1
|
Staub NL, Hayes SG, Mendonca MT. Levels of Sex Steroids in Plethodontid Salamanders: A Comparative Study Within the Genus Aneides. Ecol Evol 2024; 14:e70550. [PMID: 39588354 PMCID: PMC11586135 DOI: 10.1002/ece3.70550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Derived monomorphism is a condition in which males and females are phenotypically similar, but the similarity is derived. Derived monomorphism typically evolves from sexual dimorphism or from a different monomorphic state. We examined the hormonal basis of derived monomorphism in the salamander genus Aneides (Plethodontidae). We reject our hypothesis that circulating levels of androgens explain the derived traits, such as enlarged jaw musculature, in females (some would call them "male-like traits"). There was no clear pattern of differences in androgen levels or degree of dimorphism in androgen levels, between the sexually dimorphic Aneides hardii and the other, derived monomorphic, species studied. Concentrations of testosterone and dihydrotestosterone were higher in males than in females in all species examined. The degree of sexual dimorphism in androgen level was also consistent among the species studied. Levels of androgens in female plethodontids have not been previously reported.
Collapse
Affiliation(s)
- Nancy L. Staub
- Biology DepartmentGonzaga UniversitySpokaneWashingtonUSA
| | | | - Mary T. Mendonca
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
2
|
Draskau MK, Rosenmai AK, Bouftas N, Johansson HKL, Panagiotou EM, Holmer ML, Elmelund E, Zilliacus J, Beronius A, Damdimopoulou P, van Duursen M, Svingen T. AOP Report: An Upstream Network for Reduced Androgen Signaling Leading to Altered Gene Expression of Androgen Receptor-Responsive Genes in Target Tissues. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2329-2337. [PMID: 39206816 DOI: 10.1002/etc.5972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Adverse outcome pathways (AOPs) can aid with chemical risk assessment by providing plausible links between chemical activity at the molecular level and effect outcomes in intact organisms. Because AOPs can be used to infer causality between upstream and downstream events in toxicological pathways, the AOP framework can also facilitate increased uptake of alternative methods and new approach methodologies to help inform hazard identification. However, a prevailing challenge is the limited number of fully developed and endorsed AOPs, primarily due to the substantial amount of work required by AOP developers and reviewers. Consequently, a more pragmatic approach to AOP development has been proposed where smaller units of knowledge are developed and reviewed independent of full AOPs. In this context, we have developed an upstream network comprising key events (KEs) and KE relationships related to decreased androgen signaling, converging at a nodal KE that can branch out to numerous adverse outcomes (AOs) relevant to androgen-sensitive toxicological pathways. Androgen signaling represents an extensively studied pathway for endocrine disruption. It is linked to numerous disease outcomes and can be affected by many different endocrine-disrupting chemicals. Still, pathways related to disrupted androgen signaling remain underrepresented in the AOP-wiki, and endorsed AOPs are lacking. Given the pivotal role of androgen signaling in development and function across vertebrate taxa and life stages of both sexes, this upstream AOP network serves as a foundational element for developing numerous AOPs. By connecting the upstream network with various downstream AOs, encompassing different species, it can also facilitate cross-species extrapolations for hazard and risk assessment of chemicals. Environ Toxicol Chem 2024;43:2329-2337. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Monica K Draskau
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Anna K Rosenmai
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Nora Bouftas
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Eleftheria M Panagiotou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marie L Holmer
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Emilie Elmelund
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Johanna Zilliacus
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Majorie van Duursen
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Zhang Y, Shi X, Shi M, Li J, Liu Q. Androgens and androgen receptor directly induce the thickening, folding, and vascularization of the seahorse abdominal dermal layer into a placenta-like structure responsible for male pregnancy via multiple signaling pathways. Int J Biol Macromol 2024; 279:135039. [PMID: 39197609 DOI: 10.1016/j.ijbiomac.2024.135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Seahorses exhibit the unique characteristic of male pregnancy, which incubates numerous embryos in a brood pouch that plays an essential role in enhancing offspring survivability. The pot-belly seahorse (Hippocampus abdominalis) possesses the largest body size among seahorses and is a significant species in Chinese aquaculture. In this study, we revealed the cytological and morphological characteristics, as well as regulatory mechanisms, throughout the entire brood pouch development in H. abdominalis. The brood pouch originated from the abdominal dermis, extending towards the ventral midline. As the dermal layers thicken, the inner epithelium folds, the stroma loosens, and vascularization occurs, culminating in the formation of the brood pouch. Furthermore, through transcriptomic analysis of brood pouches at various developmental stages, 8 key genes (tgfb3, fgf2, wnt7a, pgf, mycn, tln2, jund, ccn4) closely related to the development of brood pouch were identified in the MAPK, Rap1, TGF-β, and Wnt signaling pathways. These genes were highly expressed in the pseudoplacenta and dermal layers at the newly formed stage as examined by in situ hybridization (ISH). The angiogenesis, densification of collagen fibers, and proliferation of fibroblasts and endothelial cells in seahorse brood pouch formation may be regulated by these genes and pathways. Additionally, the expression of the androgen receptor gene (ar) was significantly upregulated during the formation of the brood pouch, and ISH confirmed the expression of the ar gene in the dermis and pseudoplacenta of the brood pouch, highlighting its role in the developmental process. Androgen and flutamide (androgen receptor antagonist) treatments significantly accelerated the formation of the brood pouch and completely inhibited its occurrence respectively, concomitant to the upregulated expression of differentially expressed genes involved above signaling pathways. These findings demonstrated that formation of the brood pouch is determined by androgen and the androgen receptor activates the above signaling pathways in the brood pouch through the regulation of fgf2, tgfb3, pgf, and wnt7a. Interestingly, androgen even induced the formation of the brood pouch in females. We firstly elucidated the formation of the seahorse brood pouch, demonstrating that androgens and their receptors directly induce the thickening, folding, and vascularization of the abdominal dermal layer into a placenta-like structure through multiple signaling pathways. These findings provide foundational insights to further exploring the evolution of male pregnancy and adaptive convergence in viviparity across vertebrates.
Collapse
Affiliation(s)
- Yichao Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuehui Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meilun Shi
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Qinghua Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Gunelson AM, Tuong MA, Staub NL. Androgen Receptors in the Dermal Glands of Male and Female Ouachita Dusky Salamanders. Integr Org Biol 2024; 6:obae001. [PMID: 39640201 PMCID: PMC11616775 DOI: 10.1093/iob/obae001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/23/2023] [Indexed: 12/07/2024] Open
Abstract
The presence of androgens in female development is an important, yet often overlooked, topic. We tested for the presence of androgen receptors (ARs) in the dermal glands of male and female Desmognathus brimleyorum, a plethodontid salamander. This species engages in a courtship behavior called the tail-straddling walk. During this process, communication between males and females is hypothesized to be facilitated by pheromones secreted from modified granular glands (MGGs) on the dorsal tail base, where the female's chin is positioned. These glands are present not only dorsally but also laterally and ventrally on the tail of both males and females. Using immunohistochemistry with a polyclonal antibody, ARs were located in the MGGs of both sexes. Males had a higher percentage of immunopositive cells per MGG than females. The presence of ARs in both sexes highlights the similarity between MGGs in males and females and suggests androgens play a role in female gland function. Furthermore, our results suggest courtship communication is bidirectional, and females have a more active role, signaling the male, than previously described.
Collapse
Affiliation(s)
- A M Gunelson
- Department of Biological Sciences, Gonzaga University, Spokane, WA 99258, USA
| | - M A Tuong
- Department of Biological Sciences, Gonzaga University, Spokane, WA 99258, USA
| | - N L Staub
- Department of Biological Sciences, Gonzaga University, Spokane, WA 99258, USA
| |
Collapse
|
5
|
Zhang S, Li X, Li X, Wang X, Ru S, Tian H. 17β-Trenbolone activates androgen receptor, upregulates transforming growth factor beta/bone morphogenetic protein and Wnt signaling pathways, and induces masculinization of caudal and anal fins in female guppies (Poecilia reticulata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106677. [PMID: 37677862 DOI: 10.1016/j.aquatox.2023.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Sexually mature female guppies (Poecilia reticulata) were exposed to environmentally relevant concentrations (20, 200, and 2000 ng/L) of 17β-trenbolone for four weeks. As evidenced by the increased caudal fin index and anal fins developing into gonopodium-like structures, exposed females displayed masculinized secondary sexual characteristics. Differential gene expression and subsequent pathway analysis of mRNA sequencing data revealed that the transcription of transforming growth factor beta/bone morphogenetic protein signaling pathway and Wnt signaling pathway were upregulated following 17β-trenbolone exposure. Enzyme-linked immunosorbent assays showed that the bone morphogenetic protein 7 protein content was elevated after 17β-trenbolone exposure. Finally, real-time PCR revealed that 17β-trenbolone treatment significantly increased androgen receptor mRNA levels, and molecular docking showed potent interaction between 17β-trenbolone and guppy androgen receptor. Furthermore, 17β-trenbolone-induced masculinization of caudal and anal fins in female guppies, concomitant to the upregulated expression of differentially expressed genes involved in the above-mentioned two signaling pathways, was significantly inhibited by flutamide (androgen receptor antagonist). These findings demonstrated that 17β-trenbolone masculinized fins of female guppies by activating the androgen receptor. This study revealed that 17β-trenbolone could upregulate signaling pathways related to fin growth and differentiation, and eventually cause caudal and anal fin masculinization in female guppies.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong province, China
| | - Xinyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong province, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong province, China; College of Life Science, Langfang Normal University, Langfang 065000, Hebei province, China
| | - Xue Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong province, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong province, China.
| |
Collapse
|
6
|
Ma Y, Li Y, Song X, Yang T, Wang H, Liang Y, Huang L, Zeng H. Endocrine Disruption of Propylparaben in the Male Mosquitofish ( Gambusia affinis): Tissue Injuries and Abnormal Gene Expressions of Hypothalamic-Pituitary-Gonadal-Liver Axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3557. [PMID: 36834249 PMCID: PMC9967665 DOI: 10.3390/ijerph20043557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Propylparaben (PrP) is a widely used preservative that is constantly detected in aquatic environments and poses a potential threat to aquatic ecosystems. In the present work, adult male mosquitofish were acutely (4d) and chronically (32d) exposed to environmentally and humanly realistic concentrations of PrP (0, 0.15, 6.00 and 240 μg/L), aimed to investigate the toxic effects, endocrine disruption and possible mechanisms of PrP. Histological analysis showed time- and dose-dependent manners in the morphological injuries of brain, liver and testes. Histopathological alterations in the liver were found in 4d and severe damage was identified in 32d, including hepatic sinus dilatation, cytoplasmic vacuolation, cytolysis and nuclear aggregation. Tissue impairments in the brain and testes were detected in 32d; cell cavitation, cytomorphosis and blurred cell boundaries appeared in the brain, while the testes lesions contained spermatogenic cell lesion, decreased mature seminal vesicle, sperm cells gathering, seminiferous tubules disorder and dilated intercellular space. Furthermore, delayed spermatogenesis had occurred. The transcriptional changes of 19 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were investigated across the three organs. The disrupted expression of genes such as Ers, Ars, Vtgs, cyp19a, star, hsd3b, hsd17b3 and shh indicated the possible abnormal steroidogenesis, estrogenic or antiandrogen effects of PrP. Overall, the present results provided evidences for the toxigenicity and endocrine disruptive effects on the male mosquitofish of chronic PrP exposure, which highlights the need for more investigations of its potential health risks.
Collapse
Affiliation(s)
- Yun Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Yujing Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Xiaohong Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Tao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Haiqin Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Liangliang Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin 541000, China
| |
Collapse
|
7
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
8
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Chen S, Lin C, Tan J, Wang Y, Wang X, Wang X, Liu L, Li J, Hou L, Liu J, Leung JYS. Reproductive potential of mosquitofish is reduced by the masculinizing effect of a synthetic progesterone, gestodene: Evidence from morphology, courtship behaviour, ovary histology, sex hormones and gene expressions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144570. [PMID: 33486178 DOI: 10.1016/j.scitotenv.2020.144570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The ever-increasing use of synthetic hormones, especially progestins, for medical applications has drawn growing concerns due to their potential endocrine disrupting effects that may diminish the reproductive outputs of aquatic organisms. Using mosquitofish (Gambusia affinis) as a model species, we tested whether gestodene (GES), a commonly used progestin, can alter the expressions of genes associated with sex hormone synthesis and cause ensuing changes in morphological features, courtship behaviour and oocyte development. After exposing to GES at environmentally relevant concentrations (2.96, 32.9 and 354 ng L-1) for 40 days, we found that GES, especially at 354 ng L-1, induced masculinization of female fish, indicated by the reduced body weight to length ratio and development of gonopodia (i.e. anal fins of male fish). Thus, the males showed less intimacy and mating interest towards the GES-exposed females, indicated by the reduced time spent on attending, following and mating behaviours. While oocyte development was seemingly unaffected by GES, spermatogonia were developed in the ovary. All the aforementioned masculinizing effects of GES were associated with the increased testosterone level and decreased estradiol level, driven by upregulating androgen receptor genes (Arα and Arβ). Overall, our findings suggest that progestins could undermine the reproductive potential of aquatic organisms and hence their persistence in the progestin-contaminated environment.
Collapse
Affiliation(s)
- Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Canyuan Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yifan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaoyun Wang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Lu Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Jiayi Li
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution, China.
| | - Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
10
|
Zhang Q, Ye D, Wang H, Wang Y, Hu W, Sun Y. Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology 2020; 161:5813458. [PMID: 32222764 DOI: 10.1210/endocr/bqaa048] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/26/2020] [Indexed: 01/08/2023]
Abstract
Androgen is essential for male development and cortisol is involved in reproduction in fishes. However, the in vivo roles of cortisol and specific androgens such as 11-ketotestosterone (11-KT) in reproductive development need to be described with genetic models. Zebrafish cyp11c1 encodes 11β-hydroxylase, which is essential for the biosynthesis of 11-KT and cortisol. In this study, we generated a zebrafish mutant of cyp11c1 (cyp11c1-/-) and utilized it to clarify the roles of 11-KT and cortisol in sexual development and reproduction. The cyp11c1-/- fish had smaller genital papilla and exhibited defective natural mating but possessed mature gametes and were found at a sex ratio comparable to the wildtype control. The cyp11c1-/- males showed delayed and prolonged juvenile ovary-to-testis transition and displayed defective spermatogenesis at adult stage, which could be rescued by treatment with 11-ketoandrostenedione (11-KA) at certain stages. Specifically, during testis development of cyp11c1-/- males, the expression of insl3, cyp17a1, and amh was significantly decreased, suggesting that 11-KT is essential for the development and function of Leydig cells and Sertoli cells. Further, spermatogenesis-related dmrt1 was subsequently downregulated, leading to insufficient spermatogenesis. The cyp11c1-/- females showed a reduction in egg spawning and a failure of in vitro germinal vesicle breakdown, which could be partially rescued by cortisol treatment. Taken together, our study reveals that zebrafish Cyp11c1 is not required for definite sex differentiation but is essential for juvenile ovary-to-testis transition, Leydig cell development, and spermatogenesis in males through 11-KT, and it is also involved in oocyte maturation and ovulation in females through cortisol.
Collapse
Affiliation(s)
- Qifeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
| | - Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Hashimoto D, Hyuga T, Acebedo AR, Alcantara MC, Suzuki K, Yamada G. Developmental mutant mouse models for external genitalia formation. Congenit Anom (Kyoto) 2019; 59:74-80. [PMID: 30554442 DOI: 10.1111/cga.12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Development of external genitalia and perineum is the subject of developmental biology as well as toxicology and teratology researches. Cloaca forms in the lower (caudal) end of endoderm. Such endodermal epithelia and surrounding mesenchyme interact with various signals to form the external genitalia. External genitalia (the anlage termed as genital tubercle: GT) formation shows prominent sexually dimorphic morphogenesis in late embryonic stages, which is an unexplored developmental research field because of many reasons. External genitalia develop adjacent to the cloaca which develops urethra and corporal bodies. Developmental regulators including growth factor signals are necessary for epithelia-mesenchyme interaction (EMI) in posterior embryos including the cloaca and urethra in the genitalia. In the case of male type urethra, formation of tubular urethra proceeds from the lower (ventral) side of external genitalia as a masculinization process in contrast to the case of female urethra. Mechanisms for its development are not elucidated yet due to the lack of suitable mutant mouse models. Because of the recent progresses of Cre (recombinase)-mediated conditional target gene modification analyses, many developmental regulatory genes become increasingly analyzed. Conditional gene knockout mouse approaches and tissue lineage approaches are expected to offer vital information for such sexually dimorphic developmental processes. This review aims to offer recent updates on the progresses of these emerging developmental processes for the research field of congenital anomalies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
12
|
Hou L, Chen S, Chen H, Ying G, Chen D, Liu J, Liang Y, Wu R, Fang X, Zhang C, Xie L. Rapid masculinization and effects on the liver of female western mosquitofish (Gambusia affinis) by norethindrone. CHEMOSPHERE 2019; 216:94-102. [PMID: 30359922 DOI: 10.1016/j.chemosphere.2018.10.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Natural and synthetic progestins in receiving streams can disrupt the normal endocrine systems of fish. Norethindrone (NET) is a widely used synthetic progestin that often appears in wastewater effluents. For this research, adult female western mosquitofish (Gambusia affinis) were exposed to NET at three concentrations. The effects of NET on the following biological factors were evaluated: the histology of the ovaries and livers, the anal fin morphology, and transcription of genes related to steroidogenesis signaling pathways in the livers. After 42 d exposure to NET at 33.0 ng L-1 and 347.5 ng L-1, rapid masculinization, an increase in the number of atretic and postovulatory follicles in the ovary, enhanced vascularization, degenerated hepatocytes and irregular nuclei in the livers were observed. Exposure to NET did not affect the expression of the androgenic and estrogenic receptor genes and Cyp19a except for a significant up-regulation of Erα. However, the expression of Vtg A, Vtg B, and Vtg C were markedly inhibited in the females exposed to three concentrations of NET. Compared to the control female, exposure to NET at 33.0 ng L-1 and 347.5 ng L-1 caused a 4.4- and 5.8-fold increase in the expression of Hsd17β3 in the livers, respectively. The results demonstrate that NET can cause rapid masculinization of female G. affinis, hepatopathological alterations and inhibited expressions of Vtg A, Vtg B, and Vtg C. The results imply that G. affinis populations might be threatened in NET-contaminated environment.
Collapse
Affiliation(s)
- Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Shangduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Juan Liu
- Institute of Environmental Research at Greater Bay, Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Ye Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Rongrong Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xuwen Fang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Cuiping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Ogino Y, Tohyama S, Kohno S, Toyota K, Yamada G, Yatsu R, Kobayashi T, Tatarazako N, Sato T, Matsubara H, Lange A, Tyler CR, Katsu Y, Iguchi T, Miyagawa S. Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. J Steroid Biochem Mol Biol 2018; 184:38-46. [PMID: 29885351 DOI: 10.1016/j.jsbmb.2018.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroid hormones including estrogens and androgens play fundamental roles in regulating reproductive activities and they act through estrogen and androgen receptors (ESR and AR). These steroid receptors have evolved from a common ancestor in association with several gene duplications. In most vertebrates, this has resulted in two ESR subtypes (ESR1 and ESR2) and one AR, whereas in teleost fish there are at least three ESRs (ESR1, ESR2a and ESR2b) and two ARs (ARα and ARβ) due to a lineage-specific whole genome duplication. Functional distinctions have been suggested among these receptors, but to date their roles have only been characterized in a limited number of species. Sexual differentiation and the development of reproductive organs are indispensable for all animal species and in vertebrates these events depend on the action of sex steroid hormones. Here we review the recent progress in understanding of the functions of the ESRs and ARs in the development and expression of sexually dimorphic characteristics associated with steroid hormone signaling in vertebrates, with representative fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
- Yukiko Ogino
- Attached Promotive Centre for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Saki Tohyama
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, St. Cloud, MN 56301, USA
| | - Kenji Toyota
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan; Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Gen Yamada
- Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan
| | - Ryohei Yatsu
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tohru Kobayashi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | | | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0809, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan.
| | - Shinichi Miyagawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.
| |
Collapse
|
14
|
Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 2018; 15:358-368. [DOI: 10.1038/s41585-018-0008-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
16
|
Brockmeier EK, Scott PD, Denslow ND, Leusch FDL. Transcriptomic and physiological changes in Eastern Mosquitofish (Gambusia holbrooki) after exposure to progestins and anti-progestagens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:8-17. [PMID: 27541482 DOI: 10.1016/j.aquatox.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Endocrine active compounds (EACs) remain an important group of chemicals that require additional evaluation to determine their environmental impacts. While estrogens and androgens were previously demonstrated to impact organisms during environmental exposures, progestagens have recently been shown to have strong impacts on aquatic organisms. To gain an understanding of the impacts of these types of chemicals on aquatic species, experiments evaluating the mechanisms of action of progestagen exposure were conducted with the Eastern Mosquitofish (Gambusia holbrooki). The objective of this study was to conduct hepatic microarray analysis of male and female G. holbrooki exposed to progestins and anti-progestagens. In addition, we evaluated the ability of levonorgestrel, a synthetic progesterone (progestin), to induce anal fin elongation and to determine how anal fin growth is modulated during co-exposures with progesterone and androgen receptor antagonists. Gene expression analyses were conducted on male and female G. holbrooki exposed for 48h to the agonist levonorgestrel, the antagonist mifepristone, or a mixture of the two chemicals. Microarray analysis revealed that mifepristone does not act as an anti-progestagen in G. holbrooki in liver tissues, and that levonorgestrel elicits strong effects on the processes of embryo development and lipid transport. Levonorgestrel was also demonstrated to induce male secondary sexual characteristic formation in females, and co-exposure of either an androgen or levonorgestrel in the presence of the anti-androgen flutamide prevented anal fin elongation. These results provide indications as to the potential impacts of progestins, including non-target effects such as secondary sexual characteristic formation, and demonstrate the importance of this class of chemicals on aquatic organisms.
Collapse
Affiliation(s)
- Erica K Brockmeier
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611, USA.
| | - Philip D Scott
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Qld 4222, Australia
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611, USA
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Qld 4222, Australia
| |
Collapse
|
17
|
Matsushita S, Suzuki K, Ogino Y, Hino S, Sato T, Suyama M, Matsumoto T, Omori A, Inoue S, Yamada G. Androgen Regulates Mafb Expression Through its 3'UTR During Mouse Urethral Masculinization. Endocrinology 2016; 157:844-57. [PMID: 26636186 DOI: 10.1210/en.2015-1586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
External genitalia are prominent organs showing hormone-dependent sexual differentiation. Androgen is an essential regulator of masculinization of the genital tubercle, which is the anlage of external genitalia. We have previously shown that v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) is an androgen-inducible regulator of embryonic urethral masculinization in mice. However, it remains unclear how androgen regulates Mafb expression. The current study suggests that the Mafb 3' untranslated region (UTR) is an essential region for its regulation by androgen. We identified 2 functional androgen response elements (AREs) in Mafb 3'UTR. Androgen receptor is bound to such AREs in 3'UTR during urethral masculinization. In addition to 3'UTR, Mafb 5'UTR also showed androgen responsiveness. Moreover, we also demonstrated that β-catenin, one of genital tubercle masculinization factors, may be an additional regulator of Mafb expression during urethral masculinization. This study provides insights to elucidate mechanisms of gene regulation through AREs present in Mafb 3'UTR for a better understanding of the processes of urethral masculinization.
Collapse
Affiliation(s)
- Shoko Matsushita
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yukiko Ogino
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinjiro Hino
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuya Sato
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mikita Suyama
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Matsumoto
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Omori
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Satoshi Inoue
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Gen Yamada
- Department of Developmental Genetics (S.M., K.S., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Okazaki Institute for Integrative Bioscience (Y.O.), National Institute for Basic Biology, National Institutes of Natural Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan; Department of Medical Cell Biology (S.H.), Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Institute of Biomedical Sciences (T.M.), University of Tokushima Graduate School, Tokushima 770-8503, Japan; Venetian Institute of Molecular Medicine (A.O.), 35129 Padua, Italy; and Department of Anti-Aging Medicine (S.I.), Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
18
|
Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Mol Biol Evol 2015; 33:228-44. [PMID: 26507457 DOI: 10.1093/molbev/msv218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Steroid hormone receptor family provides an example of evolution of diverse transcription factors through whole-genome duplication (WGD). However, little is known about how their functions have been evolved after the duplication. Teleosts present a good model to investigate an accurate evolutionary history of protein function after WGD, because a teleost-specific WGD (TSGD) resulted in a variety of duplicated genes in modern fishes. This study focused on the evolution of androgen receptor (AR) gene, as two distinct paralogs, ARα and ARβ, have evolved in teleost lineage after TSGD. ARα showed a unique intracellular localization with a higher transactivation response than that of ARβ. Using site-directed mutagenesis and computational prediction of protein-ligand interactions, we identified two key substitutions generating a new functionality of euteleost ARα. The substitution in the hinge region contributes to the unique intracellular localization of ARα. The substitution on helices 10/11 in the ligand-binding domain possibly modulates hydrogen bonds that stabilize the receptor-ligand complex leading to the higher transactivation response of ARα. These substitutions were conserved in Acanthomorpha (spiny-rayed fish) ARαs, but not in an earlier branching lineage among teleosts, Japanese eel. Insertion of these substitutions into ARs from Japanese eel recapitulates the evolutionary novelty of euteleost ARα. These findings together indicate that the substitutions generating a new functionality of teleost ARα were fixed in teleost genome after the divergence of the Elopomorpha lineage. Our findings provide a molecular explanation for an adaptation process leading to generation of the hyperactive AR subtype after TSGD.
Collapse
Affiliation(s)
- Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Hiroshi Ishibashi
- Department of Life Environmental Conservation, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Hitoshi Miyakawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Eri Sumiya
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
19
|
Bain PA, Ogino Y, Miyagawa S, Iguchi T, Kumar A. Differential ligand selectivity of androgen receptors α and β from Murray-Darling rainbowfish (Melanotaenia fluviatilis). Gen Comp Endocrinol 2015; 212:84-91. [PMID: 25644213 DOI: 10.1016/j.ygcen.2015.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 01/24/2015] [Indexed: 11/16/2022]
Abstract
Androgen receptors (ARs) mediate the physiological effects of androgens in vertebrates. In fishes, AR-mediated pathways can be modulated by aquatic contaminants, resulting in the masculinisation of female fish or diminished secondary sex characteristics in males. The Murray-Darling rainbowfish (Melanotaenia fluviatilis) is a small-bodied freshwater teleost used in Australia as a test species for environmental toxicology research. We determined concentration-response profiles for selected agonists and antagonists of rainbowfish ARα and ARβ using transient transactivation assays. For both ARα and ARβ, the order of potency of natural agonists was 11-ketotestosterone (11-KT)>5α-dihydrotestosterone>testosterone>androstenedione. Methyltestosterone was a highly potent agonist of both receptors relative to 11-KT. The relative potency of the veterinary growth-promoting androgen, 17β-trenbolone, varied by more than a factor of 5 between ARα and ARβ. The non-steroidal anti-androgen bicalutamide exhibited high inhibitory potency relative to the structurally related model anti-androgen, flutamide. The inhibitory potency of the agricultural fungicide, vinclozolin, was approximately 1.7-fold relative to flutamide for ARα, but over 20-fold in the case of ARβ. Fluorescent protein tagging of ARs showed that the rainbowfish ARα subtype is constitutively localised to the nucleus, while ARβ is cytoplasmic in the absence of ligand, an observation which agrees with the reported subcellular localisation of AR subtypes from other teleost species. Collectively, these data suggest that M. fluviatilis ARα and ARβ respond differently to environmental AR modulators and that in vivo sensitivity to contaminants may depend on the tissue distribution of the AR subtypes at the time of exposure.
Collapse
Affiliation(s)
- Peter A Bain
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia.
| | - Yukiko Ogino
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Shinichi Miyagawa
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Taisen Iguchi
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Anupama Kumar
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
20
|
Brockmeier EK, Jayasinghe BS, Pine WE, Wilkinson KA, Denslow ND. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure. PLoS One 2014; 9:e106644. [PMID: 25198161 PMCID: PMC4157789 DOI: 10.1371/journal.pone.0106644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/07/2014] [Indexed: 01/06/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.
Collapse
Affiliation(s)
- Erica K. Brockmeier
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (EB); (ND)
| | - B. Sumith Jayasinghe
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - William E. Pine
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Krystan A. Wilkinson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
- Chicago Zoological Society, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Nancy D. Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (EB); (ND)
| |
Collapse
|
21
|
Ipulan LA, Suzuki K, Matsushita S, Suzuki H, Okazawa M, Jacinto S, Hirai SI, Yamada G. Development of the external genitalia and their sexual dimorphic regulation in mice. Sex Dev 2014; 8:297-310. [PMID: 24503953 DOI: 10.1159/000357932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The study of the external genitalia is divided into 2 developmental stages: the formation and growth of a bipotential genital tubercle (GT) and the sexual differentiation of the male and female GT. The sexually dimorphic processes, which occur during the second part of GT differentiation, are suggested to be governed by androgen signaling and more recently crosstalk with other signaling factors. The process of elucidating the regulatory mechanisms of hormone signaling towards other signaling networks in the GT is still in its early stages. Nevertheless, it is becoming a productive area of research. This review summarizes various studies on the development of the murine GT and the defining characteristics of a masculinized GT and presents the different signaling pathways possibly involved during masculinization.
Collapse
Affiliation(s)
- Lerrie Ann Ipulan
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ogino Y, Hirakawa I, Inohaya K, Sumiya E, Miyagawa S, Denslow N, Yamada G, Tatarazako N, Iguchi T. Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka. Endocrinology 2014; 155:449-62. [PMID: 24248458 DOI: 10.1210/en.2013-1507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens play key roles in the morphological specification of male type sex attractive and reproductive organs, whereas little is known about the developmental mechanisms of such secondary sex characters. Medaka offers a clue about sexual differentiation. They show a prominent masculine sexual character for appendage development, the formation of papillary processes in the anal fin, which has been induced in females by exogenous androgen exposure. This current study shows that the development of papillary processes is promoted by androgen-dependent augmentation of bone morphogenic protein 7 (Bmp7) and lymphoid enhancer-binding factor-1 (Lef1). Androgen receptor (AR) subtypes, ARα and ARβ, are expressed in the distal region of outgrowing bone nodules of developing papillary processes. Development of papillary processes concomitant with the induction of Bmp7 and Lef1 in the distal bone nodules by exposure to methyltestosterone was significantly suppressed by an antiandrogen, flutamide, in female medaka. When Bmp signaling was inhibited in methyltestosterone-exposed females by its inhibitor, dorsomorphin, Lef1 expression was suppressed accompanied by reduced proliferation in the distal bone nodules and retarded bone deposition. These observations indicate that androgen-dependent expressions of Bmp7 and Lef1 are required for the bone nodule outgrowth leading to the formation of these secondary sex characteristics in medaka. The formation of androgen-induced papillary processes may provide insights into the mechanisms regulating the specification of sexual features in vertebrates.
Collapse
Affiliation(s)
- Yukiko Ogino
- Okazaki Institute for Integrative Bioscience (Y.O., I.H., E.S., S.M., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology (Y.O., I.H., E.S., S.M., T.I.), Faculty of Life Science, The Graduate University for Advanced Studies, Aichi 444-8787, Japan; Department of Biological Information (K.I.), Tokyo Institute of Technology, Yokohama 226-8501, Japan; Department of Physiological Sciences (N.D.), Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611; Department of Developmental Genetics (G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; and National Institute for Environmental Studies (N.T.), Ibaraki, 305-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chew KY, Pask AJ, Hickford D, Shaw G, Renfree MB. A dual role for SHH during phallus development in a marsupial. Sex Dev 2014; 8:166-77. [PMID: 24480851 DOI: 10.1159/000357927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
The mammalian phallus arises from identical primordia in both sexes and is patterned in part by the key morphogen Sonic hedgehog (SHH). We have investigated SHH and other morphogens during phallus development in the tammar wallaby. In this marsupial, testis differentiation and androgen production occurs just after birth, but it takes a further 50-60 days before the phallus becomes sexually dimorphic. One day before birth, SHH was expressed in both sexes in the urethral epithelium. In males, there was a marked upregulation of SHH, GLI2, and AR at day 50 postpartum, a time when testicular androgen production falls. SHH, GLI2, and AR were downregulated in female pouch young treated with androstanediol from days 24-50, but not when treatments were begun at day 29, suggesting an early window of androgen sensitivity. SHH, GLI2, and AR expression in the phallus of males castrated at day 23 did not differ from controls, but there was an increase in SHH and GLI2 and a decrease in FGF8 and BMP4 expression when the animals were castrated at day 29. These results suggest that the early patterning by SHH is androgen-independent followed by an androgen-dependent window of sensitivity and a sharp rise in SHH expression after androgen withdrawal at day 50.
Collapse
Affiliation(s)
- K Y Chew
- ARC Centre of Excellence in Kangaroo Genomics, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|
24
|
Fernandino JI, Hattori RS, Kishii A, Strüssmann CA, Somoza GM. The cortisol and androgen pathways cross talk in high temperature-induced masculinization: the 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology 2012; 153:6003-11. [PMID: 23041673 DOI: 10.1210/en.2012-1517] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many ectotherm species the gonadal fate is modulated by temperature early in life [temperature-dependent sex determination (TSD)] but the transducer mechanism between temperature and gonadal differentiation is still elusive. We have recently shown that cortisol, the glucocorticoid stress-related hormone in vertebrates, is involved in the TSD process of pejerrey, Odontesthes bonariensis. Particularly, all larvae exposed to a male-producing temperature (MPT, 29 C) after hatching showed increased whole-body cortisol and 11-ketotestosterone (11-KT; the main bioactive androgen in fish) levels and developed as males. Moreover, cortisol administration at an intermediate, mixed sex-producing temperature (MixPT, 24 C) caused increases in 11-KT and in the frequency of males, suggesting a relation between this glucocorticoid and androgens during the masculinization process. In order to clarify the link between stress and masculinization, the expression of hydroxysteroid dehydrogenase (hsd)11b2, glucocorticoid receptors gr1 and gr2, and androgen receptors ar1 and ar2 was analyzed by quantitative real time PCR and in situ hybridization in larvae reared at MPT, MixPT, and female-producing temperature (FPT, 17 C) during the sex determination period. We also analyzed the effects of cortisol treatment in larvae reared at MixPT and in adult testicular explants incubated in vitro. MPT and cortisol treatment produced significant increases in hsd11b2 mRNA expression. Also, gonadal explants incubated in the presence of cortisol showed increases of 11-KT levels in the medium. Taken together these results suggest that cortisol promotes 11-KT production during high temperature-induced masculinization by modulation of hsd11b2 expression and thus drives the morphogenesis of the testes.
Collapse
Affiliation(s)
- Juan Ignacio Fernandino
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Chascomús, B7130IWA Argentina
| | | | | | | | | |
Collapse
|
25
|
Aguila S, Castillo-Briceño P, Sánchez M, Cabas I, García-Alcázar A, Meseguer J, Mulero V, García-Ayala A. Specific and non-overlapping functions of testosterone and 11-ketotestosterone in the regulation of professional phagocyte responses in the teleost fish gilthead seabream. Mol Immunol 2012; 53:218-26. [PMID: 22960553 DOI: 10.1016/j.molimm.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022]
Abstract
Sex hormones, both estrogens and androgens, have a strong impact on immunity in mammals. In fish, the role of androgens in immunity has received little attention and contradictory conclusions have been obtained. However, it is well known that sex steroids are involved in fish growth, osmoregulation and gonad remodelation. In this study, we examine the in vitro effects of testosterone and 11-ketotestosterone, the two main fish androgens, on the professional phagocytes of the teleost fish gilthead seabream (Sparus aurata L.). Although both testosterone and 11-ketotestosterone failed to modulate the respiratory burst of seabream phagocytes, testosterone but not 11-ketotestosterone was able to increase the phagocytic ability of non-activated phagocytes. Curiously, 11-ketotestosterone was more powerful than testosterone at inducing the expression of its own receptor, namely androgen receptor b (ARb), in acidophilic granulocytes (AGs), but none of them affected the basal ARb expression levels in macrophages (MØ). Furthermore, although physiological concentrations of testosterone exerted a pro-inflammatory effect on both AGs and MØs, 11-ketotestosterone showed an anti-inflammatory effect in AGs and a strong pro-inflammatory effect in MØs. Interestingly, both androgens modulated the expression of toll-like receptors in these two immune cell types, suggesting that androgens might regulate the sensitivity of phagocytes to pathogens and damage signals. Testosterone and 11-ketotestosterone have a competitive effect, at least, on the modulation of the expression of some genes. Therefore, our results show for the first time a non-overlapping role for testosterone and 11-ketotestosterone in the regulation of professional phagocyte functions in fish.
Collapse
Affiliation(s)
- S Aguila
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|