1
|
Li Z, Zhang J, Yin S, Xi G. Toxicity effect of the edible pigment carmoisine on Polyrhachis vicina Roger (Hymenoptera: Formicidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1009-1022. [PMID: 35792963 DOI: 10.1007/s10646-022-02563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Carmoisine belongs to a water-soluble synthetic dye and is often used as a food additive. Previous research has shown that carmoisine is toxic to rats and zebrafish, but there have been few reports on the effect of carmoisine on soil-dwelling social insects. The present study evaluated carmoisine toxicity in Polyrhachis vicina Roger. We found that the effects of different concentrations of carmoisine on the mortality of workers were dose-dependent. The 10% lethal dose (LD10), 50% lethal dose (LD50) and 90% lethal dose (LD90) of carmoisine to workers at 96 h was calculated to be 0.504, 5.491 and 10.478 g/L, respectivily. LD10 of workers were selected to treat the fourth instar larvae, pupae and adults for 10 days. The results showed that the survival rate of all ants, except for females, was significantly reduced, especially larvae and workers. The body weight of larvae, pupae and males decreased significantly, while weight gain was observed in the females and workers. The appearance of larvae, pupae and workers changed after carmoisine treatment, such as body darkening and epidermis shrinking of larvae and pupae, as well as body segment expansion of workers. Furthermore, carmoisine altered the expression of the estrogen-related receptor, tailless and homothorax of P. vicina (Pv-ERR, Pv-tll and Pv-hth) to varying degrees in larvae and adults. We believe that variations in body weight can lead to a decrease in survival rate and appearance changes in the ants, which may be related to abnormal gene expressions caused by carmoisine treatment. Therefore, we confirm that carmoisine has negative effects on the growth and development of P. vicina.
Collapse
Affiliation(s)
- Ziyu Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Jing Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Shaoting Yin
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Gengsi Xi
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China.
| |
Collapse
|
2
|
Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T. Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 2019; 146:dev.171942. [PMID: 30833380 DOI: 10.1242/dev.171942] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022]
Abstract
In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.
Collapse
Affiliation(s)
- Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kohei Oguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| | - Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Hayashi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Department of Biology, Keio University, Yokohama, Kanagawa, 223-8521, Japan
| | - Masatoshi Matsunami
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan .,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
3
|
Gotoh H, Zinna RA, Ishikawa Y, Miyakawa H, Ishikawa A, Sugime Y, Emlen DJ, Lavine LC, Miura T. The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle. Dev Biol 2016; 422:24-32. [PMID: 27989519 DOI: 10.1016/j.ydbio.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Abstract
One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.
Collapse
Affiliation(s)
- Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Department of Entomology, Washington State University, Pullman, WA 99164, USA; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Robert A Zinna
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Yuki Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Graduate School of Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hitoshi Miyakawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Asano Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Douglas J Emlen
- Division of Biological Sciences, University of Montana-Missoula, MT 59812, USA
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
4
|
Shukla SP, Sanders JG, Byrne MJ, Pierce NE. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol Ecol 2016; 25:6092-6106. [DOI: 10.1111/mec.13901] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/09/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Shantanu P. Shukla
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge 02138 MA USA
| | - Jon G. Sanders
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge 02138 MA USA
| | - Marcus J. Byrne
- School of Animal, Plant, and Environmental Sciences University of Witwatersrand Wits 2050 South Africa
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge 02138 MA USA
| |
Collapse
|
5
|
Hochberg R, Wallace RL, Walsh EJ. Soft Bodies, Hard Jaws: An Introduction to the Symposium, with Rotifers as Models of Jaw Diversity. Integr Comp Biol 2015; 55:179-92. [PMID: 25796591 PMCID: PMC6296403 DOI: 10.1093/icb/icv002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Jaws have evolved numerous times in the animal kingdom and they display a wide variety of structural, compositional, and functional characteristics that reflect their polyphyletic origins. Among soft-bodied invertebrates, jaws are known from annelids, chaetognaths, flatworms, gnathostomulids, micrognathozoans, mollusks, rotifers, and several ecdysozoans. Depending on the taxon, jaws may function in the capture of prey (e.g., chaetognaths and flatworms), processing of prey (e.g., gnathostomulids and onychophorans), or both (e.g., rotifers). Although structural diversity among invertebrates’ jaws is becoming better characterized with the use of electron microscopy, many details remain poorly described, including neuromuscular control, elemental composition, and physical characteristics, such as hardness and resistance to wear. Unfortunately, absence of relevant data has impeded understanding of their functional diversity and evolutionary origins. With this symposium, we bring together researchers of disparately jawed taxa to draw structural and mechanistic comparisons among species to determine their commonalities. Additionally, we show that rotifers’ jaws, which are perhaps the best-characterized jaws among invertebrates, are still enigmatic with regard to their origins and mechanics. Nevertheless, technologies such as energy dispersive X-ray spectroscopy (EDX) and 3D modeling are being used to characterize their chemical composition and to develop physical models that allow exploration of their mechanical properties, respectively. We predict that these methods can also be used to develop biomimetic and bioinspired constructs based on the full range of the complexity of jaws, and that such constructs also can be developed from other invertebrate taxa. These approaches may also shed light on common developmental and physiological processes that facilitate the evolution of invertebrates’ jaws.
Collapse
Affiliation(s)
- Rick Hochberg
- *Department of Biology, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Robert L. Wallace
- Biology Department, Ripon College, 300 Seward Street, Ripon, WI 54971, USA
| | - Elizabeth J. Walsh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
6
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
7
|
Estes AM, Hearn DJ, Snell-Rood EC, Feindler M, Feeser K, Abebe T, Dunning Hotopp JC, Moczek AP. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS One 2013; 8:e79061. [PMID: 24223880 PMCID: PMC3815100 DOI: 10.1371/journal.pone.0079061] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/17/2013] [Indexed: 01/30/2023] Open
Abstract
Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood chamber. The transmission of the dung beetle microbiome highlights the maintenance and likely importance of this newly-characterized bacterial community.
Collapse
Affiliation(s)
- Anne M. Estes
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - David J. Hearn
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
- J. Craig Venter Institute, Inc., Plant Genomics, Rockville, Maryland, United States of America,
| | - Emilie C. Snell-Rood
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Michele Feindler
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
| | - Karla Feeser
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
| | - Tselotie Abebe
- Towson University, Department of Biological Sciences, Baltimore, Maryland, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
8
|
Coulcher JF, Telford MJ. Comparative gene expression supports the origin of the incisor and molar process from a single endite in the mandible of the red flour beetle Tribolium castaneum. EvoDevo 2013; 4:1. [PMID: 23280103 PMCID: PMC3564707 DOI: 10.1186/2041-9139-4-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND The biting edge of the primitive arthropod mandible consists of a biting incisor process and a crushing molar process. These structures are thought to be derived from a structure known as an endite but the precise details of this are not understood. Various hypotheses concerning the number of endites present in the arthropod mandible have been proposed.In the developing embryo, the mandible has an inner and outer lobe that are likely to develop into the incisor and molar processes of the larval mandible; these two lobes are commonly held to be derived from separate endites and to be serially homologous to the galea and lacinia endites of the maxillary appendage respectively (Machida). RESULTS We undertook a study of the development of the embryonic mandible of the beetle Tribolium castaneum using the expression of developmental genes as markers of the developing endites in the mandible and maxilla.The Tribolium ortholog of paired (Tc-prd) has expression domains in the developing maxillary and labial endites as well as the inner and outer lobes of the mandible. Following the expression of Tc-prd in the developing mandible through to late stage embryos shows that the molar and incisor process develop from the inner and outer lobes respectively.In addition to Tc-prd, we compared the expression of genes in the endites of the maxilla to the mandible to draw conclusions about the number of endites in the mandible. Homologs of dachshund are typically expressed in the endites of mandibulate gnathal appendages. Comparison of the expression of Tc-prd, Tribolium dachshund (Tc-dac) and Tribolium wingless (Tc-wg) between the endites of the maxilla and the mandible suggest that, while there are two endites in the maxilla only a single endite is present in the mandible. CONCLUSIONS Comparative gene expression suggests that the Tribolium mandible has a single endite from which both mandible lobes are derived. Our results do not support Machida's hypothesis homologising the incisor and molar processes of the mandible to the galea and lacinia endites of the maxilla. We propose, instead, that both incisor and molar processes are derived from a single endite serially homologous to the lacinia of the maxilla.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
9
|
McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF. Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. EvoDevo 2012; 3:17. [PMID: 22877149 PMCID: PMC3482387 DOI: 10.1186/2041-9139-3-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The mechanisms by which the conserved genetic "toolkit" for development generates phenotypic disparity across metazoans is poorly understood. Echinoderm larvae provide a great resource for understanding how developmental novelty arises. The sea urchin pluteus larva is dramatically different from basal echinoderm larval types, which include the auricularia-type larva of its sister taxon, the sea cucumbers, and the sea star bipinnaria larva. In particular, the pluteus has a mesodermally-derived larval skeleton that is not present in sea star larvae or any outgroup taxa. To understand the evolutionary origin of this structure, we examined the molecular development of mesoderm in the sea cucumber, Parastichopus parvimensis. RESULTS By comparing gene expression in sea urchins, sea cucumbers and sea stars, we partially reconstructed the mesodermal regulatory state of the echinoderm ancestor. Surprisingly, we also identified expression of the transcription factor alx1 in a cryptic skeletogenic mesenchyme lineage in P. parvimensis. Orthologs of alx1 are expressed exclusively within the sea urchin skeletogenic mesenchyme, but are not expressed in the mesenchyme of the sea star, which suggests that alx1+ mesenchyme is a synapomorphy of at least sea urchins and sea cucumbers. Perturbation of Alx1 demonstrates that this protein is necessary for the formation of the sea cucumber spicule. Overexpression of the sea star alx1 ortholog in sea urchins is sufficient to induce additional skeleton, indicating that the Alx1 protein has not evolved a new function during the evolution of the larval skeleton. CONCLUSIONS The proposed echinoderm ancestral mesoderm state is highly conserved between the morphologically similar, but evolutionarily distant, auricularia and bipinnaria larvae. However, the auricularia, but not bipinnaria, also develops a simple skelotogenic cell lineage. Our data indicate that the first step in acquiring these novel cell fates was to re-specify the ancestral mesoderm into molecularly distinct territories. These new territories likely consisted of only a few cells with few regulatory differences from the ancestral state, thereby leaving the remaining mesoderm to retain its original function. The new territories were then free to take on a new fate. Partitioning of existing gene networks was a necessary pre-requisite to establish novelty in this system.
Collapse
Affiliation(s)
- Brenna S McCauley
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Erin P Wright
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Cameron Exner
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Chisato Kitazawa
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
10
|
Valena S, Moczek AP. Epigenetic mechanisms underlying developmental plasticity in horned beetles. GENETICS RESEARCH INTERNATIONAL 2012; 2012:576303. [PMID: 22567393 PMCID: PMC3335661 DOI: 10.1155/2012/576303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022]
Abstract
All developmental plasticity arises through epigenetic mechanisms. In this paper we focus on the nature, origins, and consequences of these mechanisms with a focus on horned beetles, an emerging model system in evolutionary developmental genetics. Specifically, we introduce the biological significance of developmental plasticity and summarize the most important facets of horned beetle biology. We then compare and contrast the epigenetic regulation of plasticity in horned beetles to that of other organisms and discuss how epigenetic mechanisms have facilitated innovation and diversification within and among taxa. We close by highlighting opportunities for future studies on the epigenetic regulation of plastic development in these and other organisms.
Collapse
Affiliation(s)
- Sophie Valena
- Department of Biology, Indiana University, 915 E Third Street, Myers Hall 150, Bloomington, IN 47405-7107, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, 915 E Third Street, Myers Hall 150, Bloomington, IN 47405-7107, USA
| |
Collapse
|
11
|
Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. Genetics 2011; 190:639-54. [PMID: 22135350 DOI: 10.1534/genetics.111.134296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Specialized insect mouthparts, such as those of Drosophila, are derived from an ancestral mandibulate state, but little is known about the developmental genetics of mandibulate mouthparts. Here, we study the metamorphic patterning of mandibulate mouthparts of the beetle Tribolium castaneum, using RNA interference to deplete the expression of 13 genes involved in mouthpart patterning. These data were used to test three hypotheses related to mouthpart development and evolution. First, we tested the prediction that maxillary and labial palps are patterned using conserved components of the leg-patterning network. This hypothesis was strongly supported: depletion of Distal-less and dachshund led to distal and intermediate deletions of these structures while depletion of homothorax led to homeotic transformation of the proximal maxilla and labium, joint formation required the action of Notch signaling components and odd-skipped paralogs, and distal growth and patterning required epidermal growth factor (EGF) signaling. Additionally, depletion of abrupt or pdm/nubbin caused fusions of palp segments. Second, we tested hypotheses for how adult endites, the inner branches of the maxillary and labial appendages, are formed at metamorphosis. Our data reveal that Distal-less, Notch signaling components, and odd-skipped paralogs, but not dachshund, are required for metamorphosis of the maxillary endites. Endite development thus requires components of the limb proximal-distal axis patterning and joint segmentation networks. Finally, adult mandible development is considered in light of the gnathobasic hypothesis. Interestingly, while EGF activity is required for distal, but not proximal, patterning of other appendages, it is required for normal metamorphic growth of the mandibles.
Collapse
|
12
|
Wasik BR, Moczek AP. Decapentaplegic (dpp) regulates the growth of a morphological novelty, beetle horns. Dev Genes Evol 2011; 221:17-27. [PMID: 21399983 DOI: 10.1007/s00427-011-0355-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/17/2011] [Indexed: 12/13/2022]
Abstract
Studies focusing on the development of morphological novelties suggest that patterning genes underlying traditional appendage development (i.e. mouthparts, legs, and wings) also play important roles in patterning novel morphological structures. In this study, we examine whether the expression and function of a member of the TGF-β signaling pathway, decapentaplegic (dpp), promotes development of a morphologically novel structure: beetle horns. Beetle horns are complex secondary sexual structures that develop in the head and/or prothorax, lack obvious homology to other insect outgrowths, and vary remarkably between species and sexes. We studied dpp expression through in situ hybridization, performed functional analyses with RNA interference, and gathered allometric measurements to determine the role of dpp during both pronotal and head horn development in both sexes of two morphologically dissimilar species in the Onthophagus genus, Onthophagus binodis and Onthophagus sagittarius. Our findings show that in addition to affecting growth and patterning of traditional appendages, dpp regulates beetle horn growth and remodeling.
Collapse
Affiliation(s)
- Bethany R Wasik
- Department of Biology, Indiana University, Bloomington, IN 47405-7107, USA.
| | | |
Collapse
|