1
|
Janssen R, Budd GE. New insights into mesoderm and endoderm development, and the nature of the onychophoran blastopore. Front Zool 2024; 21:2. [PMID: 38267986 PMCID: PMC10809584 DOI: 10.1186/s12983-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Early during onychophoran development and prior to the formation of the germ band, a posterior tissue thickening forms the posterior pit. Anterior to this thickening forms a groove, the embryonic slit, that marks the anterior-posterior orientation of the developing embryo. This slit is by some authors considered the blastopore, and thus the origin of the endoderm, while others argue that the posterior pit represents the blastopore. This controversy is of evolutionary significance because if the slit represents the blastopore, then this would support the amphistomy hypothesis that suggests that a slit-like blastopore in the bilaterian ancestor evolved into protostomy and deuterostomy. RESULTS In this paper, we summarize our current knowledge about endoderm and mesoderm development in onychophorans and provide additional data on early endoderm- and mesoderm-determining marker genes such as Blimp, Mox, and the T-box genes. CONCLUSION We come to the conclusion that the endoderm of onychophorans forms prior to the development of the embryonic slit, and thus that the slit is not the primary origin of the endoderm. It is thus unlikely that the embryonic slit represents the blastopore. We suggest instead that the posterior pit indeed represents the lips of the blastopore, and that the embryonic slit (and surrounding tissue) represents a morphologically superficial archenteron-like structure. We conclude further that both endoderm and mesoderm development are under control of conserved gene regulatory networks, and that many of the features found in arthropods including the model Drosophila melanogaster are likely derived.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
2
|
Multigenerational laboratory culture of pelagic ctenophores and CRISPR-Cas9 genome editing in the lobate Mnemiopsis leidyi. Nat Protoc 2022; 17:1868-1900. [PMID: 35697825 DOI: 10.1038/s41596-022-00702-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Despite long-standing experimental interest in ctenophores due to their unique biology, ecological influence and evolutionary status, previous work has largely been constrained by the periodic seasonal availability of wild-caught animals and difficulty in reliably closing the life cycle. To address this problem, we have developed straightforward protocols that can be easily implemented to establish long-term multigenerational cultures for biological experimentation in the laboratory. In this protocol, we describe the continuous culture of the Atlantic lobate ctenophore Mnemiopsis leidyi. A rapid 3-week egg-to-egg generation time makes Mnemiopsis suitable for a wide range of experimental genetic, cellular, embryological, physiological, developmental, ecological and evolutionary studies. We provide recommendations for general husbandry to close the life cycle of Mnemiopsis in the laboratory, including feeding requirements, light-induced spawning, collection of embryos and rearing of juveniles to adults. These protocols have been successfully applied to maintain long-term multigenerational cultures of several species of pelagic ctenophores, and can be utilized by laboratories lacking easy access to the ocean. We also provide protocols for targeted genome editing via microinjection with CRISPR-Cas9 that can be completed within ~2 weeks, including single-guide RNA synthesis, early embryo microinjection, phenotype assessment and sequence validation of genome edits. These protocols provide a foundation for using Mnemiopsis as a model organism for functional genomic analyses in ctenophores.
Collapse
|
3
|
Hertzler PL, Wei J, Droste AP, Yuan J, Xiang J. Penaeid shrimp brachyury: sequence analysis and expression during gastrulation. Dev Genes Evol 2018; 228:219-225. [PMID: 30121809 DOI: 10.1007/s00427-018-0618-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
Gastrulation occurs by a variety of morphogenetic movements, often correlated with diverse expression of the T-box transcription factor Brachyury (Bra). Bra may be expressed in ectoderm, mesoderm, or endoderm, but its role in cell fate specification or regulation of gastrulation movements has not been studied in the development of crustaceans. Penaeid shrimp (Decapoda: Dendrobranchiata: Penaeidae) develop by complete cleavage and gastrulation by invagination to a free-swimming nauplius larva. Penaeid gastrulation diverges from other decapods and from insects, occurring early at a low cell number with the formation of a radial invagination. Toward a better understanding of gastrulation movements in penaeid shrimp, bra was identified from newly available penaeid shrimp genomes and transcriptomes of Litopenaeus vannamei, Marsupenaeus japonicus, and Penaeus monodon. Additional bra homologs were obtained from the outgroups Sicyonia ingentis (Decapoda: Dendrobranchiata: Sicyoniidae) and the caridean shrimp Caridina multidentata (Decapoda: Pleocymata). The genes encoded penaeid shrimp Bra proteins of 551-552 amino acids, containing the highly conserved T-box DNA-binding region. The N-terminal Smad1-binding domain, conserved in most animals, was absent in shrimp Bra. The R1 repressor domain was the best conserved of the C-terminal regulatory domains, which were widely divergent compared to other species. The penaeid shrimp bra gene consisted of six exons, with splice sites conserved with other phyla across the animal kingdom. Real-time qPCR and FPKM analysis showed that shrimp bra mRNA was strongly expressed during gastrulation. These findings begin to address the evolution of gastrulation in shrimp at the molecular level.
Collapse
Affiliation(s)
- Philip L Hertzler
- Department of Biology, Central Michigan University, Biosciences 2100, Mount Pleasant, MI, 48858, USA.
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Andrew P Droste
- Department of Biology, Central Michigan University, Biosciences 2100, Mount Pleasant, MI, 48858, USA
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
4
|
β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci U S A 2018; 115:6231-6236. [PMID: 29784822 PMCID: PMC6004442 DOI: 10.1073/pnas.1713682115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Besides genetic regulation, mechanical forces have been identified as important cues in numerous developmental processes. Mechanical forces can activate biochemical cascades in a process called mechanotransduction. Recent studies in vertebrates and flies elucidated the role of mechanical forces for mesodermal gene expression. However, it remains unclear whether mechanotransduction is a universal regulatory mechanism throughout Metazoa. Here, we show in the sea anemone Nematostella vectensis that mechanical pressure can ectopically activate or restore brachyury expression. This mechanotransduction is dependent on β-catenin, similar to vertebrates. We propose that a regulatory feedback loop between genetic and mechanical gene activation exists during gastrulation and the β-catenin–dependent mechanotransduction is an ancient regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians. Although the genetic regulation of cellular differentiation processes is well established, recent studies have revealed the role of mechanotransduction on a variety of biological processes, including regulation of gene expression. However, it remains unclear how universal and widespread mechanotransduction is in embryonic development of animals. Here, we investigate mechanosensitive gene expression during gastrulation of the starlet sea anemone Nematostella vectensis, a cnidarian model organism. We show that the blastoporal marker gene brachyury is down-regulated by blocking myosin II-dependent gastrulation movements. Brachyury expression can be restored by applying external mechanical force. Using CRISPR/Cas9 and morpholino antisense technology, we also show that mechanotransduction leading to brachyury expression is β-catenin dependent, similar to recent findings in fish and Drosophila [Brunet T, et al. (2013) Nat Commun 4:1–15]. Finally, we demonstrate that prolonged application of mechanical stress on the embryo leads to ectopic brachyury expression. Thus, our data indicate that β-catenin–dependent mechanotransduction is an ancient gene regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.
Collapse
|
5
|
Cooperation Between T-Box Factors Regulates the Continuous Segregation of Germ Layers During Vertebrate Embryogenesis. Curr Top Dev Biol 2017; 122:117-159. [DOI: 10.1016/bs.ctdb.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Sebé-Pedrós A, Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family. Curr Top Dev Biol 2017; 122:1-26. [DOI: 10.1016/bs.ctdb.2016.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
The Presence of a Functionally Tripartite Through-Gut in Ctenophora Has Implications for Metazoan Character Trait Evolution. Curr Biol 2016; 26:2814-2820. [DOI: 10.1016/j.cub.2016.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
|
8
|
Ctenophores: an evolutionary-developmental perspective. Curr Opin Genet Dev 2016; 39:85-92. [PMID: 27351593 DOI: 10.1016/j.gde.2016.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/04/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Ctenophores are non-bilaterian metazoans of uncertain phylogenetic position, some recent studies placing them as sister-group to all other animals whereas others suggest this placement is artefactual and ctenophores are more closely allied with cnidarians and bilaterians, with which they share nerve cells, muscles and gut. Available information about developmental genes and their expression and function in ctenophores is reviewed. These data not only unveil some conserved aspects of molecular developmental mechanisms with other basal metazoan lineages, but also can be expected to enlighten the genomic and molecular bases of the evolution of ctenophore-specific traits, including their unique embryonic development, complex anatomy and high cell type diversity.
Collapse
|
9
|
Okubo N, Hayward DC, Forêt S, Ball EE. A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora - morphology, transcriptome, and developmental gene expression. BMC Evol Biol 2016; 16:48. [PMID: 26924819 PMCID: PMC4770532 DOI: 10.1186/s12862-016-0615-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Research into various aspects of coral biology has greatly increased in recent years due to anthropogenic threats to coral health including pollution, ocean warming and acidification. However, knowledge of coral early development has lagged. The present paper describes the embryonic development of two previously uncharacterized robust corals, Favia lizardensis (a massive brain coral) and Ctenactis echinata (a solitary coral) and compares it to that of the previously characterized complex coral, Acropora millepora, both morphologically and in terms of the expression of a set of key developmental genes. Results Illumina sequencing of mixed age embryos was carried out, resulting in embryonic transcriptomes consisting of 40605 contigs for C.echinata (N50 = 1080 bp) and 48536 contigs for F.lizardensis (N50 = 1496 bp). The transcriptomes have been annotated against Swiss-Prot and were sufficiently complete to enable the identification of orthologs of many key genes controlling development in bilaterians. Developmental series of images of whole mounts and sections reveal that the early stages of both species contain a blastocoel, consistent with their membership of the robust clade. In situ hybridization was used to examine the expression of the developmentally important genes brachyury, chordin and forkhead. The expression of brachyury and forkhead was consistent with that previously reported for Acropora and allowed us to confirm that the pseudo-blastopore sometimes seen in robust corals such as Favia spp. is not directly associated with gastrulation. C.echinata chordin expression, however, differed from that seen in the other two corals. Conclusions Embryonic transcriptomes were assembled for the brain coral Favia lizardensis and the solitary coral Ctenactis echinata. Both species have a blastocoel in their early developmental stages, consistent with their phylogenetic position as members of the robust clade. Expression of the key developmental genes brachyury, chordin and forkhead was investigated, allowing comparison to that of their orthologs in Acropora, Nematostella and bilaterians and demonstrating that even within the Anthozoa there are significant differences in expression patterns. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0615-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nami Okubo
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia. .,Current Address: Department of Economics, Tokyo Keizai University, 1-7-34 Minamimachi, Kokubunji, Tokyo, Japan.
| | - David C Hayward
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | - Sylvain Forêt
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Eldon E Ball
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
10
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
11
|
Hayward DC, Grasso LC, Saint R, Miller DJ, Ball EE. The organizer in evolution-gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Dev Biol 2015; 399:337-47. [PMID: 25601451 DOI: 10.1016/j.ydbio.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/26/2014] [Accepted: 01/10/2015] [Indexed: 11/29/2022]
Abstract
Organizer activity, once thought to be restricted to vertebrates, has ancient origins. However, among non-bilaterians, it has only been subjected to detailed investigation during embryonic development of the sea anemone, Nematostella vectensis. As a step toward establishing the extent to which findings in Nematostella can be generalized across the large and diverse phylum Cnidaria, we examined the expression of some key organizer and gastrulation genes during the embryonic development of the coral Acropora millepora. Although anemones and corals both belong to the cnidarian class Anthozoa, the two lineages diverged during the Cambrian and the morphological development of Acropora differs in several important respects from that of Nematostella. While the expression patterns of the key genes brachyury, bmp2/4, chordin, goosecoid and forkhead are broadly similar, developmental differences between the two species enable novel observations, and new interpretations of their significance. Specifically, brachyury expression during the flattened prawnchip stage before gastrulation, a developmental peculiarity of Acropora, leads us to suggest that it is the key gene demarcating ectoderm from endoderm in Acropora, and by implication in other cnidarians, whereas previous studies in Nematostella proposed that forkhead plays this role. Other novel observations include the transient expression of Acropora forkhead in scattered ectodermal cells shortly after gastrulation, and in the developing mesenterial filaments, with no corresponding expression reported in Nematostella. In addition, the expression patterns of goosecoid and bmp2/4 confirm the fundamental bilaterality of the Anthozoa.
Collapse
Affiliation(s)
- David C Hayward
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lauretta C Grasso
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Robert Saint
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia; School of Molecular Biosciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Eldon E Ball
- Evolution, Ecology and Genetics, Bldg 46, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
12
|
Fritzsch B, Jahan I, Pan N, Elliott KL. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 2014; 359:295-313. [PMID: 25416504 DOI: 10.1007/s00441-014-2043-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
13
|
A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems. EvoDevo 2013; 4:16. [PMID: 23731568 PMCID: PMC3748831 DOI: 10.1186/2041-9139-4-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The de novo assembly of transcriptomes from short shotgun sequences raises challenges due to random and non-random sequencing biases and inherent transcript complexity. We sought to define a pipeline for de novo transcriptome assembly to aid researchers working with emerging model systems where well annotated genome assemblies are not available as a reference. To detail this experimental and computational method, we used early embryos of the sea anemone, Nematostella vectensis, an emerging model system for studies of animal body plan evolution. We performed RNA-seq on embryos up to 24 h of development using Illumina HiSeq technology and evaluated independent de novo assembly methods. The resulting reads were assembled using either the Trinity assembler on all quality controlled reads or both the Velvet and Oases assemblers on reads passing a stringent digital normalization filter. A control set of mRNA standards from the National Institute of Standards and Technology (NIST) was included in our experimental pipeline to invest our transcriptome with quantitative information on absolute transcript levels and to provide additional quality control. RESULTS We generated >200 million paired-end reads from directional cDNA libraries representing well over 20 Gb of sequence. The Trinity assembler pipeline, including preliminary quality control steps, resulted in more than 86% of reads aligning with the reference transcriptome thus generated. Nevertheless, digital normalization combined with assembly by Velvet and Oases required far less computing power and decreased processing time while still mapping 82% of reads. We have made the raw sequencing reads and assembled transcriptome publically available. CONCLUSIONS Nematostella vectensis was chosen for its strategic position in the tree of life for studies into the origins of the animal body plan, however, the challenge of reference-free transcriptome assembly is relevant to all systems for which well annotated gene models and independently verified genome assembly may not be available. To navigate this new territory, we have constructed a pipeline for library preparation and computational analysis for de novo transcriptome assembly. The gene models defined by this reference transcriptome define the set of genes transcribed in early Nematostella development and will provide a valuable dataset for further gene regulatory network investigations.
Collapse
|
14
|
Paps J, Holland PWH, Shimeld SM. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus? Brief Funct Genomics 2012; 11:177-86. [PMID: 22441554 DOI: 10.1093/bfgp/els012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.
Collapse
Affiliation(s)
- Jordi Paps
- Department of Zoology, University of Oxford, UK
| | | | | |
Collapse
|
15
|
Ahn D, You KH, Kim CH. Evolution of the tbx6/16 subfamily genes in vertebrates: insights from zebrafish. Mol Biol Evol 2012; 29:3959-83. [PMID: 22915831 DOI: 10.1093/molbev/mss199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In any comparative studies striving to understand the similarities and differences of the living organisms at the molecular genetic level, the crucial first step is to establish the homology (orthology and paralogy) of genes between different organisms. Determination of the homology of genes becomes complicated when the genes have undergone a rapid divergence in sequence or when the involved genes are members of a gene family that has experienced a differential gain or loss of its constituents in different taxonomic groups. Organisms with duplicated genomes such as teleost fishes might have been especially prone to these problems because the functional redundancies provided by the duplicate copies of genes would have allowed a rapid divergence or loss of genes during evolution. In this study, we will demonstrate that much of the ambiguities in the determination of the homology between fish and tetrapod genes resulting from the problems like these can be eliminated by complementing the sequence-based phylogenies with nonsequence information, such as the exon-intron structure of a gene or the composition of a gene's genomic neighbors. We will use the Tbx6/16 subfamily genes of zebrafish (tbx6, tbx16, tbx24, and mga genes), which have been well known for the ambiguity of their evolutionary relationships to the Tbx6/16 subfamily genes of tetrapods, as an illustrative example. We will show that, despite the similarity of sequence and expression to the tetrapod Tbx6 genes, zebrafish tbx6 gene is actually a novel T-box gene more closely related to the tetrapod Tbx16 genes, whereas the zebrafish tbx24 gene, hitherto considered to be a novel gene due to the high level of sequence divergence, is actually an ortholog of tetrapod Tbx6 genes. We will also show that, after their initial appearance by the multiplication of a common ancestral gene at the beginning of vertebrate evolution, the Tbx6/16 subfamily of vertebrate T-box genes might have experienced differential losses of member genes in different vertebrate groups and gradual pooling of member gene's functions in surviving members, which might have prevented the revelation of the true identity of member genes by way of the comparison of sequence and function.
Collapse
Affiliation(s)
- Daegwon Ahn
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | | | | |
Collapse
|
16
|
Simmons DK, Pang K, Martindale MQ. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification. EvoDevo 2012; 3:2. [PMID: 22239757 PMCID: PMC3283466 DOI: 10.1186/2041-9139-3-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx), which have highly conserved functions in neural specification in bilaterian animals. RESULTS Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO) of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet). Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons) than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. CONCLUSION This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more diversified complements of neural and non-neural cell types in later evolving animals.
Collapse
Affiliation(s)
- David K Simmons
- Kewalo Marine Laboratory, Department of Zoology, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| | - Kevin Pang
- Sars, International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Department of Zoology, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| |
Collapse
|
17
|
Borisenko I, Ereskovsky AV. Tentacular apparatus ultrastructure in the larva ofBolinopsis infundibulum(Lobata: Ctenophora). ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00542.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Holstien K, Rivera A, Windsor P, Ding S, Leys SP, Hill M, Hill A. Expansion, diversification, and expression of T-box family genes in Porifera. Dev Genes Evol 2010; 220:251-62. [PMID: 21082201 DOI: 10.1007/s00427-010-0344-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/28/2010] [Indexed: 12/21/2022]
Abstract
Sponges are among the earliest diverging lineage within the metazoan phyla. Although their adult morphology is distinctive, at several stages of development, they possess characteristics found in more complex animals. The T-box family of transcription factors is an evolutionarily ancient gene family known to be involved in the development of structures derived from all germ layers in the bilaterian animals. There is an incomplete understanding of the role that T-box transcription factors play in normal sponge development or whether developmental pathways using the T-box family share similarities between parazoan and eumetazoan animals. To address these questions, we present data that identify several important T-box genes in marine and freshwater sponges, place these genes in a phylogenetic context, and reveal patterns in how these genes are expressed in developing sponges. Phylogenetic analyses demonstrate that sponges have members of at least two of the five T-box subfamilies (Brachyury and Tbx2/3/4/5) and that the T-box genes expanded and diverged in the poriferan lineage. Our analysis of signature residues in the sponge T-box genes calls into question whether "true" Brachyury genes are found in the Porifera. Expression for a subset of the T-box genes was elucidated in larvae from the marine demosponge, Halichondria bowerbanki. Our results show that sponges regulate the timing and specificity of gene expression for T-box orthologs across larval developmental stages. In situ hybridization reveals distinct, yet sometimes overlapping expression of particular T-box genes in free-swimming larvae. Our results provide a comparative framework from which we can gain insights into the evolution of developmentally important pathways.
Collapse
Affiliation(s)
- Kay Holstien
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA, 23173, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Desvignes T, Pontarotti P, Bobe J. Nme gene family evolutionary history reveals pre-metazoan origins and high conservation between humans and the sea anemone, Nematostella vectensis. PLoS One 2010; 5:e15506. [PMID: 21085602 PMCID: PMC2978717 DOI: 10.1371/journal.pone.0015506] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Nme gene family is involved in multiple physiological and pathological processes such as cellular differentiation, development, metastatic dissemination, and cilia functions. Despite the known importance of Nme genes and their use as clinical markers of tumor aggressiveness, the associated cellular mechanisms remain poorly understood. Over the last 20 years, several non-vertebrate model species have been used to investigate Nme functions. However, the evolutionary history of the family remains poorly understood outside the vertebrate lineage. The aim of the study was thus to elucidate the evolutionary history of the Nme gene family in Metazoans. Methodology/Principal Findings Using a total of 21 eukaryote species including 14 metazoans, the evolutionary history of Nme genes was reconstructed in the metazoan lineage. We demonstrated that the complexity of the Nme gene family, initially thought to be restricted to chordates, was also shared by the metazoan ancestor. We also provide evidence suggesting that the complexity of the family is mainly a eukaryotic innovation, with the exception of Nme8 that is likely to be a choanoflagellate/metazoan innovation. Highly conserved gene structure, genomic linkage, and protein domains were identified among metazoans, some features being also conserved in eukaryotes. When considering the entire Nme family, the starlet sea anemone is the studied metazoan species exhibiting the most conserved gene and protein sequence features with humans. In addition, we were able to show that most of the proteins known to interact with human NME proteins were also found in starlet sea anemone. Conclusion/Significance Together, our observations further support the association of Nme genes with key cellular functions that have been conserved throughout metazoan evolution. Future investigations of evolutionarily conserved Nme gene functions using the starlet sea anemone could shed new light on a wide variety of key developmental and cellular processes.
Collapse
Affiliation(s)
- Thomas Desvignes
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
- IFREMER, LALR, F-34250, Palavas les flots, France
| | - Pierre Pontarotti
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
| | - Julien Bobe
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
- * E-mail:
| |
Collapse
|
20
|
Jafari G, Appleford PJ, Seago J, Pocock R, Woollard A. The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mech Dev 2010; 128:49-58. [PMID: 20933597 DOI: 10.1016/j.mod.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
The T-box transcription factor mab-9 has been shown to be required for the correct fate of the male-specific blast cells B and F, normal posterior hypodermal morphogenesis, and for the correct axon migration of motor neurons that project circumferential commissures to dorsal muscles. In this study, an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat-shock promoter has the opposite effect, causing repression of mab-9 in various cells. We find that mab-9 expression in unc-37 mutants is also elevated in DA motor neurons, consistent with known roles for UNC-37 as a co-repressor with UNC-4. These results identify mab-9 as a novel target of the UNC-4/UNC-37 repressor complex in motor neurons, and suggest that mis-expression of mab-9 may contribute to the neuronal wiring defects in unc-4 and unc-37 mutants.
Collapse
Affiliation(s)
- Gholamali Jafari
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Pang K, Ryan JF, Mullikin JC, Baxevanis AD, Martindale MQ. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 2010; 1:10. [PMID: 20920349 PMCID: PMC2959043 DOI: 10.1186/2041-9139-1-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/04/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera) have been surveyed for key components, but not the fourth (Ctenophora). Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. RESULTS A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX), and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. CONCLUSIONS Ctenophores show a minimal (but not obviously simple) complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution.
Collapse
Affiliation(s)
- Kevin Pang
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Joseph F Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James C Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andreas D Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
22
|
Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 2010; 107:10142-7. [PMID: 20479219 DOI: 10.1073/pnas.1002257107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell-cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.
Collapse
|
23
|
Genikhovich G, Technau U. The starlet sea anemone Nematostella vectensis: an anthozoan model organism for studies in comparative genomics and functional evolutionary developmental biology. Cold Spring Harb Protoc 2010; 2009:pdb.emo129. [PMID: 20147257 DOI: 10.1101/pdb.emo129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Center for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Wien, Austria
| | | |
Collapse
|
24
|
Houliston E, Momose T, Manuel M. Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 2010; 26:159-67. [DOI: 10.1016/j.tig.2010.01.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 01/24/2010] [Accepted: 01/25/2010] [Indexed: 11/29/2022]
|
25
|
Callery EM, Thomsen GH, Smith JC. A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. Dev Biol 2010; 340:75-87. [PMID: 20083100 PMCID: PMC2877776 DOI: 10.1016/j.ydbio.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 12/23/2009] [Accepted: 01/08/2010] [Indexed: 10/31/2022]
Abstract
T-box family transcription factors play many roles in Metazoan development. Here we characterise Tbx6r, a unique Tbx6 paralogue isolated from the amphibian Xenopus. The evolution and developmental integration of this divergent T-box gene within the vertebrates reveals an unexpected level of plasticity within this conserved family of developmental regulators. We show that despite their co-expression, Tbx6 and Tbx6r have dissimilar transcriptional responses to ligand treatment, and their ability to activate ligand expression is also very different. The two paralogues have distinct inductive properties: Tbx6 induces mesoderm whereas Tbx6r induces anterior neural markers. We use hybrid proteins in an effort to understand this difference, and implicate the C-terminal regions of the proteins in their inductive specificities. Through loss-of-function analyses using antisense morpholino oligonucleotides we show that both Tbx6 paralogues perform essential functions in the development of the paraxial and intermediate mesoderm and the neural crest in Xenopus. We demonstrate that Tbx6 and Tbx6r both induce FGF8 expression as well as that of pre-placodal markers, and that Tbx6 can also induce neural crest markers via a ligand-dependent mechanism involving FGF8 and Wnt8. Our data thus identify an important new function for this key developmental regulator.
Collapse
Affiliation(s)
- Elizabeth M Callery
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | |
Collapse
|
26
|
Degnan SM, Degnan BM. The initiation of metamorphosis as an ancient polyphenic trait and its role in metazoan life-cycle evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365:641-51. [PMID: 20083639 DOI: 10.1098/rstb.2009.0248] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. queenslandica life cycle includes a compulsory planktonic larval phase that can end only once the larva develops competence to respond to benthic signals that induce settlement and metamorphosis. The temporal onset of competence varies between individuals as revealed by idiosyncratic responses to inductive cues. Thus, the biphasic life cycle with a dispersing larval phase of variable length appears to be a metazoan synapomorphy and may be viewed as an ancestral polyphenic trait. Larvae of a particular age that are subjected to an inductive cue either maintain the larval form or metamorphose into the post-larval/juvenile form. Variance in the development of competence dictates that only a subset of a larval cohort will settle and undergo metamorphosis at a given time, which in turn leads to variation in dispersal distance and in location of settlement. Population divergence and allopatric speciation are likely outcomes of this conserved developmental polyphenic trait.
Collapse
Affiliation(s)
- Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
27
|
Yamada A, Martindale MQ, Fukui A, Tochinai S. Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. Dev Biol 2009; 339:212-22. [PMID: 20036227 DOI: 10.1016/j.ydbio.2009.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/31/2009] [Accepted: 12/14/2009] [Indexed: 12/31/2022]
Abstract
Brachyury, a member of the T-box transcription family identified in a diverse array of metazoans, was initially recognized for its function in mesoderm formation and notochord differentiation in vertebrates; however, its ancestral role has been suggested to be in control of morphogenetic movements. Here, we show that morpholino oligonucleotide knockdown of Brachyury (MlBra) in embryos of a ctenophore, one of the most ancient groups of animals, prevents the invagination of MlBra expressing stomodeal cells and is rescued with corresponding RNA injections. Injection of RNA encoding a dominant-interfering construct of MlBra causes identical phenotypes to that of RNA encoding a dominant-interfering form of Xenopus Brachyury (Xbra) in Xenopus embryos. Both injected embryos down-regulate Xbra downstream genes, Xbra itself and Xwnt11 but not axial mesodermal markers, resulting in failure to complete gastrulation due to loss of convergent extension movements. Moreover, animal cap assay reveals that MlBra induces Xwnt11 like Xbra. Overall results using Xenopus embryos show that these two genes are functionally interchangeable. These functional experiments demonstrate for the first time in a basal metazoan that the primitive role of Brachyury is to regulate morphogenetic movements, rather than to specify endomesodermal fates, and the role is conserved between non-bilaterian metazoans and vertebrates.
Collapse
Affiliation(s)
- Atsuko Yamada
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | | | | | | |
Collapse
|
28
|
Degnan BM, Vervoort M, Larroux C, Richards GS. Early evolution of metazoan transcription factors. Curr Opin Genet Dev 2009; 19:591-9. [PMID: 19880309 DOI: 10.1016/j.gde.2009.09.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/16/2009] [Accepted: 09/27/2009] [Indexed: 11/29/2022]
Abstract
Analyses of recently sequenced sponge, cnidarian, placozoan, and choanoflagellate genomes have revealed that most transcription factor (TF) classes and families expressed during bilaterian development originated at the dawn of the animal kingdom, before the divergence of contemporary animal lineages. The ancestral metazoan genome included members of the bHLH, Mef2, Fox, Sox, T-box, ETS, nuclear receptor, Rel/NF-kappaB, bZIP, and Smad families, and a diversity of homeobox-containing classes, including ANTP, Prd-like, Pax, POU, LIM-HD, Six, and TALE. As many of these TF classes and families appear to be metazoan specific and not present in choanoflagellates, fungi and more distant eukaryotes, their genesis and expansion may have contributed to the evolution of animal multicellularity.
Collapse
Affiliation(s)
- Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
29
|
Martindale MQ, Hejnol A. A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 2009; 17:162-74. [PMID: 19686678 DOI: 10.1016/j.devcel.2009.07.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progress in resolving the phylogenetic relationships among animals and the expansion of molecular developmental studies to a broader variety of organisms has provided important insights into the evolution of developmental programs. These new studies make it possible to reevaluate old hypotheses about the evolution of animal body plans and to elaborate new ones. Here, we review recent studies that shed light on the transition from a radially organized ancestor to the last common ancestor of the Bilateria ("Urbilaterian") and present an integrative hypothesis about plausible developmental scenarios for the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Mark Q Martindale
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI, 96813, USA.
| | | |
Collapse
|
30
|
Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, Aleoshin VV. The origin of Metazoa: a transition from temporal to spatial cell differentiation. Bioessays 2009; 31:758-68. [PMID: 19472368 DOI: 10.1002/bies.200800214] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For over a century, Haeckel's Gastraea theory remained a dominant theory to explain the origin of multicellular animals. According to this theory, the animal ancestor was a blastula-like colony of uniform cells that gradually evolved cell differentiation. Today, however, genes that typically control metazoan development, cell differentiation, cell-to-cell adhesion, and cell-to-matrix adhesion are found in various unicellular relatives of the Metazoa, which suggests the origin of the genetic programs of cell differentiation and adhesion in the root of the Opisthokonta. Multicellular stages occurring in the complex life cycles of opisthokont protists (mesomycetozoeans and choanoflagellates) never resemble a blastula. Here, we discuss a more realistic scenario of transition to multicellularity through integration of pre-existing transient cell types into the body of an early metazoon, which possessed a complex life cycle with a differentiated sedentary filter-feeding trophic stage and a non-feeding blastula-like larva, the synzoospore. Choanoflagellates are considered as forms with secondarily simplified life cycles.
Collapse
Affiliation(s)
- Kirill V Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ. The deep evolution of metazoan microRNAs. Evol Dev 2009; 11:50-68. [PMID: 19196333 DOI: 10.1111/j.1525-142x.2008.00302.x] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
microRNAs (miRNAs) are approximately 22-nucleotide noncoding RNA regulatory genes that are key players in cellular differentiation and homeostasis. They might also play important roles in shaping metazoan macroevolution. Previous studies have shown that miRNAs are continuously being added to metazoan genomes through time, and, once integrated into gene regulatory networks, show only rare mutations within the primary sequence of the mature gene product and are only rarely secondarily lost. However, because the conclusions from these studies were largely based on phylogenetic conservation of miRNAs between model systems like Drosophila and the taxon of interest, it was unclear if these trends would describe most miRNAs in most metazoan taxa. Here, we describe the shared complement of miRNAs among 18 animal species using a combination of 454 sequencing of small RNA libraries with genomic searches. We show that the evolutionary trends elucidated from the model systems are generally true for all miRNA families and metazoan taxa explored: the continuous addition of miRNA families with only rare substitutions to the mature sequence, and only rare instances of secondary loss. Despite this conservation, we document evolutionary stable shifts to the determination of position 1 of the mature sequence, a phenomenon we call seed shifting, as well as the ability to post-transcriptionally edit the 5' end of the mature read, changing the identity of the seed sequence and possibly the repertoire of downstream targets. Finally, we describe a novel type of miRNA in demosponges that, although shows a different pre-miRNA structure, still shows remarkable conservation of the mature sequence in the two sponge species analyzed. We propose that miRNAs might be excellent phylogenetic markers, and suggest that the advent of morphological complexity might have its roots in miRNA innovation.
Collapse
Affiliation(s)
- Benjamin M Wheeler
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Rokas A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 2009; 42:235-51. [PMID: 18983257 DOI: 10.1146/annurev.genet.42.110807.091513] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multicellularity appeared early and repeatedly in life's history; its instantiations presumably required the confluence of environmental, ecological, and genetic factors. Comparisons of several independently evolved pairs of multicellular and unicellular relatives indicate that transitions to multicellularity are typically associated with increases in the numbers of genes involved in cell differentiation, cell-cell communication, and adhesion. Further examination of the DNA record suggests that these increases in gene complexity are the product of evolutionary innovation, tinkering, and expansion of genetic material. Arguably, the most decisive multicellular transition was the emergence of animals. Decades of developmental work have demarcated the genetic toolkit for animal multicellularity, a select set of a few hundred genes from a few dozen gene families involved in adhesion, communication, and differentiation. Examination of the DNA records of the earliest-branching animal phyla and their closest protist relatives has begun to shed light on the origins and assembly of this toolkit. Emerging data favor a model of gradual assembly, with components originating and diversifying at different time points prior to or shortly after the origin of animals.
Collapse
Affiliation(s)
- Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee 37235, USA.
| |
Collapse
|
33
|
Jager M, Quéinnec E, Chiori R, Le Guyader H, Manuel M. Insights into the early evolution ofSOXgenes from expression analyses in a ctenophore. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:650-67. [DOI: 10.1002/jez.b.21244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Horton AC, Mahadevan NR, Minguillon C, Osoegawa K, Rokhsar DS, Ruvinsky I, de Jong PJ, Logan MP, Gibson-Brown JJ. Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs. Dev Genes Evol 2008; 218:613-28. [PMID: 18815807 DOI: 10.1007/s00427-008-0249-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/05/2008] [Indexed: 11/26/2022]
Abstract
T-box genes encode a family of DNA-binding transcription factors implicated in numerous developmental processes in all metazoans. The Tbx2/3/4/5 subfamily genes are especially interesting because of their key roles in the evolution of vertebrate appendages, eyes, and the heart, and, like the Hox genes, the longevity of their chromosomal linkage. A BAC library derived from the single male amphioxus (Branchiostoma floridae) used to sequence the amphioxus genome was screened for AmphiTbx2/3 and AmphiTbx4/5, yielding two independent clones containing both genes. Using comparative expression, genomic linkage, and phylogenetic analyses, we have reconstructed the evolutionary histories of these members of the T-box gene family. We find that the Tbx2-Tbx4 and Tbx3-Tbx5 gene pairs have maintained tight linkage in most animal lineages since their birth by tandem duplication, long before the divergence of protostomes and deuterostomes (e.g., arthropods and vertebrates) at least 600 million years ago, and possibly before the divergence of poriferans and cnidarians (e.g., sponges and jellyfish). Interestingly, we find that the gene linkage detected in all vertebrate genomes has been maintained in the primitively appendage-lacking, basal chordate, amphioxus. Although all four genes have been involved in the evolution of developmental programs regulating paired fin and (later) limb outgrowth and patterning, and most are also implicated in eye and heart development, linkage maintenance--often considered due to regulatory constraints imposed by limb, eye, and/or heart associated gene expression--is undoubtedly a consequence of other, much more ancient functional constraints.
Collapse
Affiliation(s)
- Amy C Horton
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arenas-Mena C. The transcription factorsHeBlimpandHeT-brainof an indirectly developing polychaete suggest ancestral endodermal, gastrulation, and sensory cell-type specification roles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:567-76. [DOI: 10.1002/jez.b.21225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Pang K, Martindale MQ. Comb jellies (ctenophora): a model for Basal metazoan evolution and development. ACTA ACUST UNITED AC 2008; 2008:pdb.emo106. [PMID: 21356709 DOI: 10.1101/pdb.emo106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONCtenophores, or comb jellies, are a group of marine organisms whose unique biological features and phylogenetic placement make them a key taxon for understanding animal evolution. These gelatinous creatures are clearly distinct from cnidarian medusae (i.e., jellyfish). Key features present in the ctenophore body plan include biradial symmetry, an oral-aboral axis delimited by a mouth and an apical sensory organ, two tentacles, eight comb rows composed of interconnected cilia, and thick mesoglea. Other morphological features include definitive muscle cells, a nerve net, basal lamina, a sperm acrosome, and light-producing photocytes. Aspects of their development made them attractive to experimental embryologists as early as the 19th century. Recently, because of their role as an invasive species, studies on their role in ecology and fisheries-related fields have increased. Although the phylogenetic placement of ctenophores with respect to other animals has proven difficult, it is clear that, along with poriferans, placozoans, and cnidarians, ctenophores are one of the earliest diverging extant animal groups. It is important to determine if some of the complex features of ctenophores are examples of convergence or if they were lost in other animal branches. Because ctenophores are amenable to modern technical approaches, they could prove to be a highly useful emerging model.
Collapse
Affiliation(s)
- Kevin Pang
- Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI 96813, USA
| | | |
Collapse
|
37
|
Budd GE. The earliest fossil record of the animals and its significance. Philos Trans R Soc Lond B Biol Sci 2008; 363:1425-34. [PMID: 18192192 DOI: 10.1098/rstb.2007.2232] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fossil record of the earliest animals has been enlivened in recent years by a series of spectacular discoveries, including embryos, from the Ediacaran to the Cambrian, but many issues, not least of dating and interpretation, remain controversial. In particular, aspects of taphonomy of the earliest fossils require careful consideration before pronouncements about their affinities. Nevertheless, a reasonable case can now be made for the extension of the fossil record of at least basal animals (sponges and perhaps cnidarians) to a period of time significantly before the beginning of the Cambrian. The Cambrian explosion itself still seems to represent the arrival of the bilaterians, and many new fossils in recent years have added significant data on the origin of the three major bilaterian clades. Why animals appear so late in the fossil record is still unclear, but the recent trend to embrace rising oxygen levels as being the proximate cause remains unproven and may even involve a degree of circularity.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden.
| |
Collapse
|
38
|
Pang K, Martindale MQ. Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol 2008; 218:307-19. [PMID: 18504608 DOI: 10.1007/s00427-008-0222-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/14/2008] [Indexed: 11/28/2022]
Abstract
Homeobox genes are a large family of genes that encode helix-turn-helix transcription factors that play fundamental roles in such developmental processes including body axis formation and cell specification. They have been found in a wide variety of organisms, from fungi to plants and animals, with some classes being specific to the Metazoa. While it was once thought that organismal complexity was tied to gene complexity, sequencing of genomes from a cnidarian, poriferan, and placozoan have shown no clear correlation. However, little attention has been paid to ctenophores, another early branching taxon. Ctenophores are mostly pelagic marine animals, with complex morphological features, so understanding the gene content and expression of this nonbilaterian phylum is of key interest to evolutionary biology. Expression information from developmental genes in ctenophores is sparse. In this study, we isolated seven homeobox genes from the ctenophore Mnemiopsis leidyi and examined their expression through development. Phylogenetic analyses of these genes placed four in the ANTP class and three in the PRD class. These are the first reported full-length PRD class genes, although our analyses could not place them into specific families. We have found that most of these homeobox genes begin expression at gastrulation, and their expression patterns suggest a possible role in patterning of the tentacle apparati and pharynx.
Collapse
Affiliation(s)
- Kevin Pang
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | | |
Collapse
|
39
|
Fahey B, Larroux C, Woodcroft BJ, Degnan BM. Does the high gene density in the sponge NK homeobox gene cluster reflect limited regulatory capacity? THE BIOLOGICAL BULLETIN 2008; 214:205-217. [PMID: 18574099 DOI: 10.2307/25470664] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A huge discrepancy in morphological diversity exists between poriferans and eumetazoans. The disparate evolutionary outcomes of these two ancient metazoan lineages may be reflected in the composition, architecture, and regulation of genomes of modern representatives. As a case study, we compare the sizes of upstream intergenic regions of genes found within the NK homeobox cluster of the demosponge Amphimedon queenslandica with eumetazoan orthologs. This analysis includes NK genes as well as five structural genes interspersed in the cluster. The upstream intergenic regions of the homeobox genes are significantly smaller in Amphimedon than in eumetazoan orthologs, suggesting that the sponge genes house less cis-regulatory information. In contrast, the upstream intergenic regions of the structural genes are not significantly different. The simple developmental expression patterns of representative NK genes in Amphimedon lends support to the proposition that their regulatory apparatuses, unlike those of bilaterians, do not encode the information for dynamic, pleiotropic gene expression. On the basis of this example, we suggest that the size of the intergenic regions upstream of the transcription start site may act as a proxy for estimating regulatory complexity and reflect the limitations of the sponge genome to direct complex and varied morphogenetic processes.
Collapse
Affiliation(s)
- Bryony Fahey
- School of Integrative Biology, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
40
|
Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM. Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 2008; 25:980-96. [PMID: 18296413 DOI: 10.1093/molbev/msn047] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole-genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T-box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains (such as Paired, POU, and T-box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity.
Collapse
Affiliation(s)
- Claire Larroux
- School of Integrative Biology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|