1
|
Zhang X, Xu W, Wang Z, Liu J, Gong H, Zou W. Cross-talk between cuproptosis and ferroptosis to identify immune landscape in cervical cancer for mRNA vaccines development. Eur J Med Res 2024; 29:602. [PMID: 39696618 DOI: 10.1186/s40001-024-02191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Messenger RNA (mRNA)-based vaccines present a promising avenue for cancer immunotherapy; however, their application in cervical cancer remains unexplored. This study investigated the interplay between the regulated cell death pathways of cuproptosis and ferroptosis to advance the development of mRNA vaccines for cervical cancer. We identified key cuproptosis-related and ferroptosis-related genes (CFRGs) from public mRNA profiles and determined their prognostic significance, mutation frequencies, and effect on the immune landscape. Our analysis revealed two distinct subtypes of cervical cancer associated with CFRGs, with differences in prognosis and immune characteristics. Using LASSO, XGBoost, and SVM-RFE methods, we established a 4-gene prognostic signature (TSC22D3, SQLE, ZNF419, and TFRC) to stratify patients based on their risk and determine its correlation with immune microenvironment, mutation profiles, and treatment responses. RT-qPCR validation confirmed the differential expression of these genes in clinical samples. Our findings identify TSC22D3, SQLE, ZNF419, and TFRC as candidate targets for mRNA vaccine development and offer a potential prognostic tool for personalized cervical cancer treatment.
Collapse
Affiliation(s)
- Xuchao Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Wenwen Xu
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Zi Wang
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Jing Liu
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China
| | - Han Gong
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China.
- Department of HematologyMolecular Biology Research Center, Center for Medical Genetics, School of Life SciencesHunan Province Key Laboratory of Basic and Applied Hematology, The Second Xiangya Hospital of Central South University, Central South University, No. 72 Xiangya Road, Changsha, 410011, China.
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Xu J, Yang W, Xie X, Gu C, Zhao L, Liu F, Zhang N, Bai Y, Liu D, Liu H, Jin X, Meng Y. Identification of 10 differentially expressed genes involved in the tumorigenesis of cervical cancer via next-generation sequencing. PeerJ 2024; 12:e18157. [PMID: 39372720 PMCID: PMC11453159 DOI: 10.7717/peerj.18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background The incidence and mortality of cervical cancer remain high in female malignant tumors worldwide. There is still a lack of diagnostic and prognostic markers for cervical carcinoma. This study aimed to screen differentially expressed genes (DEGs) between normal and cervical cancer tissues to identify candidate genes for further research. Methods Uterine cervical specimens were resected from our clinical patients after radical hysterectomy. Three patients' transcriptomic datasets were built by the next generation sequencing (NGS) results. DEGs were selected through the edgeR and DESeq2 packages in the R environment. Functional enrichment analysis, including GO/DisGeNET/KEGG/Reactome enrichment analysis, was performed. Normal and cervical cancer tissue data from the public databases TCGA and GTEx were collected to compare the expression levels of 10 selected DEGs in tumor and normal tissues. ROC curve and survival analysis were performed to compare the diagnostic and prognostic values of each gene. The expression levels of candidate genes were verified in 15 paired clinical specimens via quantitative real-time polymerase chain reaction. Results There were 875 up-regulated and 1,482 down-regulated genes in cervical cancer samples compared with the paired adjacent normal cervical tissues according to the NGS analysis. The top 10 DEGs included APOD, MASP1, ACKR1, C1QTNF7, SFRP4, HSPB6, GSTM5, IGFBP6, F10 and DCN. GO, DisGeNET and Reactome analyses revealed that the DEGs were related to extracellular matrix and angiogenesis which might influence tumorigenesis. KEGG enrichment showed that PI3K-Akt signaling pathway might be involved in cervical cancer tumorigenesis and progression. The expression levels of selected genes were decreased in tumors in both the public database and our experimental clinical specimens. All the candidate genes showed excellent diagnostic value, and the AUC values exceeded 0.90. Additionally, APOD, ACKR1 and SFRP4 expression levels could help predict the prognosis of patients with cervical cancer. Conclusions In this study, we selected the top 10 DEGs which were down-regulated in cervical cancer tissues. All of them had dramatically diagnostic value. APOD, ACKR1 and SFRP4 were associated with the survivals of cervical cancer. C1QTNF7, HSPB6, GSTM5, IGFBP6 and F10 were first reported to be candidate genes of cervical carcinoma.
Collapse
Affiliation(s)
- Jia Xu
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Yang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Xie
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chenglei Gu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Nina Zhang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuge Bai
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hainan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangshu Jin
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
4
|
Zheng P, Wu Y, Wang Y, Hu F. Disulfiram suppresses epithelial-mesenchymal transition (EMT), migration and invasion in cervical cancer through the HSP90A/NDRG1 pathway. Cell Signal 2023; 109:110771. [PMID: 37329997 DOI: 10.1016/j.cellsig.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Disulfiram (DSF) has proven to be a promising anti-tumor drug in preclinical studies. However, its anti-cancer mechanism has not yet been elucidated. As an activator in tumor metastasis, N-myc downstream regulated gene-1 (NDRG1) is involved in multiple oncogenic signaling pathways and is upregulated by cell differentiation signals in various cancer cell lines. DSF treatment results in a significant reduction in NDRG1, while down-regulated NDRG1 has a pronounced effect on invading cancer cells, as shown in our previous work. Here, in vitro and in vivo experiments confirm that DSF contributes to regulating tumor growth, EMT, and the migration and invasion of cervical cancer. Furthermore, our results show DSF binds to the ATP-binding pocket in the N-terminal domain of HSP90A, thereby affecting the expression of its client protein NDRG1. To our knowledge, this is the first report of DSF binding to HSP90A. In conclusion, this study sheds light on the molecular mechanism by which DSF inhibits tumor growth and metastasis through the HSP90A/NDRG1/β-catenin pathway in cervical cancer cells. These findings provide novel insights into the mechanism underlying DSF function in cancer cells.
Collapse
Affiliation(s)
- Peng Zheng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yaoqin Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuqiong Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fan Hu
- Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
5
|
Wong DCP, Pan CQ, Er SY, Thivakar T, Rachel TZY, Seah SH, Chua PJ, Jiang T, Chew TW, Chaudhuri PK, Mukherjee S, Salim A, Aye TA, Koh CG, Lim CT, Tan PH, Bay BH, Ridley AJ, Low BC. The scaffold RhoGAP protein ARHGAP8/BPGAP1 synchronizes Rac and Rho signaling to facilitate cell migration. Mol Biol Cell 2023; 34:ar13. [PMID: 36598812 PMCID: PMC10011724 DOI: 10.1091/mbc.e21-03-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Rho GTPases regulate cell morphogenesis and motility under the tight control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the underlying mechanism(s) that coordinate their spatiotemporal activities, whether separately or together, remain unclear. We show that a prometastatic RhoGAP, ARHGAP8/BPGAP1, binds to inactive Rac1 and localizes to lamellipodia. BPGAP1 recruits the RacGEF Vav1 under epidermal growth factor (EGF) stimulation and activates Rac1, leading to polarized cell motility, spreading, invadopodium formation, and cell extravasation and promotes cancer cell migration. Importantly, BPGAP1 down-regulates local RhoA activity, which influences Rac1 binding to BPGAP1 and its subsequent activation by Vav1. Our results highlight the importance of BPGAP1 in recruiting Vav1 and Rac1 to promote Rac1 activation for cell motility. BPGAP1 also serves to control the timing of Rac1 activation with RhoA inactivation via its RhoGAP activity. BPGAP1, therefore, acts as a dual-function scaffold that recruits Vav1 to activate Rac1 while inactivating RhoA to synchronize both Rho and Rac signaling in cell motility. As epidermal growth factor receptor (EGFR), Vav1, RhoA, Rac1, and BPGAP1 are all associated with cancer metastasis, BPGAP1 could provide a crucial checkpoint for the EGFR-BPGAP1-Vav1-Rac1-RhoA signaling axis for cancer intervention.
Collapse
Affiliation(s)
| | | | - Shi Yin Er
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - T. Thivakar
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Tan Zi Yi Rachel
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Sock Hong Seah
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, Singapore 117594
| | - Tingting Jiang
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Ti Weng Chew
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Somsubhro Mukherjee
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Agus Salim
- Melbourne School of Population and Global Health and School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Thike Aye Aye
- Department of Pathology, Singapore General Hospital, Singapore 169856
| | - Cheng Gee Koh
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore 169856
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, Singapore 117594
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558
- NUS College, National University of Singapore, Singapore 138593
| |
Collapse
|
6
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
7
|
Sun Q, Wang L, Zhang C, Hong Z, Han Z. Cervical cancer heterogeneity: a constant battle against viruses and drugs. Biomark Res 2022; 10:85. [PMCID: PMC9670454 DOI: 10.1186/s40364-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malignancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor development and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrangements may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor heterogeneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to summarize the conditions of immune clearance and gene integration after different HPV infections and to explore the genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, radiotherapy, biotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Qian Sun
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liangliang Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Cong Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenya Hong
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiqiang Han
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
8
|
Karapetyan L, Gooding W, Li A, Yang X, Knight A, Abushukair HM, Vargas De Stefano D, Sander C, Karunamurthy A, Panelli M, Storkus WJ, Tarhini AA, Kirkwood JM. Sentinel Lymph Node Gene Expression Signature Predicts Recurrence-Free Survival in Cutaneous Melanoma. Cancers (Basel) 2022; 14:4973. [PMID: 36291758 PMCID: PMC9599365 DOI: 10.3390/cancers14204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival (RFS) were selected and a penalized regression function was used to select 12 genes with a non-zero coefficient. A proportional hazards regression model was used to evaluate the association between clinical covariates, gene signature score, and RFS. Among the 45 patients evaluated, 23 (51%) had a positive SLN. Twenty-one (46.7%) patients developed disease recurrence. For the top 25 differentially expressed genes (DEG), 12 non-zero penalized coefficients were estimated (CLGN, C1QTNF3, ADORA3, ARHGAP8, DCTN1, ASPSCR1, CHRFAM7A, ZNF223, PDE6G, CXCL3, HEXIM1, HLA-DRB). This 12-gene signature score was significantly associated with RFS (p < 0.0001) and produced a bootstrap C index of 0.888. In univariate analysis, Breslow thickness, presence of primary tumor ulceration, SLN positivity were each significantly associated with RFS. After simultaneously adjusting for these prognostic factors in relation to the gene signature, the 12-gene score remained a significant independent predictor for RFS (p < 0.0001). This SLN 12-gene signature risk score is associated with melanoma recurrence regardless of SLN status and may be used as a prognostic factor for RFS.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - William Gooding
- Hillman Cancer Center, Biostatistics Facility, Pittsburgh, PA 15213, USA
| | - Aofei Li
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xi Yang
- Department of Medicine, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hassan M. Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Danielle Vargas De Stefano
- Department of Pathology, Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Arivarasan Karunamurthy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Departments of Dermatology and Pathology, Divisions of Dermatopathology and Molecular Genetic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | - Walter J. Storkus
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Deepti P, Pasha A, Kumbhakar DV, Doneti R, Heena SK, Bhanoth S, Poleboyina PK, Yadala R, S D A, Pawar SC. Overexpression of Secreted Phosphoprotein 1 (SPP1) predicts poor survival in HPV positive cervical cancer. Gene X 2022; 824:146381. [PMID: 35271951 DOI: 10.1016/j.gene.2022.146381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is the most prevalent malignant gynecological tumor with limited treatments. The present study describes the role of SPP1 in cancer progression, SPP1 emerged as one of the most overexpressed genes identified through clariom D transcriptome microarray. This investigation aims towards identifying a potential gene with significant prognostic value for detection and early diagnosis of cervical cancer. The elevated expression of SPP1 in cervical squamous cell carcinoma tissue was validated across GEO (Gene Expression Omnibus) microarray data sets, TCGA (The Cancer Genome Atlas), and Oncomine databases. SPP1 expression was found to be prognostically significant, showing association with poor survival rate of the patients. Our study intended to assess the expression of secreted phosphoprotein (SPP1) gene at mRNA and protein levels, and to explore the association of single nucleotide polymorphisms of SPP1 with risk of CC. Further, receiver operating characteristics (ROC) curve was plotted to determine the levels of SPP1 to differentiate CC against control. Results revealed significant (p < 0.01) stage-wise upregulation of SPP1 in CC compared to the normal cervical tissue and this was further confirmed using Immunohistochemistry and real-time PCR. The ROC for SPP1 demonstrated good selective power to differentiate malignant CC and non-malignant cervical tissues. The SPP1 gene -443 T > C promoter polymorphisms are found to be significantly predominant in the disease group and Insilico analysis by the TRANSFAC software confirms its association with loss of STAT6 transcription factor binding site leading to overexpression of the SPP1.
Collapse
Affiliation(s)
- Pasumarthi Deepti
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Divya Vishambhar Kumbhakar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Ravinder Doneti
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, 500095 Telangana, India
| | - Shivaji Bhanoth
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Pavan Kumar Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Rajesh Yadala
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Annapurna S D
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana, India.
| |
Collapse
|
10
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
11
|
Qi X, Fu Y, Sheng J, Zhang M, Zhang M, Wang Y, Li G. A novel ferroptosis-related gene signature for predicting outcomes in cervical cancer. Bioengineered 2021; 12:1813-1825. [PMID: 33989111 PMCID: PMC8806749 DOI: 10.1080/21655979.2021.1925003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis, a newly discovered iron-dependent form of cell death, contributes to various pathologies; however, the prognostic value of ferroptosis-related genes (FRGs) in cervical cancer (CC) remains unclear. Herein, we identified 15 differentially expressed FRGs based on data from The Cancer Genome Atlas database. Ten FRGs that correlated with prognosis were screened by univariate Cox regression analysis. The least absolute shrinkage and selection operator regression model was performed to develop a novel prognostic signature. A four-gene model was built to separate samples into high-risk and low-risk groups. Overall survival was lower in the high-risk group than in the low-risk group (p < 0.05). Receiver operating characteristic curve showed a good diagnostic efficiency of the signature. The risk score was identified as an independent prognostic factor via multivariate Cox regression. A functional analysis further revealed a difference in the immune status between the two risk groups. To conclude, we constructed a novel prognostic signature based on FRGs. Targeting ferroptosis may represent a promising approach for the treatment of CC.
Collapse
Affiliation(s)
- Xingling Qi
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yipeng Fu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jia Sheng
- Department of Nursing, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mingxing Zhang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
13
|
Bosire C, Vidal AC, Smith JS, Jima D, Huang Z, Skaar D, Valea F, Bentley R, Gradison M, Yarnall KSH, Ford A, Overcash F, Murphy SK, Hoyo C. Association between PEG3 DNA methylation and high-grade cervical intraepithelial neoplasia. Infect Agent Cancer 2021; 16:42. [PMID: 34120615 PMCID: PMC8201933 DOI: 10.1186/s13027-021-00382-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms are hypothesized to contribute substantially to the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer, although empirical data are limited. METHODS Women (n = 419) were enrolled at colposcopic evaluation at Duke Medical Center in Durham, North Carolina. Human papillomavirus (HPV) was genotyped by HPV linear array and CIN grade was ascertained by biopsy pathologic review. DNA methylation was measured at differentially methylated regions (DMRs) regulating genomic imprinting of the IGF2/H19, IGF2AS, MESTIT1/MEST, MEG3, PLAGL1/HYMAI, KvDMR and PEG10, PEG3 imprinted domains, using Sequenom-EpiTYPER assays. Logistic regression models were used to evaluate the associations between HPV infection, DMR methylation and CIN risk overall and by race. RESULTS Of the 419 participants, 20 had CIN3+, 52 had CIN2, and 347 had ≤ CIN1 (CIN1 and negative histology). The median participant age was 28.6 (IQR:11.6) and 40% were African American. Overall, we found no statistically significant association between altered methylation in selected DMRs and CIN2+ compared to ≤CIN1. Similarly, there was no significant association between DMR methylation and CIN3+ compared to ≤CIN2. Restricting the outcome to CIN2+ cases that were HR-HPV positive and p16 staining positive, we found a significant association with PEG3 DMR methylation (OR: 1.56 95% CI: 1.03-2.36). CONCLUSIONS While the small number of high-grade CIN cases limit inferences, our findings suggest an association between altered DNA methylation at regulatory regions of PEG3 and high grade CIN in high-risk HPV positive cases.
Collapse
Affiliation(s)
- Claire Bosire
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer S Smith
- Department of Epidemiology, Gillings School of Global Public Health and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dereje Jima
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Rex Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Margaret Gradison
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly S H Yarnall
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Anne Ford
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Francine Overcash
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
14
|
Jiang P, Cao Y, Gao F, Sun W, Liu J, Ma Z, Xie M, Fu S. SNX10 and PTGDS are associated with the progression and prognosis of cervical squamous cell carcinoma. BMC Cancer 2021; 21:694. [PMID: 34116656 PMCID: PMC8196508 DOI: 10.1186/s12885-021-08212-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
Background Cervical cancer (CC) is the primary cause of death in women. This study sought to investigate the potential mechanism and prognostic genes of CC. Methods We downloaded four gene expression profiles from GEO. The RRA method was used to integrate and screen differentially expressed genes (DEGs) between CC and normal samples. Functional analysis was performed by clusterprofiler. We built PPI network by Search Tool for the Retrieval of Interacting Genes Database (STRING) and selected hub modules via Molecular COmplex Detection (MCODE). CMap database was used to find molecules with therapeutic potential for CC. The hub genes were validated in GEO datasets, Gene Expession Profiling Interactive Analysis (GEPIA), immunohistochemistry, Cox regression analysis, TCGA methylation analysis and ONCOMINE were carried out. ROC curve analysis and GSEA were also performed to describe the prognostic significance of hub genes. Results Functional analysis revealed that 147 DEGs were significantly enriched in binding, cell proliferation, transcriptional activity and cell cycle regulation. PPI network screened 30 hub genes, with CDK1 having the strongest connectivity with CC. Cmap showed that apigenin, thioguanine and trichostatin A might be used to treat CC(P < 0.05). Eight genes (APOD, CXCL8, MMP1, MMP3, PLOD2, PTGDS, SNX10 and SPP1) were screened out through GEPIA. Of them, only PTGDS and SNX10 had not appeared in previous studies about CC. The validation in GEO showed that PTGDS showed low expression while SNX10 presented high expression in tumor tissues. Their expression profiles were consistent with the results in immunohistochemistry. ROC curve analysis indicated that the model had a good diagnostic efficiency (AUC = 0.738). GSEA analysis demonstrated that the two genes were correlated with the chemokine signaling pathway (P < 0.05). TCGA methylation analysis showed that patients with lowly-expressed and highly-methylated PTGDS had a worse prognosis than those with highly-expressed and lowly-methylated PTGDS (p = 0.037). Cox regression analysis showed that SNX10 and PTGDS were independent prognostic indicators for OS among CC patients (P = 0.007 and 0.003). Conclusions PTGDS and SNX10 showed abnormal expression and methylation in CC. Both genes might have high prognostic value of CC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08212-w.
Collapse
Affiliation(s)
- Pinping Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ying Cao
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital, Changzhou, 213000, Jiangsu, China
| | - Feng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ziyan Ma
- University of New South Wales, Sydney, Australia
| | - Manxin Xie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Shilong Fu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
15
|
Immunogenomic Identification for Predicting the Prognosis of Cervical Cancer Patients. Int J Mol Sci 2021; 22:ijms22052442. [PMID: 33671013 PMCID: PMC7957482 DOI: 10.3390/ijms22052442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is primarily caused by the infection of high-risk human papillomavirus (hrHPV). Moreover, tumor immune microenvironment plays a significant role in the tumorigenesis of cervical cancer. Therefore, it is necessary to comprehensively identify predictive biomarkers from immunogenomics associated with cervical cancer prognosis. The Cancer Genome Atlas (TCGA) public database has stored abundant sequencing or microarray data, and clinical data, offering a feasible and reliable approach for this study. In the present study, gene profile and clinical data were downloaded from TCGA, and the Immunology Database and Analysis Portal (ImmPort) database. Wilcoxon-test was used to compare the difference in gene expression. Univariate analysis was adopted to identify immune-related genes (IRGs) and transcription factors (TFs) correlated with survival. A prognostic prediction model was established by multivariate cox analysis. The regulatory network was constructed and visualized by correlation analysis and Cytoscape, respectively. Gene functional enrichment analysis was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 204 differentially expressed IRGs were identified, and 22 of them were significantly associated with the survival of cervical cancer. These 22 IRGs were actively involved in the JAK-STAT pathway. A prognostic model based on 10 IRGs (APOD, TFRC, GRN, CSK, HDAC1, NFATC4, BMP6, IL17RD, IL3RA, and LEPR) performed moderately and steadily in squamous cell carcinoma (SCC) patients with FIGO stage I, regardless of the age and grade. Taken together, a risk score model consisting of 10 novel genes capable of predicting survival in SCC patients was identified. Moreover, the regulatory network of IRGs associated with survival (SIRGs) and their TFs provided potential molecular targets.
Collapse
|
16
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
17
|
Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis. Sci Rep 2020; 10:11837. [PMID: 32678267 PMCID: PMC7367306 DOI: 10.1038/s41598-020-68835-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
The zinc-finger protein which regulates apoptosis and cell cycle arrest 1 (Zac1), encoded by Plagl1 gene, is a seven-zinc-finger containing transcription factor belonging to the imprinted genome and is expressed in diverse types of embryonic and adult human tissues. Zac1 is postulated to be a tumor suppressor by inducing cell cycle arrest and apoptosis through interacting and modulating transcriptional activity of p53 as it was named. Correspondingly, the reduction or loss of Zac1 expression is associated with the incidence and progression of several human tumors, including cervical cancer, breast cancer, ovarian cancer, pituitary tumors, and basal cell carcinoma, implying the rationality of utilizing Zac1 expression as novel a biomarker for the evaluation of cervical cancer prognosis. However, to date, it has not been elucidated whether Zac1 expression is related to the prognosis of patients in clinical cervical cancer tumor samples. To address the questions outlined above, we report here a comprehensive investigation of Zac1 expression in biopsies of clinical cervical carcinoma. By analyzing Zac1 expression in various gene expression profiling of cervical cancer databases, we show the association between high Zac1 expression and poor prognosis of cervical cancer. Functional enrichment analysis showed that high Zac1 expression was associated with epithelial-mesenchymal transition (EMT), which was further observed in clinical characteristics and metastatic carcinoma samples using immunohistochemical staining. Correspondingly, hypomethylation of CpG island on Zac1 promoter was observed in samples with high Zac1 expression in cervical carcinoma. Finally, overexpression of Zac1 in a variety of cervical cancer cell lines increase their mesenchymal biomarker expression and migration, strengthening the correlation between cervical cancers with high Zac1 expression and metastasis in clinical. In summary, this research firstly revealed that identifying Zac1 expression or the methylation status of CpG site on Zac1 promoter may provide us with novel indicators for the evaluation of cervical cancer metastasis.
Collapse
|
18
|
Lin M, Ye M, Zhou J, Wang ZP, Zhu X. Recent Advances on the Molecular Mechanism of Cervical Carcinogenesis Based on Systems Biology Technologies. Comput Struct Biotechnol J 2019; 17:241-250. [PMID: 30847042 PMCID: PMC6389684 DOI: 10.1016/j.csbj.2019.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the common malignancies in women worldwide. Exploration of pathogenesis and molecular mechanism of cervical cancer is pivotal for development of effective treatment for this disease. Recently, systems biology approaches based on high-throughput technologies have been carried out to investigate the expression of some genes and proteins in genomics, transcriptomics, proteomics, and metabonomics of cervical cancer. Compared with traditional methods,systems biology technology has been shown to provide large of information regarding prognostic biomarkers and therapeutic targets for cervical cancer. These molecular signatures from system biology technology could be useful to understand the molecular mechanisms of cervical cancer development and progression, and help physicians to design targeted therapeutic strategies for patients with cervical cancer.
Collapse
Affiliation(s)
- Min Lin
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Junhan Zhou
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Z Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
19
|
Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer. Cancer Gene Ther 2019; 26:356-365. [PMID: 30651591 DOI: 10.1038/s41417-019-0078-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022]
|
20
|
Chen X, Xiong D, Ye L, Yang H, Mei S, Wu J, Chen S, Mi R. SPP1 inhibition improves the cisplatin chemo-sensitivity of cervical cancer cell lines. Cancer Chemother Pharmacol 2019; 83:603-613. [PMID: 30627777 DOI: 10.1007/s00280-018-3759-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/15/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Cisplatin (DDP)-based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. In the present study, we aimed to explore the effects of SPP1 on the proliferation and apoptosis rate of the HeLa cervical cancer cell line with cisplatin (DDP) resistance. METHODS Microarray analysis was employed to select differentially expressed genes in cervical cancer tissues and adjacent tissues. Then, we established a DDP-resistant HeLa cell line (res-HeLa). Western blotting was used to detect SPP1 expression in both tissue and cells. After the transfection with si-SPP1 and pcDNA3.1-SPP1, colony formation and MTT assays were applied to detect cell proliferation changes. Flow cytometry was employed to detect the cell apoptosis rate. Western blotting was performed to verify the activation of PI3K/Akt signal pathway proteins related to DDP resistance. RESULTS SPP1 was overexpressed in cervical cancer tissues and cell lines. Compared to normal HeLa cells, expression of SPP1 was significantly enhanced in res-HeLa cells. SPP1 knockdown resulted in repressed proliferation and enhanced apoptosis of res-HeLa cells, which could be reversed by SPP1 overexpression in HeLa cells. Additionally, downregulation of SPP1 improved the DDP sensitivity of HeLa by inhibiting the PI3K/Akt signaling pathway. CONCLUSION SPP1 inhibition could suppress proliferation, induce apoptosis and increase the DDP chemo-sensitivity of HeLa cells.
Collapse
Affiliation(s)
- Xing Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Dongsheng Xiong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Liya Ye
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Huichun Yang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Shuangshuang Mei
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Jinhong Wu
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Shanshan Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Ruoran Mi
- Department of Obstetrics and Gynecology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
21
|
Liu S, Song L, Yao H, Zhang L, Xu D, Li Q, Li Y. Preserved miR-361-3p Expression Is an Independent Prognostic Indicator of Favorable Survival in Cervical Cancer. DISEASE MARKERS 2018; 2018:8949606. [PMID: 30344797 PMCID: PMC6174793 DOI: 10.1155/2018/8949606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023]
Abstract
In this study, we aimed to assess the independent prognostic value of miR-361-3p in terms of overall survival (OS) and recurrence-free survival (RFS) in cervical cancer, as well as its possible regulative network. A retrospective analysis was performed by using data from the Cancer Genome Atlas-Cervical Cancer (TCGA-CESC). Results showed that decreased miR-361-3p expression was associated with lymphovascular invasion and poor responses to primary therapy. The patients with recurrence and the deceased cases had substantially lower miR-361-3p expression compared to their respective controls. By generating Kaplan-Meier curves of OS and RFS, we found that high miR-361-3p expression was associated with better survival outcome. More importantly, univariate and multivariate analysis confirmed that high miR-361-3p expression was an independent indicator of favorable OS (HR: 0.377, 95% CI: 0.233-0.608, p < 0.001) and RFS (HR: 0.398, 95% CI: 0.192-0.825, p = 0.013). By performing bioinformatic analysis, we identified 24 genes that were negatively correlated with miR-361-3p expression. Among the potential targeting genes, SOST, MTA1, TFRC, and YAP1 are involved in some important signaling pathways modulating cervical cancer cell invasion, migration, and drug sensitivity. Therefore, it is meaningful to verify the potential regulative effect of miR-361-3p on the expression of these genes in the future.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Lili Song
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Hairong Yao
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Liang Zhang
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Dongkui Xu
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Qian Li
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| | - Ying Li
- Department of Obstetrics & Gynecology, Cangzhou Central Hospital, Hebei 061001, China
| |
Collapse
|
22
|
Gomih A, Smith JS, North KE, Hudgens MG, Brewster WR, Huang Z, Skaar D, Valea F, Bentley RC, Vidal AC, Maguire RL, Jirtle RL, Murphy SK, Hoyo C. DNA methylation of imprinted gene control regions in the regression of low-grade cervical lesions. Int J Cancer 2018; 143:552-560. [PMID: 29490428 DOI: 10.1002/ijc.31350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
The role of host epigenetic mechanisms in the natural history of low-grade cervical intraepithelial neoplasia (CIN1) is not well characterized. We explored differential methylation of imprinted gene regulatory regions as predictors of the risk of CIN1 regression. A total of 164 patients with CIN1 were recruited from 10 Duke University clinics for the CIN Cohort Study. Participants had colposcopies at enrollment and up to five follow-up visits over 3 years. DNA was extracted from exfoliated cervical cells for methylation quantitation at CpG (cytosine-phosphate-guanine) sites and human papillomavirus (HPV) genotyping. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression to quantify the effect of methylation on CIN1 regression over two consecutive visits, compared to non-regression (persistent CIN1; progression to CIN2+; or CIN1 regression at a single time-point), adjusting for age, race, high-risk HPV (hrHPV), parity, oral contraceptive and smoking status. Median participant age was 26.6 years (range: 21.0-64.4 years), 39% were African-American, and 11% were current smokers. Most participants were hrHPV-positive at enrollment (80.5%). Over one-third of cases regressed (n = 53, 35.1%). Median time-to-regression was 12.6 months (range: 4.5-24.0 months). Probability of CIN1 regression was negatively correlated with methylation at IGF2AS CpG 5 (HR = 0.41; 95% CI = 0.23-0.77) and PEG10 DMR (HR = 0.80; 95% CI = 0.65-0.98). Altered methylation of imprinted IGF2AS and PEG10 DMRs may play a role in the natural history of CIN1. If confirmed in larger studies, further research on imprinted gene DMR methylation is warranted to determine its efficacy as a biomarker for cervical cancer screening.
Collapse
Affiliation(s)
- Ayodele Gomih
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Jennifer S Smith
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Michael G Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC, 27599
| | - Wendy R Brewster
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599.,Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC, 27599
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24101
| | - Rex C Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Rachel L Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
23
|
Chen L, Luan S, Xia B, Liu Y, Gao Y, Yu H, Mu Q, Zhang P, Zhang W, Zhang S, Wei G, Yang M, Li K. Integrated analysis of HPV-mediated immune alterations in cervical cancer. Gynecol Oncol 2018; 149:248-255. [PMID: 29572030 DOI: 10.1016/j.ygyno.2018.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. METHODS 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. RESULTS Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). CONCLUSIONS We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer.
Collapse
Affiliation(s)
- Long Chen
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China.
| | - Shaohong Luan
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Baoguo Xia
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Yansheng Liu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Yuan Gao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Hongyan Yu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Qingling Mu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Weina Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Shengmiao Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Guopeng Wei
- Gezhi Research Lab, Building T1, No.722 Yizhou Avenue, Chengdu 610000, PR China
| | - Min Yang
- Gezhi Research Lab, Building T1, No.722 Yizhou Avenue, Chengdu 610000, PR China
| | - Ke Li
- Gezhi Research Lab, Building T1, No.722 Yizhou Avenue, Chengdu 610000, PR China
| |
Collapse
|
24
|
Zatula A, Dikic A, Mulder C, Sharma A, Vågbø CB, Sousa MML, Waage A, Slupphaug G. Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget 2017; 8:19427-19442. [PMID: 28038447 PMCID: PMC5386695 DOI: 10.18632/oncotarget.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
Plasma cell leukemia is a rare and aggressive plasma cell neoplasm that may either originate de novo (primary PCL) or by leukemic transformation of multiple myeloma (MM) to secondary PCL (sPCL). The prognosis of sPCL is very poor, and currently no standard treatment is available due to lack of prospective clinical studies. In an attempt to elucidate factors contributing to transformation, we have performed super-SILAC quantitative proteome profiling of malignant plasma cells collected from the same patient at both the MM and sPCL stages of the disease. 795 proteins were found to be differentially expressed in the MM and sPCL samples. Gene ontology analysis indicated a metabolic shift towards aerobic glycolysis in sPCL as well as marked down-regulation of enzymes involved in glycan synthesis, potentially mediating altered glycosylation of surface receptors. There was no significant change in overall genomic 5-methylcytosine or 5-hydroxymethylcytosine at the two stages, indicating that epigenetic dysregulation was not a major driver of transformation to sPCL. The present study constitutes the first attempt to provide a comprehensive map of the altered protein expression profile accompanying transformation of MM to sPCL in a single patient, identifying several candidate proteins that can be targeted by currently available small molecule drugs. Our dataset furthermore constitutes a reference dataset for further proteomic analysis of sPCL transformation.
Collapse
Affiliation(s)
- Alexey Zatula
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Aida Dikic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Celine Mulder
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Present address: University of Utrecht, Utrecht, Holland
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Hematology, Department of Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| |
Collapse
|
25
|
Lopes LJS, Tesser-Gamba F, Petrilli AS, de Seixas Alves MT, Garcia-Filho RJ, Toledo SRC. MAPK pathways regulation by DUSP1 in the development of osteosarcoma: Potential markers and therapeutic targets. Mol Carcinog 2017; 56:1630-1641. [DOI: 10.1002/mc.22619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/20/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Luana Joyce Silva Lopes
- Genetics Laboratory, Department of Pediatrics; Pediatric Oncology Institute (IOP/GRAACC/UNIFESP); Federal University of São Paulo; São Paulo Brazil
- Department of Clinical and Experimental Oncology; Federal University of São Paulo; São Paulo Brazil
| | - Francine Tesser-Gamba
- Genetics Laboratory, Department of Pediatrics; Pediatric Oncology Institute (IOP/GRAACC/UNIFESP); Federal University of São Paulo; São Paulo Brazil
| | - Antônio Sérgio Petrilli
- Department of Pediatrics; Pediatric Oncology Institute (IOP/GRAACC/UNIFESP); Federal University of São Paulo; São Paulo Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pathology; Pediatric Oncology Institute (IOP/GRAACC/UNIFESP); Federal University of São Paulo; São Paulo Brazil
| | - Reynaldo Jesus Garcia-Filho
- Department of Orthopedic Surgery and Traumatology; Pediatric Oncology Institute (IOP/GRAACC/UNIFESP); Federal University of São Paulo; São Paulo Brazil
| | - Silvia Regina Caminada Toledo
- Genetics Laboratory, Department of Pediatrics; Pediatric Oncology Institute (IOP/GRAACC/UNIFESP); Federal University of São Paulo; São Paulo Brazil
- Department of Clinical and Experimental Oncology; Federal University of São Paulo; São Paulo Brazil
- Department of Morphology and Genetics; Federal University of São Paulo; São Paulo Brazil
| |
Collapse
|
26
|
BPGAP1 spatially integrates JNK/ERK signaling crosstalk in oncogenesis. Oncogene 2017; 36:3178-3192. [PMID: 28092672 DOI: 10.1038/onc.2016.466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
Simultaneous hyperactivation of stress-activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling cascades has been reported in carcinogenesis. However, how they are integrated to promote oncogenesis remains unknown. By analyzing breast invasive carcinoma database (The Cancer Genome Altas), we found that the mRNA expression levels of both JNK1 and ERK2 are positively correlated with the mRNA level of EEA1, an endosome associated protein, indicating the potential JNK/ERK crosstalk at endosome. Unbiased screen of different endosome-associated Rab GTPases reveals that late endosome serves as a unique platform to integrate JNK/ERK signaling. Furthermore, we identify that BPGAP1 (a BCH domain-containing, Cdc42GAP-like Rho GTPase-activating protein) promotes MEK partner 1 (MP1)-induced ERK activation on late endosome through scaffolding MP1/MEK1 complex. This regulatory function requires phosphorylation of BPGAP1 by JNK at its C terminal tail (Ser424) to unlock its autoinhibitory conformation. Consequently, phosphorylated BPGAP1 facilitates endosomal ERK signaling transduction to the nucleus, driving cell proliferation and transformation via the ERK-Myc-CyclinA axis. BPGAP1 therefore provides a crucial spatiotemporal checkpoint where JNK and MP1/MEK1 work in concert to regulate endosomal and nuclear ERK signaling in cell proliferation control.
Collapse
|
27
|
Liu P, Jiang W, Zhou S, Gao J, Zhang H. Combined Analysis of ChIP Sequencing and Gene Expression Dataset in Breast Cancer. Pathol Oncol Res 2016; 23:361-368. [PMID: 27654269 DOI: 10.1007/s12253-016-0116-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023]
Abstract
Breast cancer is a common malignancy in women and contribute largely to the cancer related death. The purpose of this study is to confirm the roles of GATA3 and identify potential biomarkers of breast cancer. Chromatin Immunoprecipitation combined with high-throughput sequencing (ChIP-Seq) (GSM1642515) and gene expression profiles (GSE24249) were downloaded from the Gene Expression Omnibus (GEO) database. Bowtie2 and MACS2 were used for the mapping and peak calling of the ChIP-Seq data respectively. ChIPseeker, a R bioconductor package was adopted for the annotation of the enriched peaks. For the gene expression profiles, we used affy and limma package to do normalization and differential expression analysis. The genes with fold change >2 and adjusted P-Value <0.05 were screened out. Besides, BETA (Binding and Expression Target Analysis) was used to do the combined analysis of ChIP-Seq and gene expression profiles. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for the functional enrichment analysis of overlapping genes between the target genes and differential expression genes (DEGs). What's more, the protein-protein interaction (PPI) network of the overlapping genes was obtained through the Human Protein Reference Database (HPRD). A total of 46,487 peaks were identified for GATA3 and out of which, 3256 ones were found to located at -3000 ~ 0 bp from the transcription start sites (TSS) of their nearby gene. A total of 236 down- and 343 up-regulated genes were screened out in GATA3 overexpression breast cancer samples compared with those in control. The combined analysis of ChIP-Seq and gene expression dataset showed GATA3 act as a repressor in breast cancer. Besides, 68 overlaps were obtained between the DEGs and genes included in peaks located at -3000 ~ 0 bp from TSS. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to cancer progression and gene regulation were found to be enriched in those overlaps. In the PPI network, NDRG1, JUP and etc. were found to directly interact with large number of genes, which might indicate their important roles in the progression of breast cancer.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Lymphoma, Sino-US Center of Lymphoma and Leukemia, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, China
| | - Wenhua Jiang
- Department of Radiotherapy, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shiyong Zhou
- Department of Lymphoma, Sino-US Center of Lymphoma and Leukemia, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, China
| | - Jun Gao
- Department of Oncology, Hengshui Harrison International Peace Hospital, Hengshui, Hebei, 053000, China
| | - Huilai Zhang
- Department of Lymphoma, Sino-US Center of Lymphoma and Leukemia, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, China.
| |
Collapse
|
28
|
Roychowdhury A, Samadder S, Das P, Mandloi S, Addya S, Chakraborty C, Basu PS, Mondal R, Roy A, Chakrabarti S, Roychoudhury S, Panda CK. Integrative genomic and network analysis identified novel genes associated with the development of advanced cervical squamous cell carcinoma. Biochim Biophys Acta Gen Subj 2016; 1861:2899-2911. [PMID: 27641506 DOI: 10.1016/j.bbagen.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND CSCC is one of the most common cancer affecting women globally. Though it is caused by the infection of hrHPV but long latency period for malignant outcome in only a subset of hrHPV infected women indicates involvement of additional alterations, primarily CNVs. Here, we showed how CNVs played a crucial role in development of advanced tumors (stage III/IV) in Indian patients. METHODS Initially, high-resolution CGH-SNP microarray analysis pointed out frequent CNVs followed by significantly altered genes. After comparison with TCGA dataset, expressions of the genes were checked in three CSCC datasets to identify key genes followed by Ingenuity® Pathway analysis. Then node effect property analysis was applied on the constructed PPI network to rank the key proteins. Finally, validations in independent samples were performed. RESULTS For the first time, frequent chromosomal amplifications at 3q13.13-3q29, 1p36.11-1p31.1, 1q21.1-1q44 and 5p15.33-5p12 followed by common deletions at 11q14.1-11q25, 2q34-2q37.3, 4p16.3-4p12 and 13q13.3-13q14.3 were identified in Indian CSCC patients. Integrative analysis found 78 key genes including several novel ones, which were mostly associated with 'Cancer' and may regulate DNA repair and metabolic pathways. Analysis showed PARP1 and ATR were among the top ranking protein interactors. CONCLUSIONS Frequent amplification and over-expression of ATR and PARP1 were further confirmed in cervical lesions, indicating their association with poor prognosis of advanced CSCC patients. GENERAL SIGNIFICANCE Our novel approach identified precise CNVs along with several novel genes within these loci and showed that PARP1 and ATR, having biologically significant interactions, may be involved in development of advanced CSCC.
Collapse
Affiliation(s)
- Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Pijush Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sapan Mandloi
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Partha Sarathi Basu
- India Screening Group (SCR), Early Detection and Prevention Section (EDP), International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | - Ranajit Mondal
- Department of Gynaecology Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- North Bengal Medical College and Hospital, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
29
|
Croisé P, Houy S, Gand M, Lanoix J, Calco V, Tóth P, Brunaud L, Lomazzi S, Paramithiotis E, Chelsky D, Ory S, Gasman S. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression. Endocr Relat Cancer 2016; 23:281-93. [PMID: 26911374 DOI: 10.1530/erc-15-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
Among small GTPases from the Rho family, Cdc42, RAC, and Rho are well known to mediate a large variety of cellular processes linked with cancer biology through their ability to cycle between an inactive (GDP-bound) and an active (GTP-bound) state. Guanine nucleotide exchange factors (GEFs) stimulate the exchange of GDP for GTP to generate the activated form, whereas the GTPase-activating proteins (GAPs) catalyze GTP hydrolysis, leading to the inactivated form. Modulation of Rho GTPase activity following altered expression of RHO-GEFs and/or RHO-GAPs has already been reported in various human tumors. However, nothing is known about the Rho GTPase activity or the expression of their regulators in human pheochromocytomas, a neuroendocrine tumor (NET) arising from chromaffin cells of the adrenal medulla. In this study, we demonstrate, through an ELISA-based activity assay, that Rac1 and Cdc42 activities decrease in human pheochromocytomas (PCCs) compared with the matched adjacent non-tumor tissue. Furthermore, through quantitative mass spectrometry (MS) approaches, we show that the expression of two RHO-GEF proteins, namely ARHGEF1 and FARP1, is significantly reduced in tumors compared with matched non-tumor tissue, whereas ARHGAP36 expression is increased. Moreover, siRNA-based knockdown of ARHGEF1 and FARP1 in PC12 cells leads to a significant inhibition of Rac1 and Cdc42 activities, respectively. Finally, a principal component analysis (PCA) of our dataset was able to discriminate PCC from non-tumor tissue and indicates a close correlation between Cdc42/Rac1 activity and FARP1/ARHGEF1 expression. Altogether, our findings reveal for the first time the importance of modulation of Rho GTPase activities and expression of their regulators in human PCCs.
Collapse
Affiliation(s)
- Pauline Croisé
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| | - Sébastien Houy
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| | - Mathieu Gand
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| | - Joël Lanoix
- Caprion Proteome, Inc.Montréal, Québec, Canada
| | - Valérie Calco
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| | - Petra Tóth
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| | - Laurent Brunaud
- Service de Chirurgie DigestiveHépato-bilaire et Endocrinienne, CHRU Nancy, Hôpitaux de Brabois, Vandoeuvre les Nancy, France
| | - Sandra Lomazzi
- Centre de Ressources Biologiques (CRB)CHRU Nancy, Hôpitaux de Brabois, Vandoeuvres les Nancy, France
| | | | | | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives (INCI)CNRS UPR 3212, Strasbourg, France
| |
Collapse
|
30
|
Chen B, Li C, Zhang L, Lv J, Tong Y. Screening of biomarkers in cervical squamous cell carcinomas via gene expression profiling. Mol Med Rep 2015; 12:6985-9. [PMID: 26398134 DOI: 10.3892/mmr.2015.4322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, gene expression profiles of high-grade squamous intraepithelial lesions (HSIL) and invasive cervical squamous cell carcinomas (CSCC) were analyzed using bioinformatic tools to identify key genes and potential biomarkers. Analyses of differentially expressed genes (DEGs) were performed for HSIL vs. normal control and invasive CSCC vs. normal control tissues using the Limma package in R. Pathway enrichment analysis was performed using KOBAS. A protein‑protein interaction (PPI) network for the DEGs in invasive CSCC was constructed using String. Functional enrichment analysis was performed for the DEGs in the PPI network using DAVID. Relevant small molecules were predicted using Cmap. A total of 633 and 881 DEGs were identified in HSIL and invasive CSCC, respectively, and the two groups had 305 DEGs in common. Genes associated with the mitogen-activated protein kinase signaling pathway were enriched in the HSIL, while cell cycle-associated genes were over‑represented in invasive CSCC. The PPI network, containing 72 upregulated genes and 434 edges, was illustrated. Functional enrichment analysis showed that the cell cycle was the most significant gene ontology term. A total of six small molecules associated with the pathology of CSCC were identified, including the anti-cancer drug piperlongumine, which showed a negative correlation. The findings of the present study not only enhanced the current understanding of the pathogenesis of CSCC, but may also be a basis for the development of novel therapies.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Chundong Li
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Lei Zhang
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Jiahui Lv
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| | - Ying Tong
- Department of Gynaecology and Obstetrics, General Hospital of The Air Force, Beijing 100142, P.R. China
| |
Collapse
|
31
|
Luo Y, Wu Y, Peng Y, Liu X, Bie J, Li S. Systematic analysis to identify a key role of CDK1 in mediating gene interaction networks in cervical cancer development. Ir J Med Sci 2015; 185:231-9. [PMID: 25786624 DOI: 10.1007/s11845-015-1283-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aims to identify corresponding differentially expressed genes in cervical cancer by comparing gene expression profiles between normal and cervical cancer samples. METHOD To identify differentially expressed genes in cervical cancer, two groups of Affymetrix microarray data available online were analyzed. One group consisted of 43 carcinomatous cervical epithelial cell samples, and the other was composed of 17 healthy cervical epithelial cell samples, both from the Amerindian. R packages-GO.db, KEGG.db and KEGGREST were used to detect GO categories and KEGG pathways with significant overrepresentation in differentially expressed genes comparing with the whole genome. Cytoscape was utilized to construct biological networks. RESULTS By comparing gene expression profile of normal and cervical cancer samples, 122 differentially expressed genes were identified including 46 up-regulated genes and 76 down-regulated genes. Using the identified differentially expressed genes, a large and a small biological network was constructed. In addition, 402 GO biological processes and 9 KEGG pathways were over-represented. Top significant biological processes included cell cycle and cell proliferation. Moreover, top significant KEGG pathways were oocyte meiosis, cell cycle and progesterone-mediated oocyte maturation. Most importantly, CDK1 frequently appeared in these processes and pathways, which indicated its significant role in the progression of cervical cancer. CONCLUSION CDK1 plays a comprehensive role in mediating genetic networks implicated in the progression of cervical cancer. Novel therapeutics targeting CDK1 or its related pathways might help improve prognosis of advanced stage cervical cancer.
Collapse
Affiliation(s)
- Y Luo
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China.
| | - Y Wu
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China
| | - Y Peng
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China
| | - X Liu
- Department of Gynaecology and Obstetrics, Nanchong Central Hospital, North Sichuan Medical College, NO.97 South Renmin Road, Nanchong, 637000, Sichuan, China
| | - J Bie
- Department of Oncology, Nanchong Central Hospital, North Sichuan Medical College, NO.112 Chenshou Road Nanchong, Nanchong, 637000, Sichuan, China
| | - S Li
- Department of Oncology, Nanchong Central Hospital, North Sichuan Medical College, NO.112 Chenshou Road Nanchong, Nanchong, 637000, Sichuan, China
| |
Collapse
|
32
|
Lee HS, Yun JH, Jung J, Yang Y, Kim BJ, Lee SJ, Yoon JH, Moon Y, Kim JM, Kwon YI. Identification of differentially-expressed genes by DNA methylation in cervical cancer. Oncol Lett 2015; 9:1691-1698. [PMID: 25789025 PMCID: PMC4356325 DOI: 10.3892/ol.2015.2917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/08/2014] [Indexed: 01/03/2023] Open
Abstract
To identify novel cervical cancer-related genes that are regulated by DNA methylation, integrated analyses of genome-wide DNA methylation and RNA expression profiles were performed using the normal and tumor regions of tissues from four patients; two with cervical cancer and two with pre-invasive cancer. The present study identified 19 novel cervical cancer-related genes showing differential RNA expression by DNA methylation. A number of the identified genes were novel cervical cancer-related genes and their differential expression was confirmed in a publicly available database. Among the candidate genes, the epigenetic regulation and expression of three genes, CAMK2N1, ALDH1A3 and PPP1R3C, was validated in HeLa cells treated with a demethylating reagent using methylation-specific polymerase chain reaction (PCR) and quantitative PCR, respectively. From these results, the expression of the CAMK2N1, ALDH1A3 and PPP1R3C genes are were shown to be suppressed in cervical cancers by DNA methylation. These genes may be involved in the progression or initiation of cervical cancer.
Collapse
Affiliation(s)
- Heun-Sik Lee
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | - Jun Ho Yun
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | | | - Young Yang
- Center for Women's Disease, Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Bong-Jo Kim
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | - Sung-Jong Lee
- Department of Obstetrics and Gynecology, Saint Vincent's Hospital, the Catholic University, Suwon, Gyeonggi-do 442-723, Republic of Korea
| | - Joo Hee Yoon
- Department of Obstetrics and Gynecology, Saint Vincent's Hospital, the Catholic University, Suwon, Gyeonggi-do 442-723, Republic of Korea
| | - Yong Moon
- Department of Public Health Administration, Namseoul University, Cheonan, Chungcheongnam-do 331-707, Republic of Korea
| | - Jeong-Min Kim
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | - Yong-Il Kwon
- Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul 134-701, Republic of Korea
| |
Collapse
|
33
|
Fukamachi T, Ikeda S, Saito H, Tagawa M, Kobayashi H. Expression of acidosis-dependent genes in human cancer nests. Mol Clin Oncol 2014; 2:1160-1166. [PMID: 25279216 DOI: 10.3892/mco.2014.344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/30/2014] [Indexed: 12/28/2022] Open
Abstract
Previous studies investigating cancer cells cultured at acidic pH have shown that the expression level of ~700 genes were more than two-fold higher than those of the cells cultured in alkaline medium at pH 7.5. The aim of the present study was to confirm whether these acidosis-induced genes are expressed in human cancer tissues. Therefore, 7 genes were selected from our previous study, which encoded interleukin 32 (IL-32), lysosomal H+ transporting ATPase, V0 subunit d2 (ATP6V0D2), tumor necrosis factor receptor superfamily, member 9 (TNFRSF9), amphiregulin, schwannoma-derived growth factor (AREG), v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3), PRR5-ARHGAP8 (LOC553158) and dimethylglycine dehydrogenase (DMGDH), and their expression was examined in human clinical specimens from patients with cancer. In addition, the expression of the gene encoding manganese superoxide dismutase (MnSOD) was examined. The specimens from patients with colon, stomach and renal cancer showed increased MnSOD, IL-32, and TNFRSF9 transcripts compared to those from non-tumorous regions of the same patients. Notably, an elevated expression of ATP6V0D2 was found in the specimens from patients with stomach cancer, whereas the expression was decreased in those from patients with colon and renal cancer. The expression of LOC553158 was upregulated in colon and stomach cancer specimens. These results indicate that the investigation of gene expression under acidic conditions is useful for the development of novel cancer markers and/or chemotherapeutic targets.
Collapse
Affiliation(s)
- Toshihiko Fukamachi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Shunsuke Ikeda
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromi Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba 260-8717, Japan
| | - Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
34
|
Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJR, Sahni S, Richardson DR. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1845:1-19. [PMID: 24269900 DOI: 10.1016/j.bbcan.2013.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.
Collapse
Affiliation(s)
- Bernard A Fang
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Žaklina Kovačević
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Thomas A, Mahantshetty U, Kannan S, Deodhar K, Shrivastava SK, Kumar-Sinha C, Mulherkar R. Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Cancer Med 2013; 2:836-48. [PMID: 24403257 PMCID: PMC3892388 DOI: 10.1002/cam4.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022] Open
Abstract
Cervical cancer is the second most common cancer among women worldwide, with developing countries accounting for >80% of the disease burden. Although in the West, active screening has been instrumental in reducing the incidence of cervical cancer, disease management is hampered due to lack of biomarkers for disease progression and defined therapeutic targets. Here we carried out gene expression profiling of 29 cervical cancer tissues from Indian women, spanning International Federation of Gynaecology and Obstetrics (FIGO) stages of the disease from early lesion (IA and IIA) to progressive stages (IIB and IIIA–B), and identified distinct gene expression signatures. Overall, metabolic pathways, pathways in cancer and signaling pathways were found to be significantly upregulated, while focal adhesion, cytokine–cytokine receptor interaction and WNT signaling were downregulated. Additionally, we identified candidate biomarkers of disease progression such as SPP1, proliferating cell nuclear antigen (PCNA), STK17A, and DUSP1 among others that were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in the samples used for microarray studies as well in an independent set of 34 additional samples. Integrative analysis of our results with other cervical cancer profiling studies could facilitate the development of multiplex diagnostic markers of cervical cancer progression.
Collapse
Affiliation(s)
- Asha Thomas
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Sirab N, Robert G, Fasolo V, Descazeaud A, Vacherot F, de la Taille A, Terry S. Lipidosterolic extract of serenoa repens modulates the expression of inflammation related-genes in benign prostatic hyperplasia epithelial and stromal cells. Int J Mol Sci 2013; 14:14301-20. [PMID: 23846725 PMCID: PMC3742245 DOI: 10.3390/ijms140714301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 12/28/2022] Open
Abstract
Despite the high prevalence of histological Benign Prostatic Hypeplasia (BPH) in elderly men, little is known regarding the molecular mechanisms and networks underlying the development and progression of the disease. Here, we explored the effects of a phytotherapeutic agent, Lipidosterolic extract of the dwarf palm plant Serenoa repens (LSESr), on the mRNA gene expression profiles of two representative models of BPH, BPH1 cell line and primary stromal cells derived from BPH. Treatment of these cells with LSESr significantly altered gene expression patterns as assessed by comparative gene expression profiling on gene chip arrays. The expression changes were manifested three hours following in vitro administration of LSESr, suggesting a rapid action for this compound. Among the genes most consistently affected by LSESr treatment, we found numerous genes that were categorized as part of proliferative, apoptotic, and inflammatory pathways. Validation studies using quantitative real-time PCR confirmed the deregulation of genes known to exhibit key roles in these biological processes including IL1B, IL1A, CXCL6, IL1R1, PTGS2, ALOX5, GAS1, PHLDA1, IL6, IL8, NFkBIZ, NFKB1, TFRC, JUN, CDKN1B, and ERBB3. Subsequent analyses also indicated that LSESr treatment can impede the stimulatory effects of certain proinflammatory cytokines such as IL6, IL17, and IL15 in these cells. These results suggest that LSESr may be useful to treat BPH that manifest inflammation characteristics. This also supports a role for inflammation in BPH presumably by mediating the balance between apoptosis and proliferation.
Collapse
Affiliation(s)
- Nanor Sirab
- INSERM, Unité 955, Equipe 7, Créteil F-94000, France; E-Mails: (N.S.); (G.R.)
| | - Grégoire Robert
- INSERM, Unité 955, Equipe 7, Créteil F-94000, France; E-Mails: (N.S.); (G.R.)
- CHU de Bordeaux, Service d’urologie, Université Bordeaux Segalen, Bordeaux F-33076, France
| | | | - Aurélien Descazeaud
- Hôpital Dupuytren, CHU de Limoges, Service d’urologie, Limoges F-87000, France; E-Mail:
| | - Francis Vacherot
- INSERM, Unité 955, Equipe 7, Créteil F-94000, France; E-Mails: (N.S.); (G.R.)
- Faculté de Médecine, Université Paris Est Créteil, Créteil F-94000, France
- Authors to whom correspondence should be addressed; E-Mails: (F.V.); (A.T.); (S.T.); Tel.: +33-1-49-81-3656 (F.V.; A.T. & S.T.); Fax: +33-1-49-81-3533 (F.V.; A.T. & S.T.)
| | - Alexandre de la Taille
- INSERM, Unité 955, Equipe 7, Créteil F-94000, France; E-Mails: (N.S.); (G.R.)
- Faculté de Médecine, Université Paris Est Créteil, Créteil F-94000, France
- AP-HP, Hôpital H. Mondor–A. Chenevier, Service d’urologie F-94000, France
- Authors to whom correspondence should be addressed; E-Mails: (F.V.); (A.T.); (S.T.); Tel.: +33-1-49-81-3656 (F.V.; A.T. & S.T.); Fax: +33-1-49-81-3533 (F.V.; A.T. & S.T.)
| | - Stéphane Terry
- INSERM, Unité 955, Equipe 7, Créteil F-94000, France; E-Mails: (N.S.); (G.R.)
- Institute Curie, Centre de Recherche, CNRS UMR3244, Paris F-75248, France
- Authors to whom correspondence should be addressed; E-Mails: (F.V.); (A.T.); (S.T.); Tel.: +33-1-49-81-3656 (F.V.; A.T. & S.T.); Fax: +33-1-49-81-3533 (F.V.; A.T. & S.T.)
| |
Collapse
|
37
|
Du X, Ounissi-Benkalha H, Loder MK, Rutter GA, Polychronakos C. Overexpression of ZAC impairs glucose-stimulated insulin translation and secretion in clonal pancreatic beta-cells. Diabetes Metab Res Rev 2012; 28:645-53. [PMID: 22865650 PMCID: PMC6101213 DOI: 10.1002/dmrr.2325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND ZAC (Zinc finger protein that regulates apoptosis and cell-cycle arrest) is a candidate gene for transient neonatal diabetes mellitus (TNDM). This condition involves severe insulin deficiency at birth that reverses over weeks or months but may relapse with diabetes recurring in later life. ZAC overexpression in transgenic mice has previously been shown to result in complex changes in both beta-cell mass and possibly function. The present study therefore aimed to examine the role of ZAC in beta-cell function in vitro, independent of the confounder of a reduced beta-cell mass at birth. METHODS Overexpression of ZAC was achieved through the tetracycline-regulatable system in the beta-cell line, INS-1. RESULTS We found that ZAC overexpression exerted no significant effect on proliferation in this transformed cell line at any of the glucose concentrations examined. By contrast, glucose-stimulated insulin secretion was impaired through a mechanism downstream of cytosolic Ca(2+) increases. Furthermore, glucose-stimulated proinsulin biosynthesis was inhibited despite an increase in insulin transcript level. Finally, we found that glucose downregulated ZAC expression in both INS-1 cells and primary mouse islets. CONCLUSIONS These results indicate that ZAC is a negative regulator of the acute stimulatory effects of glucose on beta-cells, and provide a possible explanation for both insulin deficiency in the neonate and the later relapse of diabetes in patients with transient neonatal diabetes mellitus cases.
Collapse
Affiliation(s)
- Xiaoyu Du
- Division of Pediatric Endocrinology, McGill University Health Center Research Institute (Children's Hospital), Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
38
|
Xie H, Zhao Y, Caramuta S, Larsson C, Lui WO. miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS One 2012; 7:e46990. [PMID: 23056551 PMCID: PMC3463520 DOI: 10.1371/journal.pone.0046990] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/07/2012] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA regulators that control gene expression mainly through post-transcriptional silencing. We previously identified miR-205 in a signature for human cervical cancer using a deep sequencing approach. In this study, we confirmed that miR-205 expression was frequently higher in human cervical cancer than their matched normal tissue samples. Functionally, we demonstrate that miR-205 promotes cell proliferation and migration in human cervical cancer cells. To further understand the biological roles of miR-205, we performed in vivo crosslinking and Argonaute 2 immunoprecipitation of miRNA ribonucleoprotein complexes followed by microarray analysis (CLIP-Chip) to identify its potential mRNA targets. Applying CLIP-Chip on gain- and loss-of-function experiments, we identified a set of transcripts as potential targets of miR-205. Several targets are functionally involved in cellular proliferation and migration. Two of them, CYR61 and CTGF, were further validated by Western blot analysis and quantification of mRNA enrichment in the Ago2 immunoprecipitates using qRT-PCR. Furthermore, both CYR61 and CTGF were downregulated in cervical cancer tissues. In summary, our findings reveal novel functional roles and targets of miR-205 in human cervical cancer, which may provide new insights about its role in cervical carcinogenesis and its potential value for clinical diagnosis.
Collapse
Affiliation(s)
- Hong Xie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
- * E-mail: (HX); (WL)
| | - Yungang Zhao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin, China
| | - Stefano Caramuta
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Catharina Larsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden
- * E-mail: (HX); (WL)
| |
Collapse
|
39
|
Prognostic significance of NDRG1 expression in oral and oropharyngeal squamous cell carcinoma. Mol Biol Rep 2012; 39:10157-65. [PMID: 22972152 DOI: 10.1007/s11033-012-1889-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
Human N-myc downstream-regulated gene 1 (NDRG1) is a metastasis suppressor gene with several potential functions, including cell differentiation, cell cycle regulation and response to hormones, nickel and stress. The purpose of this study was to investigate the immunoexpression of NDRG1 in oral and oropharyngeal squamous cell carcinomas searching for its role in the clinical course of these tumors. We investigated immunohistochemical expression of NDRG1 protein in 412 tissue microarray cores of tumor samples from 103 patients with oral and oropharyngeal squamous cell carcinomas and in 110 paraffin-embedded surgical margin sections. The results showed NDRG1 up-regulation in 101/103 (98.1 %) tumor samples, but no expression in any normal tissue sample. Western blot assays confirmed the immunohistochemical findings, suggesting that lower levels of NDRG1 are associated with a high mortality rate. NDRG1 overexpression was related to long-term specific survival (HR = 0.38; p = 0.009), whereas the presence of lymph-node metastasis showed the opposite association with survival (HR = 2.45; p = 0.013). Our findings reinforce the idea that NDRG1 plays a metastasis suppressor role in oral and oropharyngeal squamous cell carcinomas and may be a useful marker for these tumors.
Collapse
|
40
|
Li ZQ, Ding W, Sun SJ, Li J, Pan J, Zhao C, Wu WR, Si WK. Cyr61/CCN1 is regulated by Wnt/β-catenin signaling and plays an important role in the progression of hepatocellular carcinoma. PLoS One 2012; 7:e35754. [PMID: 22540002 PMCID: PMC3335098 DOI: 10.1371/journal.pone.0035754] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/26/2012] [Indexed: 12/20/2022] Open
Abstract
Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear β-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and β-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of β-catenin in human HCC samples. Activation of β-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of β-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that β-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of β-catenin signaling in HCC and may play an important role in the progression of HCC.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei Ding
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
- Department of Clinical Laboratory, KunMing General Hospital of PLA, KunMing, China
| | - Shi-Jun Sun
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Li
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Jing Pan
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Chen Zhao
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei-Ru Wu
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei-Ke Si
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
41
|
Pan CQ, Low BC. Functional plasticity of the BNIP-2 and Cdc42GAP Homology (BCH) domain in cell signaling and cell dynamics. FEBS Lett 2012; 586:2674-91. [DOI: 10.1016/j.febslet.2012.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
42
|
Liu Z, Niu Y, Li C, Yang Y, Gao C. Integrating multiple microarray datasets on oral squamous cell carcinoma to reveal dysregulated networks. Head Neck 2011; 34:1789-97. [PMID: 22179951 DOI: 10.1002/hed.22013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most common type of carcinoma worldwide. The pathogenic pathways involved in this cancer are mostly unknown; therefore, a better characterization of the OSCC gene expression profile would represent a considerable advance. The public availability of gene expression datasets was meant to obtain new insights on biological processes. METHODS We integrated 4 public microarray datasets on OSCC to evaluate the degree of consistency among the biological results obtained in these different studies and to identify common regulatory pathways that could be responsible for tumor growth. RESULTS Twelve altered cellular pathways implicated in OSCC and 4 genes altered in the extracellular matrix (ECM) receptor pathway were validated by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSION Using 4 expression array datasets, we have developed a robust method for analyzing pathways altered in OSCC.
Collapse
Affiliation(s)
- Zhongyu Liu
- Anal-Colorectal Surgery Institute, No. 150 Central Hospital of PLA, Luoyang, China 471031
| | | | | | | | | |
Collapse
|
43
|
Fan R, Grignon D, Gulcicek EE, Faught P, Cheng L. Proteomic studies of Anaplasia in Wilms Tumor. PROTEOMICS INSIGHTS 2011. [DOI: 10.4137/pri.s7466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wilms tumor is the most common malignant tumor in the pediatric kidney. Anaplasia, focal or diffuse as defined by histological criteria, is the most important parameter to guide the clinical treatment plan. We sought to identify and characterize potential useful biomarkers associated with anaplasia and provide insight into the peculiar molecular biology of Wilms tumor with unfavorable histology. Utilizing isobaric tagging technology for relative and absolute quantitation, coupled with tandem mass spectrometry, we identified proteins that are differently regulated in different Wilms tumor histologies. Four Wilms tumor specimens were selected, including two with classic favorable histology, one with focal anaplasia, and one with diffuse anaplasia. A total of 256 proteins with a Protein Score >1.0 are identified from all samples (proteins with >90% confidence). Compared with classic favorable morphology: in the focal anaplasia group, we identified a total of 26 proteins of which six were underexpressed and 20 were overexpressed; in the diffuse anaplasia group, we identified a total of 20 proteins of which eight were underexpressed and 12 were overexpressed. With a total of 39 involved proteins, seven were common to both the focal and diffuse anaplasia cases, and clearly seemed to have a similar regulation. The newly identified potential markers for Wilms tumor with unfavorable histology include ENO1, GAPDH, ALDOA, SLC25A6, LDHA, PGAM1, MIF, RBP1, HBA, HP, COL1A1, CFL1, and FSCN1 etc. In Wilms tumors, though there are unfavorable histology differences (focal or diffuse anaplasia), the protein expression seems to be similarly dysregulated compared with the favorable histology group. The newly identified potential markers may provide insights into the molecular biology of Wilms tumor and may have practical implications.
Collapse
Affiliation(s)
- Rong Fan
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| | - David Grignon
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| | - Erol E. Gulcicek
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Philip Faught
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
44
|
Maruschke M, Koczan D, Reuter D, Ziems B, Nizze H, Hakenberg OW, Thiesen HJ. Putative biomarker genes for grading clear cell renal cell carcinoma. Urol Int 2011; 87:205-17. [PMID: 21757870 DOI: 10.1159/000328196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/05/2011] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The initial objective of this renal cancer study was to identify gene sets in clear cell renal cell carcinoma (ccRCC) to support grading of ccRCC histopathology. MATERIALS AND METHODS Preselected ccRCC tumor tissues of grade 1 (G1, n = 14) and grade 3 (G3, n = 15) as well es 14 normal kidney tissues thereof were subjected to microarray expression analysis using Human Genome U133 Plus 2.0 Array. Event ratio scoring, hierarchical clustering and principal component analysis were used to determine gene sets that distinguish expression profiles from normal kidney tissue, G1 and G3 tumor tissues. RESULTS An initial set of 73 genes provided seven gene subclusters (SC01 to SC07) that distinguish RNA expression profiles from G1, G3 tumor and normal kidney tissues. A ranked list of 24 genes was determined that separated G1 from G3 tumors in high concordance with histopathological grading confirmed by immunohistochemical analysis of ceruloplasmin protein expression. CONCLUSION A final set of 24 genes has been determined awaiting further validation on the RNA as well as on the protein level by studying an additional cohort of ccRCC patients. A reliable separation of G1 and G3 tumor grades will be instrumental to foster and direct the administration of upcoming targeted therapeutics of ccRCC tumors in a more predictive and reliable manner.
Collapse
Affiliation(s)
- M Maruschke
- Department of Urology, University of Rostock, Rostock, Germany. matthias.maruschke @ med.uni-rostock.de
| | | | | | | | | | | | | |
Collapse
|
45
|
Backsch C, Rudolph B, Steinbach D, Scheungraber C, Liesenfeld M, Häfner N, Hildner M, Habenicht A, Runnebaum IB, Dürst M. An integrative functional genomic and gene expression approach revealed SORBS2 as a putative tumour suppressor gene involved in cervical carcinogenesis. Carcinogenesis 2011; 32:1100-6. [PMID: 21602178 DOI: 10.1093/carcin/bgr093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human papillomavirus (HPV) types 16 and 18 are known to play a major role in cervical carcinogenesis. However, additional genetic alterations are required for the development and progression of cervical cancer. Our aim was to identify genes which are consistently down-regulated in cervical cancers (CxCa) and which are likely to contribute to malignant transformation. Microarray analyses of RNA from high-grade cervical precancers (CIN2/3) and CxCa were performed to screen for putative tumour suppressor genes (TSG) in predefined regions on chromosomes 4 and 10. Validation of the candidate genes was done by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in 16 normal cervical tissues, 14 CIN2/3 and 16 CxCa. The two most promising genes, SORBS2 and CALML5, were expressed ectopically in various cell lines in order to analyse their functional activity. Reconstitution of SORBS2 expression resulted in a significant reduction in cell proliferation, colony formation and anchorage-independent growth in CaSki, HPKII and HaCaT cells, whereby anchorage-independent growth could only be investigated for CaSki cells. SORBS2 had no effect on cell migration. In contrast, reconstitution of CALML5 expression did not influence the phenotype of all cell lines tested. None of the genes could induce senescence or apoptosis. Our results underline a possible role of SORBS2 as a TSG in cervical carcinogenesis.
Collapse
Affiliation(s)
- Claudia Backsch
- Klinik für Frauenheilkunde und Geburtshilfe, Abteilung Frauenheilkunde, Universitätsklinikum Jena, Bachstrasse 18, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhao G, Chen J, Deng Y, Gao F, Zhu J, Feng Z, Lv X, Zhao Z. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells. Biochem Biophys Res Commun 2011; 408:154-9. [DOI: 10.1016/j.bbrc.2011.03.140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 12/22/2022]
|
47
|
Rajkumar T, Sabitha K, Vijayalakshmi N, Shirley S, Bose MV, Gopal G, Selvaluxmy G. Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer 2011; 11:80. [PMID: 21338529 PMCID: PMC3050856 DOI: 10.1186/1471-2407-11-80] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 02/22/2011] [Indexed: 12/26/2022] Open
Abstract
Background Cervical cancer is the most common cancer among Indian women. This cancer has well defined pre-cancerous stages and evolves over 10-15 years or more. This study was undertaken to identify differentially expressed genes between normal, dysplastic and invasive cervical cancer. Materials and methods A total of 28 invasive cervical cancers, 4 CIN3/CIS, 4 CIN1/CIN2 and 5 Normal cervix samples were studied. We have used microarray technique followed by validation of the significant genes by relative quantitation using Taqman Low Density Array Real Time PCR. Immunohistochemistry was used to study the protein expression of MMP3, UBE2C and p16 in normal, dysplasia and cancers of the cervix. The effect of a dominant negative UBE2C on the growth of the SiHa cells was assessed using a MTT assay. Results Our study, for the first time, has identified 20 genes to be up-regulated and 14 down-regulated in cervical cancers and 5 up-regulated in CIN3. In addition, 26 genes identified by other studies, as to playing a role in cervical cancer, were also confirmed in our study. UBE2C, CCNB1, CCNB2, PLOD2, NUP210, MELK, CDC20 genes were overexpressed in tumours and in CIN3/CIS relative to both Normal and CIN1/CIN2, suggesting that they could have a role to play in the early phase of tumorigenesis. IL8, INDO, ISG15, ISG20, AGRN, DTXL, MMP1, MMP3, CCL18, TOP2A AND STAT1 were found to be upregulated in tumours. Using Immunohistochemistry, we showed over-expression of MMP3, UBE2C and p16 in cancers compared to normal cervical epithelium and varying grades of dysplasia. A dominant negative UBE2C was found to produce growth inhibition in SiHa cells, which over-expresses UBE2C 4 fold more than HEK293 cells. Conclusions Several novel genes were found to be differentially expressed in cervical cancer. MMP3, UBE2C and p16 protein overexpression in cervical cancers was confirmed by immunohistochemistry. These will need to be validated further in a larger series of samples. UBE2C could be evaluated further to assess its potential as a therapeutic target in cervical cancer.
Collapse
|
48
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
49
|
Murphy T, Hori S, Sewell J, Gnanapragasam VJ. Expression and functional role of negative signalling regulators in tumour development and progression. Int J Cancer 2010; 127:2491-9. [PMID: 20607827 DOI: 10.1002/ijc.25542] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alterations in intracellular signalling pathways such as the mitogen-activated protein kinases (MAPKs) are key common mechanisms of tumour development and progression. As such, there has been intense research into developing drugs that can inhibit or attenuate intracellular signalling. In recent years, there has been increasing recognition that the cell already has innate negative regulatory proteins that achieve this in normal homeostasis. These regulators provide a feedback inhibitory mechanism that controls the intensity and duration of activated signalling by exogenous stimuli. Members of this group include Raf kinase inhibitor protein 1, the MAPK phosphatases, the SPROUTY and SPRED families and similar expression to FGF. A number of studies have now demonstrated significant alterations in expression of negative regulators in malignant tissue in different cancer types. In functional studies, manipulated expression of these regulators has been shown to significantly influence tumour cell behaviour and phenotype. Here, we summarise the evidence for the functional expression of negative signalling regulators in tumour growth and progression and discuss their potential role as cancer biomarkers and targets for novel drug therapy.
Collapse
Affiliation(s)
- Tania Murphy
- Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
50
|
Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruïne AP, Baldwin HS, van Engeland M. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J 2010; 24:4153-66. [PMID: 20667976 DOI: 10.1096/fj.09-151464] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The N-myc downstream regulated gene (NDRG) family of proteins consists of 4 members, NDRG1-4, which are well conserved through evolution. The first member to be discovered and responsible for the family name was NDRG1, because its expression is repressed by the proto-oncogenes MYCN and MYC. All family members are characterized by an α/β hydrolase-fold motif; however, the precise molecular and cellular function of these family members has not been fully elucidated. Although the exact function of NDRG family members has not been clearly elucidated, emerging evidence suggests that mutations in these genes are associated with diverse neurological and electrophysiological syndromes. In addition, aberrant expression as well as tumor suppressor and oncogenic functions affecting key hallmarks of carcinogenesis such as cell proliferation, differentiation, migration, invasion, and stress response have been reported for several of the NDRG proteins. In this review, we summarize the current literature on the NDRG family members concerning their structure, origin, and tissue distribution. In addition, we review the current knowledge regarding the regulation and signaling of the NDRG family members in development and normal physiology. Finally, their role in disease and potential clinical applications (their role as detection or prognostic markers) are discussed.
Collapse
Affiliation(s)
- Veerle Melotte
- Department of Pathology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|