1
|
Yuan T, Ni P, Zhang Z, Wu D, Sun G, Zhang H, Chen B, Wang X, Cheng Z. Targeting BET proteins inhibited the growth of non-small cell lung carcinoma through downregulation of Met expression. Cell Biol Int 2023; 47:622-633. [PMID: 36448366 DOI: 10.1002/cbin.11962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
Hepatocyte growth factor receptor (HGFR or Met) upregulation has been proven to play important roles in non-small cell lung carcinoma (NSCLC). Interestingly, chemoresistance against epidermal growth factor receptor (EGFR) inhibitors including erlotinib and gefitinib was also related to Met. Targeting bromodomain and extra terminal domain (BET) proteins, especially BRD4, has shown inhibitory effects on lung cancer, but the mechanism is unclear. Herein, we found that JQ1 (BET inhibitor) suppressed NSCLC cell growth, reduced the Met expression, and contributed to inactivation of PI3K/Akt and MAPK/ERK pathways. Moreover, another BET protein inhibitor I-BET151, or BRD4 depletion, also inhibited NSCLC cell growth and downregulated Met. JQ1 inhibited HGF-induced cell growth and Met/PI3K/Akt activation, also inhibited A549 tumor growth in xenograft mouse models, in parallel with Met downregulation. Moreover, JQ1 inhibited the growth of paired erlotinib-sensitive and resistant HCC827 cells in parallel with Met downregulation and PI3K/Akt signaling inactivation. JQ1 also exerted inhibitory influences on the growth of erlotinib-sensitive and resistant HCC827 tumors in xenograft mouse models. These results suggested that targeting BET proteins inhibited NSCLC via downregulating Met and inactivating PI3K/AKT pathway. Our findings reveal a novel mechanism of BET proteins implicated in NSCLC progression with Met taken into consideration.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurology, Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, Jiangsu, China
| | - Ping Ni
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuhao Zhang
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Geng Sun
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haijun Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhixiang Cheng
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Kamble PR, Breed AA, Pawar A, Kasle G, Pathak BR. Prognostic utility of the ovarian cancer secretome: a systematic investigation. Arch Gynecol Obstet 2022; 306:639-662. [PMID: 35083554 DOI: 10.1007/s00404-021-06361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ovarian cancer is usually detected at an advanced stage with frequent recurrence. The recurrence-free survival and overall survival is influenced by the age at diagnosis, tumor stage and histological subtype. Nonetheless, quantifiable prognostic biomarkers are needed for early identification of the high-risk patients and for personalized medicine. Several studies link tumor-specific dysregulated expression of certain proteins with ovarian cancer prognosis. However, careful investigation of presence of these prognostically relevant proteins in ovarian cancer secretome is lacking. OBJECTIVE To critically analyze the recent published data on prognostically relevant proteins for ovarian cancer and to carefully search how many of them are reported in the published ovarian cancer secretome datasets. DESIGN A search for relevant studies in the past 2 years was conducted in PubMed and a comprehensive list of proteins associated with the ovarian cancer prognosis was prepared. These were cross-referred to the published ovarian cancer secretome profiles. The proteins identified in the secretome were further shortlisted based on a scoring strategy employing stringent criteria. RESULTS A panel of seven promising secretory biomarkers associated with ovarian cancer prognosis is proposed. CONCLUSION Scanning the ovarian cancer secretome datasets provides the opportunity to identify if tumor-specific biomarkers could be tested as secretory biomarkers. Detecting their levels in the body fluid would be more advantageous than evaluating the expression in the tissue, since it could be monitored multiple times over the course of the disease to have a better judgment of the prognosis and response to therapy.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Apoorva Pawar
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Grishma Kasle
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
- Division of Biological Sciences, IISER, Kolkata, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
3
|
Ovulation sources coagulation protease cascade and hepatocyte growth factor to support physiological growth and malignant transformation. Neoplasia 2021; 23:1123-1136. [PMID: 34688971 PMCID: PMC8550993 DOI: 10.1016/j.neo.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Ovulatory follicular fluid exerts a long-lasting transformation activity covering throughout the ovulation cycle. The ovulation injury-coagulation proteases-hepatocyte growth factor (HGF) cascade is responsible for the sustained activity. Ovulation sources HGF into the peritoneal cavity, then into the blood circulation. This coagulation-HGF cascade promotes the transformation of fallopian tube epithelial cells and ovarian cancer cells. Physiologically, it promotes the growth of the corpus luteum and injured epithelium after ovulation.
The fallopian tube fimbrial epithelium, which is exposed to the follicular fluid (FF) contents of ovulation, is regarded as the main origin of ovarian high-grade serous carcinoma. Previously, we found that growth factors in FF, such as IGF2, are responsible for the malignant transformation of fallopian tube epithelium. However, ovulation is a monthly transient event, whereas carcinogenesis requires continuous, long-term exposure. Here, we found the transformation activity of FF sustained for more than 30 days after drainage into the peritoneal fluid (PF). Hepatocyte growth factor (HGF), activated through the ovulation injury-tissue factor–thrombin–HGF activator (HGFA)–HGF cleavage cascade confers a sustained transformation activity to fallopian tube epithelium, high-grade serous carcinoma. Physiologically, the high reserve of the coagulation-HGF cascade sources a sustained level of HGF in PF, then to the blood circulation. This HGF axis promotes the growth of the corpus luteum and repair of tissue injury after ovulation.
Collapse
|
4
|
Sun Y, Liu G. Endometriosis-associated Ovarian Clear Cell Carcinoma: A Special Entity? J Cancer 2021; 12:6773-6786. [PMID: 34659566 PMCID: PMC8518018 DOI: 10.7150/jca.61107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent disease, which serves as a precursor of ovarian cancer, especially clear cell carcinoma (OCCC) and endometrial carcinoma. Although micro-environmental factors such as oxidative stress, immune cell dysfunction, inflammation, steroid hormones, and stem cells required for malignant transformation have been found in endometriosis, the exact carcinogenic mechanism remains unclear. Recent research suggest that many putative driver genes and aberrant pathways including ARID1A mutations, PIK3CA mutations, MET activation, HNF-1β activation, and miRNAs dysfunction, play crucial roles in the malignant transformation of endometriosis to OCCC. The clinical features of OCCC are different from other histological types. Patients usually present with a large, unilateral pelvic mass, and occasionally have thromboembolic vascular complications. OCCC patients are easier to be resistant to chemotherapy, have a worse prognosis, and are usually difficult to treat. To improve the survival of OCCC patients, it is necessary to better understand its specific carcinogenic mechanism and explore new treatment strategy, including molecular target.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| |
Collapse
|
5
|
Klotz DM, Link T, Wimberger P, Kuhlmann JD. Prognostic relevance of longitudinal HGF levels in serum of patients with ovarian cancer. Mol Oncol 2021; 15:3626-3638. [PMID: 33738970 PMCID: PMC8637578 DOI: 10.1002/1878-0261.12949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pleiotropic protein hepatocyte growth factor (HGF) is the only known ligand of the tyrosine kinase mesenchymal–epithelial transition (cMET) receptor. The HGF/cMET pathway mediates invasion and migration of ovarian cancer cells, and upregulation of HGF/cMET pathway components has been associated with poor prognosis. This study investigated the clinical relevance of circulating HGF in serum of patients with ovarian cancer. Serum HGF (sHGF) was determined by enzyme‐linked immunosorbent assay in a total of 471 serum samples from 82 healthy controls and 113 patients with ovarian cancer (88.5% with ≥ FIGO III). Patient samples were collected at primary diagnosis and at four follow‐up time points throughout treatment and at disease recurrence. Patients with ovarian cancer showed elevated median sHGF levels at primary diagnosis, and sHGF levels transiently increased after surgery and normalized in the course of chemotherapy, even dropping below initial baseline. Higher levels of sHGF were an independent predictor for shorter overall survival (OS) (a) at primary diagnosis (HR = 0.41, 95% CI: 0.22–0.78, P = 0.006), (b) at longitudinal follow‐up time points (after surgery and before/during/after chemotherapy), (c) along the patients’ individual dynamics (HR = 0.21, 95% CI: 0.07–0.63, P = 0.005), and (d) among a subgroup analysis of patients with BRCA1/2 wild‐type ovarian cancer. This is the first study proposing sHGF as an independent prognostic biomarker for ovarian cancer at primary diagnosis and in the course of platinum‐based chemotherapy, irrespective of the postoperative residual disease after surgical debulking. sHGF could be implemented into clinical diagnostics as a CA125 auxiliary tumor marker for individualized prognosis stratification and sHGF‐guided therapy monitoring.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,Dresden and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
6
|
Dong X, Yuan L, Yao L. Recurrence of ovarian squamous cell carcinoma with MET gene copy number variation: a case report and review of literature. J Ovarian Res 2020; 13:62. [PMID: 32475345 PMCID: PMC7262756 DOI: 10.1186/s13048-020-00659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/28/2020] [Indexed: 12/04/2022] Open
Abstract
Background Malignant transformation such as ovarian squamous cell carcinoma (SCC) in ovarian mature cystic teratoma (OMCT) is a rare tumor. The gene mutation of ovarian SCC remains unclear. We herein report a recurrent case of ovarian squamous cell carcinoma with MET gene copy number variation. Case presentation A 60-year-old woman presented with recurrence of ovarian SCC 8 months after primary surgery. Adhesiolysis, right abdominal wall mass excision, prosthetics, enterectomy, enterostomy and partial cystectomy were performed by laparoscope. Pathologic examination demonstrated metastatic squamous cell carcinoma in ileocecus, rectum and abdominal wall muscle. MET gene copy number was elevated with copy number of six in this case. Postoperatively, the patient was treated with four cycles of combination chemotherapy with docetaxel and carboplatin. The patient was free of disease at 20 months’ follow-up. Conclusions Optimal cytoreductive surgery combined with platinum-based chemotherapy is recommended currently for not only primary tumor but also recurrence. For patients with malignant transformation in OMCT, prompt diagnosis and individualized treatment are crucial for better prognosis. Increased copy number of MET may be correlated with her poor PFS and can be a potential therapeutic target for this case.
Collapse
Affiliation(s)
- Xuhui Dong
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Yangpu District, Shanghai, 200090, People's Republic of China
| | - Lei Yuan
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Yangpu District, Shanghai, 200090, People's Republic of China
| | - Liangqing Yao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Yangpu District, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
7
|
Kim JH, Jang HJ, Kim HS, Kim BJ, Park SH. Prognostic impact of high c-Met expression in ovarian cancer: a meta-analysis. J Cancer 2018; 9:3427-3434. [PMID: 30310499 PMCID: PMC6171012 DOI: 10.7150/jca.26071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
High c-Met expression has been observed in epithelial ovarian cancer (EOC). However, its clinicopathological impacts remain controversial. We conducted this meta-analysis to evaluate the pathologic and prognostic significance of c-Met overexpression in patients with EOC. A systematic computerized search of the electronic databases PubMed, PMC, EMBASE, and Google scholar (up to April 2018) was carried out. From seven studies, 568 patients with EOC were included in the meta-analysis. Although there was no statistical significance, EOCs with c-Met overexpression tended to show higher FIGO stage (III-IV) (odds ratio = 2.18, 95% confidence interval: 0.86-5.53, p = 0.10) and higher rate of lymph node metastasis (odds ratio = 3.05, 95% confidence interval: 0.85-10.98, p = 0.09), compared with tumors with low c-Met expression. In terms of prognosis, patients with c-Met-high EOC showed significantly worse survival than those with c-Met-low tumor (hazard ratio = 2.11, 95% confidence interval: 1.51-2.94, p < 0.0001). In conclusion, this meta-analysis indicates that high c-Met expression represents an adverse prognostic marker for patients with EOC.
Collapse
Affiliation(s)
- Jung Han Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyun Joo Jang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bum Jun Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam, Gyeonggi-Do, Republic of Korea
| | - Sung Ho Park
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Spatial regulation of signaling by the coordinated action of the protein tyrosine kinases MET and FER. Cell Signal 2018; 50:100-110. [PMID: 29920310 DOI: 10.1016/j.cellsig.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
A critical aspect of understanding the regulation of signal transduction is not only to identify the protein-protein interactions that govern assembly of signaling pathways, but also to understand how those pathways are regulated in time and space. In this report, we have applied both gain-of-function and loss-of-function analyses to assess the role of the non-receptor protein tyrosine kinase FER in activation of the HGF Receptor protein tyrosine kinase MET. Overexpression of FER led to direct phosphorylation of several signaling sites in MET, including Tyr1349, but not the activation loop residues Tyr1234/5; in contrast, suppression of FER by RNAi revealed that phosphorylation of both a C-terminal signaling site (Tyr1349) and the activation loop (Tyr1234/5) were influenced by the function of this kinase. Adaptin β, a component of the adaptor protein complex 2 (AP-2) that links clathrin to receptors in coated vesicles, was recruited to MET following FER-mediated phosphorylation. Furthermore, we provide evidence to support a role of FER in maintaining plasma membrane distribution of MET and thereby delaying protein-tyrosine phosphatase PTP1B-mediated inactivation of the receptor. Simultaneous up-regulation of FER and down-regulation of PTP1B observed in ovarian carcinoma-derived cell lines would be expected to contribute to persistent activation of HGF-MET signaling, suggesting that targeting of both FER and MET may be an effective strategy for therapeutic intervention in ovarian cancer.
Collapse
|
9
|
Wang W, Dong J, Wang M, Yao S, Tian X, Cui X, Fu S, Zhang S. miR-148a-3p suppresses epithelial ovarian cancer progression primarily by targeting c-Met. Oncol Lett 2018; 15:6131-6136. [PMID: 29616095 PMCID: PMC5876423 DOI: 10.3892/ol.2018.8110] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/28/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that modulate post-transcriptional gene expression. It has been demonstrated that various miRNAs may be expressed at different levels in different types of tumors. The present study assessed the role of microRNA-148a-3p (miR-148a-3p) in epithelial ovarian cancer (EOC). The results demonstrated that miR-148a-3p was decreased in EOC tissues and that a lower miRa-148-3p concentration was associated with a higher overall survival rate. Transfection of miR-148a-3p suppressed the invasive and proliferative capacity of SKOV3 cells. The induced overexpression of miR-148a-3p significantly inhibited the relative luciferase activity of the pmirGLO-c-Met-3'untranslated region compared with an empty vector. In addition, c-Met silencing led to a decrease in the invasive and proliferative capacity of EOC cells. The inhibition of miR-148a-3p did not increase the invasiveness of SKOV3 cells, even when c-Met was silenced. To the best of our knowledge, the present study is the first to demonstrate that miR-148a-3p expression is decreased in EOC cancer tissues and cell lines. The present study therefore demonstrated that miR-148a-3p may serve as a tumor suppressor in EOC by targeting c-Met.
Collapse
Affiliation(s)
- Wen Wang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Dong
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Maoxiu Wang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Shujuan Yao
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Xiangyu Tian
- Department of Medical Imaging, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Xiujuan Cui
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Shijie Fu
- Department of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
10
|
Moran-Jones K. The Therapeutic Potential of Targeting the HGF/cMET Axis in Ovarian Cancer. Mol Diagn Ther 2017; 20:199-212. [PMID: 27139908 DOI: 10.1007/s40291-016-0201-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Survival rates for ovarian cancer have remained relatively stable for the past 2 decades despite advances in surgical techniques and cytotoxic chemotherapeutics, indicating a requirement for better therapies. One pathway currently proposed for targeting is the HGF/cMET pathway. Upregulated in a number of tumour types, cMET is a tyrosine kinase receptor expressed on epithelial cells. In ovarian cancer, it has been identified as highly expressed in the four major subtypes, with expression estimates ranging from 11 to 68 % of cases. HGF, the only known ligand for cMET, is found at high levels in both serum and ascites in women with ovarian cancer, and is proposed to induce both migration and metastasis. However, clinically validated biomarkers are not yet available for either HGF or cMET, preventing a clear understanding of the true rate of overexpression, or its correlation with prognosis. Despite this, a number of agents against HGF and cMET are currently being investigated in clinical trials for multiple tumour types, including ovarian. However, a lack of patient selection, biomarker usage, and post hoc analysis correlating response with expression has resulted in the majority of these trials showing little beneficial effect from these agents, indicating that additional research is required to determine their usefulness in patients with ovarian cancer.
Collapse
Affiliation(s)
- Kim Moran-Jones
- Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Rd, Glasgow, G61 1QH, UK. .,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria St, Sydney, NSW, 2010, Australia.
| |
Collapse
|
11
|
Fan G, Zhang S, Gao Y, Greer PA, Tonks NK. HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer. Genes Dev 2017; 30:1542-57. [PMID: 27401557 PMCID: PMC4949327 DOI: 10.1101/gad.284166.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
In this study, Fan et al. report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase FER. The findings show that levels of FER were elevated in ovarian cancer cell lines and that loss of FER impaired the metastasis of ovarian cancer cells in vivo, providing new insights into signaling events that underlie metastasis in ovarian cancer cells. Ovarian cancer cells disseminate readily within the peritoneal cavity, which promotes metastasis, and are often resistant to chemotherapy. Ovarian cancer patients tend to present with advanced disease, which also limits treatment options; consequently, new therapies are required. The oncoprotein tyrosine kinase MET, which is the receptor for hepatocyte growth factor (HGF), has been implicated in ovarian tumorigenesis and has been the subject of extensive drug development efforts. Here, we report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase feline sarcoma-related (FER). We demonstrated that the levels of FER were elevated in ovarian cancer cell lines relative to those in immortalized normal surface epithelial cells and that suppression of FER attenuated the motility and invasive properties of these cancer cells. Furthermore, loss of FER impaired the metastasis of ovarian cancer cells in vivo. Mechanistically, we demonstrated that FER phosphorylated a signaling site in MET: Tyr1349. This enhanced activation of RAC1/PAK1 and promoted a kinase-independent scaffolding function that led to recruitment and phosphorylation of GAB1 and the specific activation of the SHP2–ERK signaling pathway. Overall, this analysis provides new insights into signaling events that underlie metastasis in ovarian cancer cells, consistent with a prometastatic role of FER and highlighting its potential as a novel therapeutic target for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yan Gao
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Peter A Greer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
12
|
Thibault B, Jean-Claude B. Dasatinib + Gefitinib, a non platinum-based combination with enhanced growth inhibitory, anti-migratory and anti-invasive potency against human ovarian cancer cells. J Ovarian Res 2017; 10:31. [PMID: 28446239 PMCID: PMC5405511 DOI: 10.1186/s13048-017-0319-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer is the leading cause of death for gynecological cancers and the 6th cause of women cancer death in developed countries. The late stage detection, the peritoneal dissemination and the acquisition of resistance against carboplatin are the main reasons to explain this poor prognosis and strengthen the need of alternative treatments to improve the management of ovarian cancer and/or to sensitize tumors to platinum salts. Epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (Met) and cellular Src kinase (c-Src) are crucial kinases implied in ovarian tumor growth, survival, invasion and resistance to carboplatin. Their expression is increased in advanced ovarian cancers and is correlated with poor prognosis. Despite a clear potential in inhibiting these proteins in ovarian cancer, as a single agent or in combination with a carboplatin treatment, we need to target kinases in tandem because of their capacity to trigger compensatory pathways that synergize to promote drug resistance. METHODS Here we target EGFR, c-Src and Met individually or in combination with carboplatin, using Gefitinib, Dasatinib and Crizotinib respectively, in a panel of carboplatin-sensitive (OVCAR-3, IGROV-1 and A2780) and carboplatin-resistant cells (SKOV-3 and EFO-21). We studied the ability of the most potent combination to induce apoptosis, regulate migration, invasion and to modulate the activation of proliferation and survival proteins. RESULTS Crizotinib, Dasatinib and Gefitinib, alone or in combination with carboplatin, showed a cell-specific cytotoxic synergy in ovarian cancer cells. The Dasatinib plus Gefitinib combination was synergistic in OVCAR-3, SKOV-3 and, in IGROV-1 cells (high concentrations). This combination was unable to induce apoptosis but suppressed cell migration, invasion and the activation of EGFR, Erk, c-Src and Akt compared to single treatments. CONCLUSIONS Combining carboplatin with kinase inhibitors lead to synergistic interactions in a cell-specific manner. Unlike platinum-based combinations, mixing Dasatinib with Gefitinib led to cytotoxic activity, inhibition of cell migration and invasion. Thus, the Dasatinib + Gefitinib combination presents anti-tumour properties that are superior to those of platinum-based combinations, indicating that it may well represent a promising new treatment modality to be tested in the clinic.
Collapse
Affiliation(s)
- Benoît Thibault
- Research Institute - McGill University Health Center (MUHC), 1001 Décarie Blvd, Block E, Montreal, QC, H4A 3J1, Canada.,Present Address: INSERM - Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, Toulouse, France
| | - Bertrand Jean-Claude
- Research Institute - McGill University Health Center (MUHC), 1001 Décarie Blvd, Block E, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
13
|
The gene copy number of c-MET has a significant impact on progression-free survival in Korean patients with ovarian carcinoma. Hum Pathol 2017; 64:98-105. [PMID: 28428108 DOI: 10.1016/j.humpath.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/18/2017] [Accepted: 04/02/2017] [Indexed: 11/20/2022]
Abstract
The aim of this study was to compare the protein overexpression and gene copy number (GCN) of c-MET in ovarian carcinoma and to assess their prognostic roles in Korean women. MET protein expression and GCN status were determined using immunohistochemistry (IHC) and silver in situ hybridization, respectively, in 105 ovarian carcinomas comprising 63 serous, 12 mucinous, 20 clear cell, and 10 endometrioid carcinomas. All cases had been treated and followed up at a single institute in Seoul, Korea. MET protein overexpression was observed in 35 of 105 (33.3%) ovarian carcinomas, with IHC 2+ in 27 and IHC 3+ in 8. The overexpression rates of serous, mucinous, clear cell, and endometrioid carcinomas were 14.3%, 83.3%, 65.0%, and 30.0%, respectively. MET protein overexpression was significant in mucinous carcinoma (P < .001) and was correlated with better progression-free survival (PFS) (P = .028). High polysomy (HP) of chromosome 7 and gene amplification (GA) were found in 10 (9.5%) and 2 (1.9%) of the 105 ovarian carcinomas, respectively. Eleven of 12 cases were high-grade serous carcinomas. The remaining case was clear cell carcinoma. HP and GA were associated with a poor PFS (P = .001). There was no significant correlation between a high level of protein expression and increased GCN of MET (r = -0.127, P = .197). In Korean women, HP and GA of MET were significantly correlated with a poor PFS. MET GCN may serve as a biomarker for poor prognosis in patients with ovarian carcinoma.
Collapse
|
14
|
Basha R, Mohiuddin Z, Rahim A, Ahmad S. Ovarian Cancer and Resistance to Therapies: Clinical and Laboratory Perspectives. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017:511-537. [DOI: 10.1007/978-3-319-48683-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Han K, Chanu P, Jonsson F, Winter H, Bruno R, Jin J, Stroh M. Exposure–Response and Tumor Growth Inhibition Analyses of the Monovalent Anti-c-MET Antibody Onartuzumab (MetMAb) in the Second- and Third-Line Non-Small Cell Lung Cancer. AAPS JOURNAL 2016; 19:527-533. [DOI: 10.1208/s12248-016-0029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
|
16
|
Kwon Y, Godwin AK. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer. Reprod Sci 2016; 24:494-501. [PMID: 27170665 DOI: 10.1177/1933719116648212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.
Collapse
Affiliation(s)
- Youngjoo Kwon
- 1 Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Andrew K Godwin
- 2 Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,3 University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
17
|
Nakamura M, Ono YJ, Kanemura M, Tanaka T, Hayashi M, Terai Y, Ohmichi M. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum. Gynecol Oncol 2015; 139:345-54. [PMID: 26335595 DOI: 10.1016/j.ygyno.2015.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. METHODS HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. RESULTS The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. CONCLUSIONS We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation.
Collapse
Affiliation(s)
- Michihiko Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan
| | - Yoshihiro J Ono
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan.
| | - Masanori Kanemura
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 5650781, Japan
| |
Collapse
|
18
|
Jung KA, Choi BH, Kwak MK. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol 2014; 87:465-76. [PMID: 25534417 DOI: 10.1124/mol.114.096065] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overexpression of BCRP/ABCG2, a xenobiotic efflux transporter, is associated with anticancer drug resistance in tumors. Proto-oncogene c-MET induces cancer cell proliferation, motility, and survival, and its aberrant activation was found to be a prognostic factor in advanced ovarian cancers. In the present study, we investigated the potential crossresistance of doxorubicin-resistant ovarian cancer cells to the pheophorbide a (Pba)-based photodynamic therapy (PDT), and suggest c-MET and BCRP/ABCG2 overexpression as an underlying molecular mechanism. The doxorubicin-resistant A2780 cell line (A2780DR), which was established by incubating A2780 with stepwise increasing concentrations of doxorubicin, showed low levels of cellular Pba accumulation and reactive oxygen species generation, and was more resistant to PDT cytotoxicity than A2780. In a microarray analysis, BCRP/ABCG2 was found to be the only drug transporter whose expression was upregulated in A2780DR; this increase was confirmed by Western blot and immunocytochemical analyses. As functional evidence, the treatment with a BCRP/ABCG2-specific inhibitor reversed A2780DR resistance to both doxorubicin and PDT. We identified that c-MET increase is related to BCRP/ABCG2 activation. The c-MET downstream phosphoinositide 3-kinase (PI3K)/AKT signaling was activated in A2780DR and the inhibition of PI3K/AKT or c-MET repressed resistance to doxorubicin and PDT. Finally, we showed that the pharmacological and genetic inhibition of c-MET diminished levels of BCRP/ABCG2 in A2780DR. Moreover, c-MET inhibition could repress BCRP/ABCG2 expression in breast carcinoma MDA-MB-231 and colon carcinoma HT29, resulting in sensitization to doxorubicin. Collectively, our results provide a novel link of c-MET overexpression to BCRP/ABCG2 activation, suggesting that this mechanism leads to crossresistance to both chemotherapy and PDT.
Collapse
Affiliation(s)
- Kyeong-Ah Jung
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| | - Bo-Hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| |
Collapse
|
19
|
Effective inhibition of c-MET-mediated signaling, growth and migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment. Oncogene 2013; 34:144-53. [PMID: 24362531 PMCID: PMC4067476 DOI: 10.1038/onc.2013.539] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/24/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
The signaling mediated by c-MET and its ligand, hepatocyte growth factor (HGF), has been implicated in malignant progression of cancer involving stimulation of proliferation, invasion, and metastasis. We studied the c-MET/HGF axis as a mediator of tumor-stromal interaction in ovarian cancer and the value of targeting c-MET for the treatment of ovarian cancer. To assess c-MET signaling, we established in vitro models of the microenvironment using primary and immortalized human fibroblasts from normal ovary and tumor samples and epithelial ovarian cancer cell lines. We found that fibroblast from normal ovaries secreted high levels of HGF (1,500 to 3,800 pg/mL) as compared to tumor-derived fibroblasts (undetectable level) and could elicit cellular biological responses on c-MET expressing ovarian cancer cells including increase of cell proliferation and migration (2- to 140-fold increase). HGF secreted by fibroblasts was also found sequestered within extracellular matrices (ECMs) and when degraded this ECM-derived HGF stimulated cancer cell migration (1.5- to 24-fold). In cells containing constitutive c-MET phosphorylation, recombinant HGF and fibroblast-derived HGF negligibly affect c-MET phosphorylation on Tyr1234 and Tyr1003. However, both sources of HGF increased the phosphorylation of c-MET on Tyr1349, the multi-substrate docking site, by more than 6-fold and led to activation of downstream signaling transducers. DCC-2701 (Deciphera Pharmaceuticals, LLC), a novel c-MET/TIE-2/VEGFR inhibitor was able to effectively reduce tumor burden in vivo and block c-MET pTyr1349-mediated signaling, cell growth, and migration as compared to a HGF antagonist in vitro. Importantly, DCC-2701’s anti-proliferative activity was dependent on c-MET activation induced by stromal human fibroblasts and to a lesser extent exogenous HGF. Our data suggest for the first time that DCC-2701 may be superior to HGF antagonists that are in clinical trials and that pTyr1349 levels might be a good indicator of c-MET activation and likely response to targeted therapy as a result of signals from the microenvironment.
Collapse
|
20
|
Longuespée R, Boyon C, Desmons A, Vinatier D, Leblanc E, Farré I, Wisztorski M, Ly K, D'Anjou F, Day R, Fournier I, Salzet M. Ovarian cancer molecular pathology. Cancer Metastasis Rev 2013; 31:713-32. [PMID: 22729278 DOI: 10.1007/s10555-012-9383-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ovarian cancer (OVC) is the fourth leading cause of cancer mortality among women in Europe and the United States. Its early detection is difficult due to the lack of specificity of clinical symptoms. Unfortunately, late diagnosis is a major contributor to the poor survival rates for OVC, which can be attributed to the lack of specific sets of markers. Aside from patients sharing a strong family history of ovarian and breast cancer, including the BRCA1 and BRCA2 tumor suppressor genes mutations, the most used biomarker is the Cancer-antigen 125 (CA-125). CA-125 has a sensitivity of 80 % and a specificity of 97 % in epithelial cancer (stage III or IV). However, its sensitivity is 30 % in stage I cancer, as its increase is linked to several physiological phenomena and benign situations. CA-125 is particularly useful for at-risk population diagnosis and to assess response to treatment. It is clear that alone, CA-125 is inadequate as a biomarker for OVC diagnosis. There is an unmet need to identify additional biomarkers. Novel and more sensitive proteomic strategies such as MALDI mass spectrometry imaging studies are well suited to identify better markers for both diagnosis and prognosis. In the present review, we will focus on such proteomic strategies in regards to OVC signaling pathways, OVC development and escape from the immune response.
Collapse
Affiliation(s)
- Rémi Longuespée
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée, Université Nord de France, EA 4550, Université de Lille 1, Cité Scientifique, 59650 Villeneuve D'Ascq, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-MacGregor M, Tsavachidis S, Meric-Bernstam F, Do KA, Hortobagyi GN, Thompson PA, Mills GB, Bondy ML, Blumenschein GR. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer 2013; 119:7-15. [PMID: 22736407 PMCID: PMC3461089 DOI: 10.1002/cncr.27608] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/09/2012] [Accepted: 02/22/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND The current study was conducted to determine the frequency and association between recurrence-free survival (RFS) and MET and catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevations in patients with early stage breast cancer. METHODS Tumor DNA was extracted from 971 formalin-fixed, paraffin-embedded early breast cancers for molecular inversion probes arrays. Data were segmented using the single-nucleotide polymorphism (SNP)-FASST2 segmentation algorithm. Copy number gains were called when the copy number of each segment was greater than 2.3 or 1.7, respectively. RFS was estimated by the Kaplan-Meier method. Cox proportional hazards models were fit to determine independent associations between copy number and RFS. RESULTS Of the 971 tumors studied, 82 (8.44%) and 134 (13.8%) had an elevation of the MET or PIK3CA copy number, respectively, and 25.6% of tumors with a MET copy number elevation had a PIK3CA copy number elevation. Patients with either a MET or PI3KCA high copy number tended to have poorer prognostic features (larger tumor size, higher tumor grade, and hormone receptor negativity). Both MET and PIK3CA high copy numbers were more likely to occur in patients with triple receptor-negative disease (P = .019 and P < .001, respectively). At a median follow-up of 7.4 years, there were 252 cases of disease recurrence. The 5-year RFS rates were 63.5% and 83.1% for MET high copy number and MET normal/low copy number, respectively (P = .06) and 73.1%, and 82.3% for PIK3CA high copy number and PIK3CA normal/low copy number, respectively (P = .15). A high copy number for either gene was not found to be an independent predictor of RFS. CONCLUSIONS A high copy number of MET or PIK3CA was found to be associated with poorer prognostic features and triple receptor-negative disease. Coamplification was frequent. Patients with tumors with high MET copy numbers tended to have a worse RFS.
Collapse
Affiliation(s)
- Ana M Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang XL, Chen XM, Fang JP, Yang CQ. Lentivirus-mediated RNA silencing of c-Met markedly suppresses peritoneal dissemination of gastric cancer in vitro and in vivo. Acta Pharmacol Sin 2012; 33:513-22. [PMID: 22407230 DOI: 10.1038/aps.2011.205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the expression of c-Met in peritoneal free cancer cells isolated from human gastric cancer ascites, and its relationship to peritoneal dissemination of gastric cancer. METHODS Peritoneal free cancer cells (PFCCs) were isolated from ascites specimens of gastric cancer patients. c-Met expression in PFCCs was detected with immunocytochemistry. In human gastric cancer cell line SGC7901, c-Met expression was detected using RT-PCR and Western blot, and was suppressed with lentivirus-mediated RNAi. The proliferation of SGC7901 cells was measured using MTT assay, and the invasion ability was detected with invasion assay. The adhesion of SGC7901 cells to peritoneum was observed in human peritoneal mesothelial cells (HPMCs) monolayer in vitro and in mice in vivo. RESULTS PFCCs were isolated from ascites of 6 out of 10 gastric cancer patients. c-Met expression in PFCCs was detected in 5 of the 6 gastric cancer patients. In SGC7901 cells, Lentivirus-mediated RNAi significantly reduced both c-Met mRNA and protein expression, which resulted in suppressing the cell proliferation, invasion and adhesion to peritoneum. The expression of α3β1 integrin and E-cadherin was significantly inhibited in SGC7901 cells transfected with Lenti-miRNAc-Met. In the peritoneal dissemination model of gastric cancer, intraperitoneal injection of Lenti-miRNAc-Met markedly suppressed the tumor Progression of SGC7901 cells. CONCLUSION c-Met is expressed in PFCCs from the ascites of gastric cancer patients. Down-regulation of c-Met expression markedly suppresses the multistep process of peritoneal dissemination, thus may be a potential target for the treatment of gastric cancer.
Collapse
|
23
|
Wader KF, Fagerli UM, Børset M, Lydersen S, Hov H, Sundan A, Bofin A, Waage A. Immunohistochemical analysis of hepatocyte growth factor and c-Met in plasma cell disease. Histopathology 2012; 60:443-51. [DOI: 10.1111/j.1365-2559.2011.04112.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Xu C, Plattel W, van den Berg A, Rüther N, Huang X, Wang M, de Jong D, Vos H, van Imhoff G, Viardot A, Möller P, Poppema S, Diepstra A, Visser L. Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma. Haematologica 2011; 97:572-8. [PMID: 22180430 DOI: 10.3324/haematol.2011.056101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The c-Met signaling pathway regulates a variety of biological processes, including proliferation, survival and migration. Deregulated c-Met activation has been implicated in the pathogenesis and prognosis of many human malignancies. We studied the function and prognostic significance of c-Met and hepatocyte growth factor protein expression in patients with classical Hodgkin's lymphoma. DESIGN AND METHODS Expression of c-Met and its ligand, hepatocyte growth factor, were determined by immunohistochemistry. Prognostic values were defined in cohorts of German and Dutch patients with classical Hodgkin's lymphoma. Functional studies were performed on Hodgkin's lymphoma cell lines. RESULTS Expression of c-Met was detected in the tumor cells of 52% (80/153) of the patients and expression of its ligand, hepatocyte growth factor, in 8% (10/121) of the patients. c-Met expression correlated with a 5-year freedom from tumor progression of 94%, whereas lack of expression correlated with a 5-year freedom from tumor progression of 73% (P<0.001) in the combined cohort. In multivariate analysis both c-Met (hazard ratio 5.0, 95% confidence interval 1.9-13.3, P<0.001) and stage (hazard ratio 2.8, 95% confidence interval 1.2-6.4, P=0.014) were independent predictors for freedom from tumor progression. In functional studies activation with hepatocyte growth factor did not affect cell growth, while the c-Met inhibitor SU11274 suppressed cell growth by inducing G2/M cell cycle arrest. CONCLUSIONS Although functional studies showed an oncogenic role of the hepatocyte growth factor/c-Met signaling pathway in cell cycle progression, expression of c-Met in tumor cells from patients with classical Hodgkin's lymphoma strongly correlated with a favorable prognosis in two independent cohorts.
Collapse
Affiliation(s)
- Chuanhui Xu
- Department of Pathology and Medical Biology, University Medical Center Groningen, PO Box 30.001, Hanzeplein 1, HPC EA10, 9700, RB Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goode EL, Chenevix-Trench G, Hartmann LC, Fridley BL, Kalli KR, Vierkant RA, Larson MC, White KL, Keeney GL, Oberg TN, Cunningham JM, Beesley J, Johnatty SE, Chen X, Goodman KE, Armasu SM, Rider DN, Sicotte H, Schmidt MM, Elliott EA, Høgdall E, Kjær SK, Fasching PA, Ekici AB, Lambrechts D, Despierre E, Høgdall C, Lundvall L, Karlan BY, Gross J, Brown R, Chien J, Duggan DJ, Tsai YY, Phelan CM, Kelemen LE, Peethambaram PP, Schildkraut JM, Shridhar V, Sutphen R, Couch FJ, Sellers TA. Assessment of hepatocyte growth factor in ovarian cancer mortality. Cancer Epidemiol Biomarkers Prev 2011; 20:1638-48. [PMID: 21724856 PMCID: PMC3153603 DOI: 10.1158/1055-9965.epi-11-0455] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Invasive ovarian cancer is a significant cause of gynecologic cancer mortality. METHODS We examined whether this mortality was associated with inherited variation in approximately 170 candidate genes/regions [993 single-nucleotide polymorphisms (SNPs)] in a multistage analysis based initially on 312 Mayo Clinic cases (172 deaths). Additional analyses used The Cancer Genome Atlas (TCGA; 127 cases, 62 deaths). For the most compelling gene, we immunostained Mayo Clinic tissue microarrays (TMA, 326 cases) and conducted consortium-based SNP replication analysis (2,560 cases, 1,046 deaths). RESULTS The strongest initial mortality association was in HGF (hepatocyte growth factor) at rs1800793 (HR = 1.7, 95% CI = 1.3-2.2, P = 2.0 × 10(-5)) and with overall variation in HGF (gene-level test, P = 3.7 × 10(-4)). Analysis of TCGA data revealed consistent associations [e.g., rs5745709 (r(2) = 0.96 with rs1800793): TCGA HR = 2.4, CI = 1.4-4.1, P = 2.2 × 10(-3); Mayo Clinic + TCGA HR = 1.6, CI = 1.3-1.9, P = 7.0 × 10(-5)] and suggested genotype correlation with reduced HGF mRNA levels (P = 0.01). In Mayo Clinic TMAs, protein levels of HGF, its receptor MET (C-MET), and phospho-MET were not associated with genotype and did not serve as an intermediate phenotype; however, phospho-MET was associated with reduced mortality (P = 0.01) likely due to higher expression in early-stage disease. In eight additional ovarian cancer case series, HGF rs5745709 was not associated with mortality (HR = 1.0, CI = 0.9-1.1, P = 0.87). CONCLUSIONS We conclude that although HGF signaling is critical to migration, invasion, and apoptosis, it is unlikely that HGF genetic variation plays a major role in ovarian cancer mortality. Furthermore, any minor role is not related to genetically-determined expression. IMPACT Our study shows the utility of multiple data types and multiple data sets in observational studies.
Collapse
Affiliation(s)
- Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tinelli A, Vergara D, Martignago R, Leo G, Malvasi A, Tinelli R, Marsigliante S, Maffia M, Lorusso V. Ovarian cancer biomarkers: a focus on genomic and proteomic findings. Curr Genomics 2011; 8:335-42. [PMID: 19384429 PMCID: PMC2652404 DOI: 10.2174/138920207782446142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/20/2007] [Accepted: 09/26/2007] [Indexed: 12/19/2022] Open
Abstract
Among the gynaecological malignancies, ovarian cancer is one of the neoplastic forms with the poorest prognosis and with the bad overall and disease-free survival rates than other gynaecological cancers; several studies, analyzing clinical data and pathological features on ovarian cancers, have focused on the identification of both diagnostic and prognostic markers for applications in clinical practice. High-throughput technologies have accelerated the process of biomarker discovery, but their validity should be still demonstrated by extensive researches on sensibility and sensitivity of ovarian cancer novel biomarkers, determining whether gene profiling and proteomics could help differentiate between patients with metastatic ovarian cancer and primary ovarian carcinomas, and their potential impact on management. Therefore, considerable interest lies in identifying molecular prognostic biomarkers and protein indicators to guide treatment decisions and clinical follow up; the current state of knowledge about the potential clinical value of gene expression profiling in ovarian cancer is discussed, focusing on three main areas: distinguishing normal ovarian tissue from ovarian tumors, identifying different subtypes of ovarian cancer and identifying cancer likely to be responsive to therapy. In this elaborate we discuss the use of novel molecules, discovered by proteomics and genomics approaches, as potential protein biomarkers in the management of ovarian cancer, to improve the anticancer therapy for malignant ovarian tumors and to monitor the clinical follow up.
Collapse
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynecology, "Vito Fazzi" Hospital, Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tinelli A, Vergara D, Martignago R, Leo G, Pisanò M, Malvasi A. An outlook on ovarian cancer and borderline ovarian tumors: focus on genomic and proteomic findings. Curr Genomics 2011; 10:240-9. [PMID: 19949545 PMCID: PMC2709935 DOI: 10.2174/138920209788488553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/16/2023] Open
Abstract
Among the gynaecological malignancies, ovarian cancer is one of the neoplastic forms with the poorest prognosis and with the bad overall and disease-free survival rates than other gynaecological cancers. Ovarian tumors can be classified on the basis of the cells of origin in epithelial, stromal and germ cell tumors. Epithelial ovarian tumors display great histological heterogeneity and can be further subdivided into benign, intermediate or borderline, and invasive tumors. Several studies on ovarian tumors, have focused on the identification of both diagnostic and prognostic markers for applications in clinical practice. High-throughput technologies have accelerated the process of biomolecular study and genomic discovery; unfortunately, validity of these should be still demonstrated by extensive researches on sensibility and sensitivity of ovarian cancer novel biomarkers, determining whether gene profiling and proteomics could help differentiate between patients with metastatic ovarian cancer and primary ovarian carcinomas, and their potential impact on management. Therefore, considerable interest lies in identifying molecular and protein biomarkers and indicators to guide treatment decisions and clinical follow up. In this review, the current state of knowledge about the genoproteomic and potential clinical value of gene expression profiling in ovarian cancer and ovarian borderline tumors is discussed, focusing on three main areas: distinguishing normal ovarian tissue from ovarian cancers and borderline tumors, identifying different genotypes of ovarian tissue and identifying proteins linked to cancer or tumor development. By these targets, authors focus on the use of novel molecules, developed on the proteomics and genomics researches, as potential protein biomarkers in the management of ovarian cancer or borderline tumor, overlooking on current state of the art and on future perspectives of researches.
Collapse
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynaecology, Vito Fazzi Hospital, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Bishop EA, Lengyel ER, Yamada SD, Montag A, Temkin SM. The expression of hepatocyte growth factor (HGF) and c-Met in uterine serous carcinoma. Gynecol Oncol 2011; 121:218-23. [DOI: 10.1016/j.ygyno.2010.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/13/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
|
29
|
An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis. Neoplasia 2010; 12:1-10. [PMID: 20072648 PMCID: PMC2805878 DOI: 10.1593/neo.09948] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022]
Abstract
Deregulated expression of the hepatocyte growth factor (HGF) receptor, c-Met, in cancer contributes to tumor progression and metastasis. The objective of this study was to determine whether blocking c-Met with an orally available c-Met inhibitor, PF-2341066, reduces tumor burden and increases survival in a xenograft model of ovarian cancer metastasis. Treatment of mice injected interperitoneally with SKOV3ip1 cells showed reduced overall tumor burden. Tumor weight and the number of metastases were reduced by 55% (P < .0005) and 62% (P < .0001), respectively. Treatment also increased median survival from 45 to 62 days (P = .0003). In vitro, PF-2341066 reduced HGF-stimulated phosphorylation of c-Met in the tyrosine kinase domain as well as phosphorylation of the downstream signaling effectors, Akt and Erk. It was apparent that inhibition of the pathways was functionally important because HGF-induced branching morphogenesis was also inhibited. In addition, proliferation and adhesion to various extracellular matrices were inhibited by treatment with PF-2341066, and the activity of matrix metalloproteinases was decreased in tumor tissue from treated mice compared with those receiving vehicle. Overall, these data indicate that PF-2341066 effectively reduces tumor burden in an in vivo model of ovarian cancer metastasis and may be a good therapeutic candidate in the treatment of patients with ovarian cancer.
Collapse
|
30
|
Naran S, Zhang X, Hughes SJ. Inhibition of HGF/MET as therapy for malignancy. Expert Opin Ther Targets 2009; 13:569-81. [DOI: 10.1517/14728220902853917] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Ariztia EV, Lee CJ, Gogoi R, Fishman DA. The Tumor Microenvironment: Key to Early Detection. Crit Rev Clin Lab Sci 2008; 43:393-425. [PMID: 17050079 DOI: 10.1080/10408360600778836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment plays an important role equal to the tumor cell population in the progression of cancer. Consisting of stromal fibroblasts, inflammatory cells, components of the vasculature, normal epithelia, and extracellular matrix, the surrounding environment interacts or "cross-talks" with tumor cells through the release of growth factors, cytokines, proteases, and other bioactive molecules. Tumor growth, formation of new vascular networks, evasion of the host immune system, and invasion and metastasis are processes that co-evolve and become finely optimized and regulated within the tumor microenvironment. However, relatively recent reports on three areas of study have come together to add new levels of complexity to the tumor microenvironment. These include ectodomain shedding of proteins, shedding of membrane-derived vesicles, and novel roles for phospholipids. These dynamic changes that take place in the tumor microenvironment provide new avenues for study and for the early detection of cancer, whereas proteomic technologies provide the means to detect these unique proteins and lipids. Here we review the evolving concepts of the tumor microenvironment that, together with advances in proteomic technologies, hold the promise to facilitate the detection of early-stage cancer.
Collapse
Affiliation(s)
- Edgardo V Ariztia
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
32
|
Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs 2008; 17:997-1011. [DOI: 10.1517/13543784.17.7.997] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Wenqing Yao
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Robert C Newton
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| | - Peggy A Scherle
- Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Wilmington, DE 19880, USA ;
| |
Collapse
|
33
|
The tumor microenvironment and metastatic disease. Clin Exp Metastasis 2008; 26:19-34. [PMID: 18543068 DOI: 10.1007/s10585-008-9182-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/12/2008] [Indexed: 12/15/2022]
Abstract
The microenvironment of solid tumors is a heterogeneous, complex milieu for tumor growth and survival that includes features such as acidic pH, low nutrient levels, elevated interstitial fluid pressure (IFP) and chronic and fluctuating levels of oxygenation that relate to the abnormal vascular network that exists in tumors. The metastatic potential of tumor cells is believed to be regulated by interactions between the tumor cells and their extracellular environment (extracellular matrix (ECM)). These interactions can be modified by the accumulation of genetic changes and by the transient alterations in gene expression induced by the local tumor microenvironment. Clinical and experimental evidence suggests that altered gene expression in response to the hypoxic microenvironment is a contributing factor to increased metastatic efficiency. A number of genes that have been implicated in the metastatic process, involving angiogenesis, intra/extravasation, survival and growth, have been found to be hypoxia-responsive. The various metastatic determinants, genetic and epigenetic, somatic and inherited may serve as precedents for the future identification of more genes that are involved in metastasis. Much research has focused on genetic and molecular properties of the tumor cells themselves. In the present review we discuss the epigenetic and physiological regulation of metastasis and emphasize the need for further studies on the interactions between the pathophysiologic tumor microenvironment and the tumor extracellular matrix.
Collapse
|
34
|
Siraj AK, Bavi P, Abubaker J, Jehan Z, Sultana M, Al-Dayel F, Al-Nuaim A, Alzahrani A, Ahmed M, Al-Sanea O, Uddin S, Al-Kuraya KS. Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. J Pathol 2007; 213:190-199. [PMID: 17703498 DOI: 10.1002/path.2215] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/05/2007] [Indexed: 01/01/2023]
Abstract
In an attempt to find genes that may be of importance in malignant progression of papillary thyroid carcinoma (PTC) in the Middle East, which therefore can be targeted in cancer therapy, we screened and validated the global gene expression in PTC using cDNA expression arrays and immunohistochemistry (IHC) on tumour tissue microarrays. Twenty-nine PTC tissue specimens were compared with seven non-cancerous thyroid specimens by use of cDNA microarray. Results for selected genes were confirmed by quantitative real-time PCR. Protein expression of selected genes was further studied using a tissue microarray consisting of 536 PTCs and compared with histologically non-cancerous tissue samples. One hundred and ninety-six genes were overexpressed in PTC tissues relative to non-cancerous thyroid tissues. The genes that were up-regulated in PTC were involved in cell cycle regulation, cell signaling, and oncogenesis. Among these genes, c-MET was identified by immunohistochemical methods as a protein that is overexpressed in 37% of PTCs and was significantly associated with more aggressive behaviour, eg higher stage, nodal involvement, and tall cell variant (p value = 0.01, 0.01 and 0.04, respectively). In this study, 55% of the PTC cases expressed activated AKT (P-AKT), which suggests that activated AKT may play an important role in PTC tumourigenesis. The fact that most of the PTC cases that had activated AKT showed overexpression of c-MET (p = 0.027) leads us to hypothesize that c-MET may be an alternative mechanism of AKT activation in Middle Eastern PTCs. Finally, our data suggest that c-MET dysregulation is associated with aggressive behaviour and may serve as a molecular biomarker and potential therapeutic target in this disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/secondary
- Child
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis/methods
- Polymerase Chain Reaction/methods
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Thyroid Gland/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Up-Regulation
Collapse
Affiliation(s)
- A K Siraj
- Department of Human Cancer Genomic Research, KFNCCC&R, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leelawat K, Leelawat S, Tepaksorn P, Rattanasinganchan P, Leungchaweng A, Tohtong R, Sobhon P. Involvement of c-Met/hepatocyte growth factor pathway in cholangiocarcinoma cell invasion and its therapeutic inhibition with small interfering RNA specific for c-Met. J Surg Res 2006; 136:78-84. [PMID: 16950403 DOI: 10.1016/j.jss.2006.05.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/05/2006] [Accepted: 05/24/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hepatocyte growth factor receptor (c-Met) plays an important role in many functions of cancer cells. We examined the roles of c-Met and its downstream signaling molecules in cholangiocarcinoma cell lines RMCCA1 and HuCCA1. MATERIALS AND METHODS The expression of c-Met and their signaling cascades were determined in RMCCA1 and HuCCA1 cholangiocarcinoma cell lines by Western blotting. Small interfering RNA (siRNA) specific for c-Met was used to suppress the expression of c-Met. The proliferation, migration and invasion assay were tested in these cholangiocarcinoma cells treated with hepatocyte growth factor (HGF). RESULTS Activation of c-Met with HGF triggered the signaling via the ERK cascade mediated by sequential phosphorylation of MEK1/2 and MAPK and induction of cholangiocarcinoma cell invasion. The expression of c-Met in cholangiocarcinoma cells was suppressed by treatment with small interfering RNA (siRNA) specific for c-Met, and resulted in decrease in phosphorylation of MEK1/2. Furthermore, treatment with siRNA specific for c-Met or MEK inhibitor U0126 inhibited cholangiocarcinoma cell invasion induced by HGF. CONCLUSIONS These results indicated that HGF and c-Met involved in the mechanism of cholangiocarcinoma cell invasion. It implies a potential role for the inhibition of c-Met in the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Kawin Leelawat
- Department of Surgery, Rajavithi Hospital, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|