisiología Clinica, Havana, Cuba
| |
Collapse
|
7
|
Escobar I, Xu J, Jackson CW, Perez-Pinzon MA. Altered Neural Networks in the Papez Circuit: Implications for Cognitive Dysfunction after Cerebral Ischemia. J Alzheimers Dis 2020; 67:425-446. [PMID: 30584147 PMCID: PMC6398564 DOI: 10.3233/jad-180875] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia remains a leading cause of mortality worldwide. Although the incidence of death has decreased over the years, surviving patients may suffer from long-term cognitive impairments and have an increased risk for dementia. Unfortunately, research aimed toward developing therapies that can improve cognitive outcomes following cerebral ischemia has proved difficult given the fact that little is known about the underlying processes involved. Nevertheless, mechanisms that disrupt neural network activity may provide valuable insight, since disturbances in both local and global networks in the brain have been associated with deficits in cognition. In this review, we suggest that abnormal neural dynamics within different brain networks may arise from disruptions in synaptic plasticity processes and circuitry after ischemia. This discussion primarily concerns disruptions in local network activity within the hippocampus and other extra-hippocampal components of the Papez circuit, given their role in memory processing. However, impaired synaptic plasticity processes and disruptions in structural and functional connections within the Papez circuit have important implications for alterations within the global network, as well. Although much work is required to establish this relationship, evidence thus far suggests there is a link. If pursued further, findings may lead toward a better understanding of how deficits in cognition arise, not only in cerebral ischemia, but in other neurological diseases as well.
Collapse
Affiliation(s)
- Iris Escobar
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles W Jackson
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Zangiabadi N, Ladino LD, Sina F, Orozco-Hernández JP, Carter A, Téllez-Zenteno JF. Deep Brain Stimulation and Drug-Resistant Epilepsy: A Review of the Literature. Front Neurol 2019; 10:601. [PMID: 31244761 PMCID: PMC6563690 DOI: 10.3389/fneur.2019.00601] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: Deep brain stimulation is a safe and effective neurointerventional technique for the treatment of movement disorders. Electrical stimulation of subcortical structures may exert a control on seizure generators initiating epileptic activities. The aim of this review is to present the targets of the deep brain stimulation for the treatment of drug-resistant epilepsy. Methods: We performed a structured review of the literature from 1980 to 2018 using Medline and PubMed. Articles assessing the impact of deep brain stimulation on seizure frequency in patients with DRE were selected. Meta-analyses, randomized controlled trials, and observational studies were included. Results: To date, deep brain stimulation of various neural targets has been investigated in animal experiments and humans. This article presents the use of stimulation of the anterior and centromedian nucleus of the thalamus, hippocampus, basal ganglia, cerebellum and hypothalamus. Anterior thalamic stimulation has demonstrated efficacy and there is evidence to recommend it as the target of choice. Conclusion: Deep brain stimulation for seizures may be an option in patients with drug-resistant epilepsy. Anterior thalamic nucleus stimulation could be recommended over other targets.
Collapse
Affiliation(s)
- Nasser Zangiabadi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Lady Diana Ladino
- Epilepsy Program, Hospital Pablo Tobón Uribe, Neuroclinica, University of Antioquia, Medellín, Colombia
| | - Farzad Sina
- Department of Neurology, Rasool Akram Hospital, IUMS, Tehran, Iran
| | - Juan Pablo Orozco-Hernández
- Departamento de Investigación Clínica, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira-Clínica Comfamiliar, Pereira, Colombia
| | - Alexandra Carter
- Saskatchewan Epilepsy Program, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
9
|
Luan G, Wang X. Nondrug Treatment for Refractory Status Epilepticus. REFRACTORY STATUS EPILEPTICUS 2017:247-273. [DOI: 10.1007/978-981-10-5125-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Hsiao MC, Yu PN, Song D, Liu CY, Heck CN, Millett D, Berger TW. An in vitro seizure model from human hippocampal slices using multi-electrode arrays. J Neurosci Methods 2014; 244:154-63. [PMID: 25244953 DOI: 10.1016/j.jneumeth.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/28/2022]
Abstract
Temporal lobe epilepsy is a neurological condition marked by seizures, typically accompanied by large amplitude synchronous electrophysiological discharges, affecting a variety of mental and physical functions. The neurobiological mechanisms responsible for the onset and termination of seizures are still unclear. While pharmacological therapies can suppress the symptoms of seizures, typically 30% of patients do not respond well to drug control. Unilateral temporal lobectomy, a procedure in which a substantial part of the hippocampal formation and surrounding tissue is removed, is a common surgical treatment for medically refractory epilepsy. In this study, we have developed an in vitro model of epilepsy using human hippocampal slices resected from patients suffering from intractable mesial temporal lobe epilepsy. We show that using a planar multi-electrode array system, spatio-temporal inter-ictal like activity can be consistently recorded in high-potassium (8 mM), low-magnesium (0.25 mM) artificial cerebral spinal fluid with 4-aminopyridine (100 μM) added. The induced epileptiform discharges can be recorded in different subregions of the hippocampus, including dentate, CA1 and subiculum. This new paradigm will allow the study of seizure generation in different subregions of hippocampus simultaneously, as well as propagation of seizure activity throughout the intrinsic circuitry of hippocampus. This experimental model also should provide insights into seizure control and prevention, while providing a platform to develop novel, anti-seizure therapeutics.
Collapse
Affiliation(s)
- Min-Chi Hsiao
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Pen-Ning Yu
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Dong Song
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Charles Y Liu
- Department of Neurological Surgery and Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Department of Biomedical Engineering, and Rancho Los Amigos National Rehabilitation Center, USA.
| | - Christianne N Heck
- Department of Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Los Angeles, CA 90033, USA.
| | - David Millett
- Department of Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA.
| | - Theodore W Berger
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
11
|
Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, Golovac S, Kapural L, Alo K, Anderson J, Foreman RD, Caraway D, Narouze S, Linderoth B, Buvanendran A, Feler C, Poree L, Lynch P, McJunkin T, Swing T, Staats P, Liem L, Williams K. The Appropriate Use of Neurostimulation: New and Evolving Neurostimulation Therapies and Applicable Treatment for Chronic Pain and Selected Disease States. Neuromodulation 2014; 17:599-615; discussion 615. [DOI: 10.1111/ner.12204] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Nagy Mekhail
- University of Kentucky-Lexington; Lexington KY USA
| | - Jason Pope
- Center for Pain Relief; Charleston WV USA
| | | | | | | | - Leo Kapural
- Carolinas Pain Institute at Brookstown; Wake Forest Baptist Health; Winston-Salem NC USA
| | - Ken Alo
- The Methodist Hospital Research Institute; Houston TX USA
- Monterey Technical Institute; Monterey Mexico
| | | | - Robert D. Foreman
- University of Oklahoma Health Sciences Center, College of Medicine; Oklahoma City OK USA
| | - David Caraway
- Center for Pain Relief, Tri-State, LLC; Huntington WV USA
| | - Samer Narouze
- Anesthesiology and Pain Medicine, Neurological Surgery; Summa Western Reserve Hospital; Cuyahoga Falls OH USA
| | - Bengt Linderoth
- Functional Neurosurgery and Applied Neuroscience Research Unit, Karolinska Institute; Karolinska University Hospital; Stockholm Sweden
| | | | - Claudio Feler
- University of Tennessee; Memphis TN USA
- Valley View Hospital; Glenwood Springs CO USA
| | - Lawrence Poree
- University of California at San Francisco; San Francisco CA USA
- Pain Clinic of Monterey Bay; Aptos CA
| | - Paul Lynch
- Arizona Pain Specialists; Scottsdale AZ USA
| | | | - Ted Swing
- Arizona Pain Specialists; Scottsdale AZ USA
| | - Peter Staats
- Premier Pain Management Centers; Shrewsbury NJ USA
- Johns Hopkins University; Baltimore MD USA
| | - Liong Liem
- St. Antonius Hospital; Nieuwegein The Netherlands
| | - Kayode Williams
- Johns Hopkins School of Medicine and Carey Business School; Baltimore MD USA
| |
Collapse
|
12
|
Hartikainen KM, Sun L, Polvivaara M, Brause M, Lehtimäki K, Haapasalo J, Möttönen T, Väyrynen K, Ogawa KH, Öhman J, Peltola J. Immediate effects of deep brain stimulation of anterior thalamic nuclei on executive functions and emotion-attention interaction in humans. J Clin Exp Neuropsychol 2014; 36:540-50. [PMID: 24839985 PMCID: PMC4066928 DOI: 10.1080/13803395.2014.913554] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Deep brain stimulation (DBS) of anterior thalamic nuclei (ANT) is a novel promising therapeutic method for treating refractory epilepsy. Despite reports of subjective memory impairments and mood disturbances in patients with ANT-DBS, little is known of its effects on cognitive and affective processes. Hypothesis The anterior thalamus has connections to prefrontal and limbic networks important for cognitive control and emotional reactivity. More specifically, anterior cingulate cortex (ACC), linked with ANT, has been assigned roles related to response inhibition and attention allocation to threat. Thus, we hypothesized ANT-DBS to influence executive functions, particularly response inhibition, and modulate emotional reactivity to threat. Method Twelve patients having undergone ANT-DBS for intractable epilepsy participated in the study. Patients performed a computer-based executive reaction time (RT) test—that is, a go/ no-go visual discrimination task with threat-related emotional distractors and rule switching, while the DBS was switched ON (5/5 mA constant current) and OFF every few minutes. Results ANT-DBS increased the amount of commission errors—that is, errors where subjects failed to withhold from responding. Furthermore, ANT-DBS slowed RTs in context of threat-related distractors. When stimulation was turned off, threat-related distractors had no distinct effect on RTs. Conclusion We found immediate objective effects of ANT-DBS on human cognitive control and emotion-attention interaction. We suggest that ANT-DBS compromised response inhibition and enhanced attention allocation to threat due to altered functioning of neural networks that involve the DBS-target, ANT, and the regions connected to it such as ACC. The results highlight the need to consider affective and cognitive side-effects in addition to the therapeutic effect when adjusting stimulation parameters. Furthermore, this study introduces a novel window into cognitive and affective processes by modulating the associative and limbic networks with direct stimulation of key nodes in the thalamus.
Collapse
Affiliation(s)
- Kaisa M Hartikainen
- a Behavioral Neurology Research Unit, Tampere University Hospital , Tampere , Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Long S, Frey S, Freestone DR, LeChevoir M, Stypulkowski P, Giftakis J, Cook M. Placement of deep brain electrodes in the dog using the Brainsight frameless stereotactic system: a pilot feasibility study. J Vet Intern Med 2013; 28:189-97. [PMID: 24237394 PMCID: PMC4895539 DOI: 10.1111/jvim.12235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/03/2013] [Accepted: 09/19/2013] [Indexed: 12/03/2022] Open
Abstract
Background Deep brain stimulation (DBS) together with concurrent EEG recording has shown promise in the treatment of epilepsy. A novel device is capable of combining these 2 functions and may prove valuable in the treatment of epilepsy in dogs. However, stereotactic implantation of electrodes in dogs has not yet been evaluated. Objective To evaluate the feasibility and safety of implanting stimulating and recording electrodes in the brain of normal dogs using the Brainsight system and to evaluate the function of a novel DBS and recording device. Animals Four male intact Greyhounds, confirmed to be normal by clinical and neurologic examinations and hematology and biochemistry testing. Methods MRI imaging of the brain was performed after attachment of fiducial markers. MRI scans were used to calculate trajectories for electrode placement in the thalamus and hippocampus, which was performed via burr hole craniotomy. Postoperative CT scanning was performed to evaluate electrode location and accuracy of placement was calculated. Serial neurologic examinations were performed to evaluate neurologic deficits and EEG recordings obtained to evaluate the effects of stimulation. Results Electrodes were successfully placed in 3 of 4 dogs with a mean accuracy of 4.6 ± 1.5 mm. EEG recordings showed evoked potentials in response to stimulation with a circadian variation in time‐to‐maximal amplitude. No neurologic deficits were seen in any dog. Conclusions and Clinical Importance Stereotactic placement of electrodes is safe and feasible in the dog. The development of a novel device capable of providing simultaneous neurostimulation and EEG recording potentially represents a major advance in the treatment of epilepsy.
Collapse
Affiliation(s)
- S Long
- Section of Neurology and Neurosurgery, Faculty of Veterinary Science, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Martlé V, Van Ham L, Raedt R, Vonck K, Boon P, Bhatti S. Non-pharmacological treatment options for refractory epilepsy: an overview of human treatment modalities and their potential utility in dogs. Vet J 2013; 199:332-9. [PMID: 24309438 DOI: 10.1016/j.tvjl.2013.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 08/20/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023]
Abstract
Refractory epilepsy is a common disorder both in humans and dogs and treatment protocols are difficult to optimise. In humans, different non-pharmacological treatment modalities currently available include surgery, the ketogenic diet and neurostimulation. Surgery leads to freedom from seizures in 50-75% of patients, but requires strict patient selection. The ketogenic diet is indicated in severe childhood epilepsies, but efficacy is limited and long-term compliance can be problematic. In the past decade, various types of neurostimulation have emerged as promising treatment modalities for humans with refractory epilepsy. Currently, none of these treatment options are used in routine daily clinical practice to treat dogs with the condition. Since many dogs with poorly controlled seizures do not survive, the search for alternative treatment options for canine refractory epilepsy should be prioritised. This review provides an overview of non-pharmacological treatment options for human refractory epilepsy. The current knowledge and limitations of these treatments in canine refractory epilepsy is also discussed.
Collapse
Affiliation(s)
- Valentine Martlé
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium.
| | - Luc Van Ham
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Sofie Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
15
|
Owen JA, Barreto E, Cressman JR. Controlling seizure-like events by perturbing ion concentration dynamics with periodic stimulation. PLoS One 2013; 8:e73820. [PMID: 24066075 PMCID: PMC3774776 DOI: 10.1371/journal.pone.0073820] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022] Open
Abstract
We investigate the effects of adding periodic stimulation to a generic, conductance-based neuron model that includes ion concentration dynamics of sodium and potassium. Under conditions of high extracellular potassium, the model exhibits repeating, spontaneous, seizure-like bursting events associated with slow modulation of the ion concentrations local to the neuron. We show that for a range of parameter values, depolarizing and hyperpolarizing periodic stimulation pulses (including frequencies lower than 4 Hz) can stop the spontaneous bursting by interacting with the ion concentration dynamics. Stimulation can also control the magnitude of evoked responses to modeled physiological inputs. We develop an understanding of the nonlinear dynamics of this system by a timescale separation procedure that identifies effective nullclines in the ion concentration parameter space. Our results suggest that the manipulation of ion concentration dynamics via external or endogenous stimulation may play an important role in neuronal excitability, seizure dynamics, and control.
Collapse
Affiliation(s)
- Jeremy A. Owen
- King’s College, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Barreto
- School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - John R. Cressman
- School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
16
|
Popovic L, Vojvodic N, Ristic AJ, Bascarevic V, Sokic D, Kostic VS. Ictal dystonia and secondary generalization in temporal lobe seizures: a video-EEG study. Epilepsy Behav 2012; 25:501-4. [PMID: 23153714 DOI: 10.1016/j.yebeh.2012.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine whether the occurrence of unilateral ictal limb dystonia (ID) during complex partial seizures (CPS) reduces the possibility of contralateral propagation (CP) and secondary generalization (SG) in patients with temporal lobe epilepsy (TLE). We assessed 216 seizures recorded in 33 patients with pharmacoresistant TLE. All patients underwent video-EEG telemetry prior to surgical treatment with good postoperative outcomes (Engel I). Ictal limb dystonia was observed in 16 of the 33 patients (48%) and 58 of the 216 seizures (26.8%). We found highly significant differences in the frequency of SG between seizures with ID and seizures without ID (2/58 vs. 41/158; 3.45% vs. 25.95%; p<0.001). Contralateral propagation was seen in 13 of the 57 analyzed seizures with ID compared to 85 of the 158 seizures without ID (22.8% vs. 53.8%; p<0.001). Among the CPS without SG, we found that the mean duration of seizures with ID was significantly longer than the duration of seizures without ID (81.66±40.10 vs. 68.88±25.01 s; p=0.011). Our findings that CP and SG occur less often in patients with ID, yet the duration of CPS without SG is longer in patients with ID, suggest that the basal ganglia might inhibit propagation to the contralateral hemisphere but not ictal activity within the unilateral epileptic network.
Collapse
|
17
|
Chiang CC, Lin CCK, Ju MS, Durand DM. High frequency stimulation can suppress globally seizures induced by 4-AP in the rat hippocampus: an acute in vivo study. Brain Stimul 2012; 6:180-9. [PMID: 22621942 DOI: 10.1016/j.brs.2012.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/02/2012] [Accepted: 04/20/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND High frequency stimulation (HFS) on the hippocampus can locally suppress epileptiform activity in-vitro and decrease seizure frequency in vivo. In-vitro HFS on the ventral commissural tract, a novel target, was shown to block the axonal conduction and suppress activity in the CA1 and CA3 neuron. OBJECTIVE To study the spatial extent of seizure suppression by HFS applied on the tract and focus site in an in vivo experiment. METHODS Five adult Sprague-Dawley rats were used for the study. Six electrodes were placed on the septal, middle, and temporal hippocampus bilaterally to simultaneously record seizure activity in the entire hippocampus. Seizure activity was induced by injecting 4-aminopyridine (4-AP) into the right middle part of the hippocampus. Following induction, HFS (100 Hz) was applied to the tract and the focus site at 100, 300 and 500 μA. RESULTS The induced seizure activity was dominated by two patterns, high frequency spiking and pseudo-periodic spikes. Either tract or focus site stimulation could generate suppression of only the pseudo-periodic spikes. The suppression rates were dependent on stimulation amplitude (P < 0.005, chi square test). However, HFS also caused conversion of the seizure pattern. The conversion rates increased with higher stimulation amplitudes and were higher with focus site stimulation (P < 0.01, Fisher's exact test). CONCLUSIONS The results of this study have two practical implications [1], both tract and focus site stimulation can produce global suppression of hippocampus and [2] the choice of stimulation parameters is critical in order to produce suppression, but not conversion, of seizure pattern.
Collapse
Affiliation(s)
- Chia-Chu Chiang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | | | | | | |
Collapse
|
18
|
|
19
|
Shehab S, Al-Nahdi A, Al-Zaabi F, Al-Mugaddam F, Al-Sultan M, Ljubisavljevic M. Effective inhibition of substantia nigra by deep brain stimulation fails to suppress tonic epileptic seizures. Neurobiol Dis 2011; 43:725-35. [DOI: 10.1016/j.nbd.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/22/2011] [Accepted: 06/06/2011] [Indexed: 11/28/2022] Open
|
20
|
Jiang C, Li L, Hao H. Carbon nanotube yarns for deep brain stimulation electrode. IEEE Trans Neural Syst Rehabil Eng 2011; 19:612-6. [PMID: 21859605 DOI: 10.1109/tnsre.2011.2165733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.
Collapse
Affiliation(s)
- Changqing Jiang
- Institute of Man-Machine and Environmental Engineering, School of Aerospace, Tsinghua University, Beijing, China.
| | | | | |
Collapse
|
21
|
Deep brain stimulation for epilepsy in clinical practice and in animal models. Brain Res Bull 2011; 85:81-8. [DOI: 10.1016/j.brainresbull.2011.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/21/2022]
|
22
|
Rahman M, Abd-El-Barr MM, Vedam-Mai V, Foote KD, Murad GJA, Okun MS, Roper SN. Disrupting abnormal electrical activity with deep brain stimulation: is epilepsy the next frontier? Neurosurg Focus 2010; 29:E7. [DOI: 10.3171/2010.4.focus10104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Given the tremendous success of deep brain stimulation (DBS) for the treatment of movement and neuropsychiatric disorders, clinicians have begun to open up to the possible use of electrical stimulation for the treatment of patients with uncontrolled seizures. This process has resulted in the discovery of a wide array of DBS targets, including the cerebellum, hypothalamus, hippocampus, basal ganglia, and various thalamic nuclei. Despite the ambiguity of the mechanism of action and the unknowns surrounding potentially ideal stimulation settings, several recent trials have empirically demonstrated reasonable efficacy in selected cases of medication-refractory seizures. These exciting results have fueled a number of studies aimed at firmly establishing DBS as an effective treatment for selected cases of intractable epilepsy, and many companies are aiming at Food and Drug Administration approval. We endeavor to review the studies in the context of the various DBS targets and their relevant circuitry for epilepsy. Based on the unfolding research, DBS has the potential to play an important role in treating refractory epilepsy. The challenge, as in movement disorders, is to assemble interdisciplinary teams to screen, implant, and follow patients, and to clarify patient selection. The future will undoubtedly be filled with optimization of targets and stimulation parameters and the development of best practices. With tailored therapeutic approaches, epilepsy patients have the potential to improve with DBS.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael S. Okun
- 1Department of Neurosurgery and
- 2Movement Disorders Center, Department of Neurology, University of Florida, Gainesville, Florida
| | | |
Collapse
|
23
|
|
24
|
Current World Literature. Curr Opin Neurol 2010; 23:194-201. [DOI: 10.1097/wco.0b013e328338cade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|