1
|
Yan Y, Schwirz J, Schetelig MF. Characterization of the Drosophila suzukii β2-tubulin gene and the utilization of its promoter to monitor sex separation and insemination. Gene 2020; 771:145366. [PMID: 33346099 DOI: 10.1016/j.gene.2020.145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
The Drosophila melanogaster β2-tubulin gene (Dm-β2t) controls the function of microtubules in the testis and sperm, and has been evaluated for use in biocontrol strategies based on the sterile insect technique, including sexing and the induction of male sterility. The spotted-wing Drosophila (Drosophila suzukii) is native to eastern Asia but has spread globally as an invasive pest of fruit crops, so biocontrol strategies are urgently required for this species. We therefore isolated the β2tubulin ortholog Ds-β2t from the USA laboratory strain of D. suzukii and confirmed the presence of functional motifs by aligning orthologs from multiple insects. The developmental expression profile of Ds-β2t was determined by RT-PCR using gene-specific primers and was similar to that of Dm-β2t. We then isolated the Ds-β2t promoter and used it to generate transgenic strains expressing a testis-specific fluorescent protein starting from the thirdinstar larvae. Efficient sexing was achieved based on fluorescence detection, and the transgenic males showed a similar survival rate to wild-type males. Fluorescence imaging and PCR were also used to confirm the insemination of wild-type females by transgenic males. We therefore confirm that D. suzukii strains expressing fluorescent markers under the control of the Ds-β2t promoter can be used for sexing and the confirmation of mating, and we discuss the wider potential of the Ds-β2t promoter in the context of genetic control strategies for D. suzukii.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, Germany.
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, Germany.
| |
Collapse
|
2
|
Sirot LK, Findlay GD, Sitnik JL, Frasheri D, Avila FW, Wolfner MF. Molecular characterization and evolution of a gene family encoding both female- and male-specific reproductive proteins in Drosophila. Mol Biol Evol 2014; 31:1554-67. [PMID: 24682282 DOI: 10.1093/molbev/msu114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene duplication is an important mechanism for the evolution of new reproductive proteins. However, in most cases, each resulting paralog continues to function within the same sex. To investigate the possibility that seminal fluid proteins arise through duplicates of female reproductive genes that become "co-opted" by males, we screened female reproductive genes in Drosophila melanogaster for cases of duplication in which one of the resulting paralogs produces a protein in males that is transferred to females during mating. We identified a set of three tandemly duplicated genes that encode secreted serine-type endopeptidase homologs, two of which are expressed primarily in the female reproductive tract (RT), whereas the third is expressed specifically in the male RT and encodes a seminal fluid protein. Evolutionary and gene expression analyses across Drosophila species suggest that this family arose from a single-copy gene that was female-specific; after duplication, one paralog evolved male-specific expression. Functional tests of knockdowns of each gene in D. melanogaster show that one female-expressed gene is essential for full fecundity, and both female-expressed genes contribute singly or in combination to a female's propensity to remate. In contrast, knockdown of the male-expressed paralog had no significant effect on female fecundity or remating. These data are consistent with a model in which members of this gene family exert effects on females by acting on a common, female-expressed target. After duplication and male co-option of one paralog, the evolution of the interacting proteins could have resulted in differential strengths or effects of each paralog.
Collapse
Affiliation(s)
- Laura K Sirot
- Department of Molecular Biology and Genetics, Cornell UniversityDepartment of Biology, College of Wooster
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityDepartment of Biology, College of the Holy Cross
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University
| | - Dorina Frasheri
- Department of Molecular Biology and Genetics, Cornell University
| | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
3
|
Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens Bioelectron 2013; 47:141-8. [PMID: 23567633 DOI: 10.1016/j.bios.2013.02.050] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/21/2022]
Abstract
Microtubule nanotubes are found in every living eukaryotic cells; these are formed by reversible polymerization of the tubulin protein, and their hollow fibers are filled with uniquely arranged water molecules. Here we measure single tubulin molecule and single brain-neuron extracted microtubule nanowire with and without water channel inside to unravel their unique electronic and optical properties for the first time. We demonstrate that the energy levels of a single tubulin protein and single microtubule made of 40,000 tubulin dimers are identical unlike conventional materials. Moreover, the transmitted ac power and the transient fluorescence decay (single photon count) are independent of the microtubule length. Even more remarkable is the fact that the microtubule nanowire is more conducting than a single protein molecule that constitutes the nanowire. Microtubule's vibrational peaks condense to a single mode that controls the emergence of size independent electronic/optical properties, and automated noise alleviation, which disappear when the atomic water core is released from the inner cylinder. We have carried out several tricky state-of-the-art experiments and identified the electromagnetic resonance peaks of single microtubule reliably. The resonant vibrations established that the condensation of energy levels and periodic oscillation of unique energy fringes on the microtubule surface, emerge as the atomic water core resonantly integrates all proteins around it such that the nanotube irrespective of its size functions like a single protein molecule. Thus, a monomolecular water channel residing inside the protein-cylinder displays an unprecedented control in governing the tantalizing electronic and optical properties of microtubule.
Collapse
|
4
|
Baker RH, Narechania A, Johns PM, Wilkinson GS. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae). Philos Trans R Soc Lond B Biol Sci 2012; 367:2357-75. [PMID: 22777023 PMCID: PMC3391427 DOI: 10.1098/rstb.2011.0287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.
Collapse
Affiliation(s)
- Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| | | | | | | |
Collapse
|
5
|
White-Cooper H, Bausek N. Evolution and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1465-80. [PMID: 20403864 DOI: 10.1098/rstb.2009.0323] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual reproduction depends on the production of haploid gametes, and their fusion to form diploid zygotes. Here, we discuss sperm production and function in a molecular and functional evolutionary context, drawing predominantly from studies in model organisms (mice, Drosophila, Caenorhabditis elegans). We consider the mechanisms involved in establishing and maintaining a germline stem cell population in testes, as well as the factors that regulate their contribution to the pool of differentiating cells. These processes involve considerable interaction between the germline and the soma, and we focus on regulatory signalling events in a variety of organisms. The male germline has a unique transcriptional profile, including expression of many testis-specific genes. The evolutionary pressures associated with gene duplication and acquisition of testis function are discussed in the context of genome organization and transcriptional regulation. Post-meiotic differentiation of spermatids involves very dramatic changes in cell shape and acquisition of highly specialized features. We discuss the variety of sperm motility mechanisms and how various reproductive strategies are associated with the diversity of sperm forms found in animals.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AT, UK.
| | | |
Collapse
|
6
|
Nielsen MG, Gadagkar SR, Gutzwiller L. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family. BMC Evol Biol 2010; 10:113. [PMID: 20423510 PMCID: PMC2880298 DOI: 10.1186/1471-2148-10-113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 04/27/2010] [Indexed: 11/26/2022] Open
Abstract
Background The completion of 19 insect genome sequencing projects spanning six insect orders provides the opportunity to investigate the evolution of important gene families, here tubulins. Tubulins are a family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking. Previous in vivo studies in Drosophila find a stringent relationship between tubulin structure and function; small, biochemically similar changes in the major alpha 1 or testis-specific beta 2 tubulin protein render each unable to generate a motile spermtail axoneme. This has evolutionary implications, not a single non-synonymous substitution is found in beta 2 among 17 species of Drosophila and Hirtodrosophila flies spanning 60 Myr of evolution. This raises an important question, How do tubulins evolve while maintaining their function? To answer, we use molecular evolutionary analyses to characterize the evolution of insect tubulins. Results Sixty-six alpha tubulins and eighty-six beta tubulin gene copies were retrieved and subjected to molecular evolutionary analyses. Four ancient clades of alpha and beta tubulins are found in insects, a major isoform clade (alpha 1, beta 1) and three minor, tissue-specific clades (alpha 2-4, beta 2-4). Based on a Homarus americanus (lobster) outgroup, these were generated through gene duplication events on major beta and alpha tubulin ancestors, followed by subfunctionalization in expression domain. Strong purifying selection acts on all tubulins, yet maximum pairwise amino acid distances between tubulin paralogs are large (0.464 substitutions/site beta tubulins, 0.707 alpha tubulins). Conversely orthologs, with the exception of reproductive tissue isoforms, show little sequence variation except in the last 15 carboxy terminus tail (CTT) residues, which serve as sites for post-translational modifications (PTMs) and interactions with microtubule-associated proteins. CTT residues overwhelming comprise the co-evolving residues between Drosophila alpha 2 and beta 3 tubulin proteins, indicating CTT specializations can be mediated at the level of the tubulin dimer. Gene duplications post-dating separation of the insect orders are unevenly distributed, most often appearing in major alpha 1 and minor beta 2 clades. More than 40 introns are found in tubulins. Their distribution among tubulins reveals that insertion and deletion events are common, surprising given their potential for disrupting tubulin coding sequence. Compensatory evolution is found in Drosophila beta 2 tubulin cis-regulation, and reveals selective pressures acting to maintain testis expression without the use of previously identified testis cis-regulatory elements. Conclusion Tubulins have stringent structure/function relationships, indicated by strong purifying selection, the loss of many gene duplication products, alpha-beta co-evolution in the tubulin dimer, and compensatory evolution in beta 2 tubulin cis-regulation. They evolve through gene duplication, subfunctionalization in expression domain and divergence of duplication products, largely in CTT residues that mediate interactions with other proteins. This has resulted in the tissue-specific minor insect isoforms, and in particular the highly diverse α3, α4, and β2 reproductive tissue-specific tubulin isoforms, illustrating that even a highly conserved protein family can participate in the adaptive process and respond to sexual selection.
Collapse
Affiliation(s)
- Mark G Nielsen
- Department of Biology, University of Dayton, OH 45467, USA.
| | | | | |
Collapse
|
7
|
Wahlberg N, Wheat CW. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst Biol 2008; 57:231-42. [PMID: 18398768 DOI: 10.1080/10635150802033006] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Increasing the number of characters used in phylogenetic studies is the next crucial step towards generating robust and stable phylogenetic hypotheses - i.e., strongly supported and consistent across reconstruction method. Here we describe a genomic approach to finding new protein-coding genes for systematics in nonmodel taxa, which can be PCR amplified from standard, slightly degraded genomic DNA extracts. We test this approach on Lepidoptera, searching the draft genomic sequence of the silk moth Bombyx mori, for exons > 500 bp in length, removing annotated gene families, and compared remaining exons with butterfly EST databases to identify conserved regions for primer design. These primers were tested on a set of 65 taxa primarily in the butterfly family Nymphalidae. We were able to identify and amplify six previously unused gene regions (Arginine Kinase, GAPDH, IDH, MDH, RpS2, and RpS5) and two rarely used gene regions (CAD and DDC) that when added to the three traditional gene regions (COI, EF-1alpha and wingless) gave a data set of 8114 bp. Phylogenetic robustness and stability increased with increasing numbers of genes. Smaller taxanomic subsets were also robust when using the full gene data set. The full 11-gene data set was robust and stable across reconstruction methods, recovering the major lineages and strongly supporting relationships within them. Our methods and insights should be applicable to taxonomic groups having a single genomic reference species and several EST databases from taxa that diverged less than 100 million years ago.
Collapse
Affiliation(s)
- Niklas Wahlberg
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
8
|
Popodi EM, Hoyle HD, Turner FR, Xu K, Kruse S, Raff EC. Axoneme specialization embedded in a “Generalist” β-tubulin. ACTA ACUST UNITED AC 2008; 65:216-37. [DOI: 10.1002/cm.20256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Mencarelli C, Lupetti P, Dallai R. New insights into the cell biology of insect axonemes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:95-145. [PMID: 18703405 DOI: 10.1016/s1937-6448(08)00804-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects do not possess ciliated epithelia, and cilia/flagella are present in the sperm tail and--as modified cilia--in mechano- and chemosensory neurons. The core cytoskeletal component of these organelles, the axoneme, is a microtubule-based structure that has been conserved throughout evolution. However, in insects the sperm axoneme exhibits distinctive structural features; moreover, several insect groups are characterized by an unusual sperm axoneme variability. Besides the abundance of morphological data on insect sperm flagella, most of the available molecular information on the insect axoneme comes from genetic studies on Drosophila spermatogenesis, and only recently other insect species have been proposed as useful models. Here, we review the current knowledge on the cell biology of insect axoneme, including contributions from both Drosophila and other model insects.
Collapse
Affiliation(s)
- C Mencarelli
- Department of Evolutionary Biology, University of Siena, 53100 Siena, Italy
| | | | | |
Collapse
|
10
|
Dallai R, Lombardo BM, Mercati D, Vanin S, Lupetti P. Sperm structure of Limoniidae and their phylogenetic relationship with Tipulidae (Diptera, Nematocera). ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:81-92. [PMID: 18089129 DOI: 10.1016/j.asd.2007.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/02/2007] [Indexed: 05/25/2023]
Abstract
The sperm ultrastructure of a few species of Limoniidae (Limonia nigropunctata; L. nubeculosa; Chionea n. sp.; C. alpina; C. lutescens) was studied. The two species of Limonia have a monolayered acrosome with crystallized material, a three-lobed nucleus in cross section, a ring of centriole adjunct material and a flagellum which consists of a 9+9+1 axoneme and a single mitochondrial derivative. The central axonemal tubule is provided with 15 protofilaments in its tubular wall, while the accessory tubules have 13 protofilaments and are flanked by the electron-dense intertubular material. The three species of Chionea share a monolayered acrosome, a nucleus with two longitudinal grooves, a centriole adjunct material which surrounds the centriole and the initial part of the axoneme. The axoneme is of conventional type, with 9+9+2 microtubular pattern, with accessory tubules provided with 13 protofilaments and intertubular material. However, in C. lutescens the accessory tubules start with 15 protofilaments and transform into a tubule with 13 protofilaments. These data are discussed in the light of the phylogenetic relationship between Limoniidae and Tipulidae. For this purpose, the sperm ultrastructure of Nephrotoma appendiculata was also considered comparatively.
Collapse
Affiliation(s)
- Romano Dallai
- Dipartimento di Biologia Evolutiva, Via A. Moro 2, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
11
|
Malone JH, Chrzanowski TH, Michalak P. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLoS One 2007; 2:e781. [PMID: 17712429 PMCID: PMC1940320 DOI: 10.1371/journal.pone.0000781] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/18/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level.
Collapse
Affiliation(s)
- John H. Malone
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Thomas H. Chrzanowski
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Pawel Michalak
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
12
|
Dallai R, Lupetti P, Mencarelli C. Unusual Axonemes of Hexapod Spermatozoa. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:45-99. [PMID: 17147997 DOI: 10.1016/s0074-7696(06)54002-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hexapod spermatozoa exhibit a great variation in their axoneme structure. The 9+2 pattern organization is present in a few basal taxa and in some derived groups. In most hexapods, a crown of nine accessory microtubules surrounds the 9+2 array, giving rise to the so-called 9+9+2 pattern. This general organization, however, displays a number of modifications in several taxa. In this review, the main variations concerning the number and localization of the accessory tubules, microtubular doublets, central microtubules, dynein arms, and axonemal length are summarized. We discuss the phylogenetic significance of all this structural information as well as the current hypotheses relating the sperm size and sperm polymorphism with reproductive success of some hexapod species. Also described are the biochemical data and the motility patterns which are currently known on some peculiar aberrant axonemes, in light of the contribution these models may give to the comprehension of the general functioning of the conventional 9+2 axoneme. Finally, we summarize methodological developments for the study of axoneme ultrastructure and the new opportunities for the molecular analysis of hexapod axonemes.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Evolutionary Biology, University of Siena, Via A Moro 2, I-53100 Siena, Italy
| | | | | |
Collapse
|