1
|
Fu S, Xie B, Song X. Neurological Mechanisms Exploration and Therapeutic Targets in Segmental Vitiligo Accompanied by White Hair. Pigment Cell Melanoma Res 2025; 38:e70020. [PMID: 40252009 DOI: 10.1111/pcmr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/21/2025]
Abstract
Vitiligo is the most common skin depigmentation disease, affecting 0.1%-2% of people in the world. 3.5%-20.5% of segmental patients account for the total number of vitiligo patients. It has been clinically observed that segmental vitiligo patients are more likely to generate white hair, which may be related to neuroendocrine factors. The color of human skin and hair is affected by the number and functional status of melanocytes. Vitiligo affects patients' physical and mental health due to the shame it causes from the white patches and hair. This article reviews the underlying mechanisms of segmental vitiligo with white hair based on skin and hair follicle melanocytes. The article attempts to propose possible targets for the treatment of this disease.
Collapse
Affiliation(s)
- Shiqi Fu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Anderson ZT, Dawson AD, Slominski AT, Harris ML. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front Endocrinol (Lausanne) 2022; 13:838434. [PMID: 35418942 PMCID: PMC8996770 DOI: 10.3389/fendo.2022.838434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y is widely distributed within the body and has long been implicated as a contributor to skin disease based on the correlative clinical data. However, until recently, there have been few empirical investigations to determine whether NPY has a pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple forms of negative social attention. This often results in psychological stress, which has been shown to exacerbate inflammatory skin diseases - creating a vicious cycle that perpetuates disease. This has been shown to drive severe depression, which has resulted in suicidal ideation being a comorbidity of these diseases. Herein, we review what is currently known about the associations of NPY with skin diseases and stress. We also review and provide educated guessing what the effects NPY can have in the skin. Inflammatory skin diseases can affect physical appearance to have significant, negative impacts on quality of life. No cure exists for these conditions, highlighting the need for identification of novel proteins/neuropetides, like NPY, that can be targeted therapeutically. This review sets the stage for future investigations into the role of NPY in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling in order to combat inflammatory skin diseases.
Collapse
Affiliation(s)
- Zoya T. Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex D. Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States
- Veteran Administration Medical Center, Birmingham, AL, United States
| | - Melissa L. Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Al-Obeidallah M, Jarkovská D, Valešová L, Horák J, Jedlička J, Nalos L, Chvojka J, Švíglerová J, Kuncová J, Beneš J, Matějovič M, Štengl M. SOFA Score, Hemodynamics and Body Temperature Allow Early Discrimination between Porcine Peritonitis-Induced Sepsis and Peritonitis-Induced Septic Shock. J Pers Med 2021; 11:jpm11030164. [PMID: 33670874 PMCID: PMC7997134 DOI: 10.3390/jpm11030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
Porcine model of peritonitis-induced sepsis is a well-established clinically relevant model of human disease. Interindividual variability of the response often complicates the interpretation of findings. To better understand the biological basis of the disease variability, the progression of the disease was compared between animals with sepsis and septic shock. Peritonitis was induced by inoculation of autologous feces in fifteen anesthetized, mechanically ventilated and surgically instrumented pigs and continued for 24 h. Cardiovascular and biochemical parameters were collected at baseline (just before peritonitis induction), 12 h, 18 h and 24 h (end of the experiment) after induction of peritonitis. Analysis of multiple parameters revealed the earliest significant differences between sepsis and septic shock groups in the sequential organ failure assessment (SOFA) score, systemic vascular resistance, partial pressure of oxygen in mixed venous blood and body temperature. Other significant functional differences developed later in the course of the disease. The data indicate that SOFA score, hemodynamical parameters and body temperature discriminate early between sepsis and septic shock in a clinically relevant porcine model. Early pronounced alterations of these parameters may herald a progression of the disease toward irreversible septic shock.
Collapse
Affiliation(s)
- Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Lenka Valešová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Jan Horák
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Jan Jedlička
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Jiří Chvojka
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Jitka Švíglerová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Jitka Kuncová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
| | - Jan Beneš
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
- Department of Aneshesiology and Intensive Care Medicine, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Martin Matějovič
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; (M.A.-O.); (D.J.); (J.J.); (L.N.); (J.Š.); (J.K.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic; (L.V.); (J.H.); (J.C.); (J.B.); (M.M.)
- Correspondence: ; Tel.: +420-377-593-341
| |
Collapse
|
4
|
Jackson EK, Gillespie DG, Tofovic SP. DPP4 Inhibition, NPY 1-36, PYY 1-36, SDF-1 α, and a Hypertensive Genetic Background Conspire to Augment Cell Proliferation and Collagen Production: Effects That Are Abolished by Low Concentrations of 2-Methoxyestradiol. J Pharmacol Exp Ther 2020; 373:135-148. [PMID: 32015161 PMCID: PMC7174788 DOI: 10.1124/jpet.119.263467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
By reducing their metabolism, dipeptidyl peptidase 4 inhibition (DPP4I) enhances the effects of numerous peptides including neuropeptide Y1-36 (NPY1-36), peptide YY1-36 (PYY1-36), and SDF-1α Studies show that separately NPY1-36, PYY1-36 and SDF-1α stimulate proliferation of, and collagen production by, cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs), particularly in cells isolated from genetically hypertensive rats. Whether certain combinations of these factors, in the absence or presence of DPP4I, are more profibrotic than others is unknown. Here we contrasted 24 different combinations of conditions (DPP4I, hypertensive genotype and physiologic levels [3 nM] of NPY1-36, PYY1-36, or SDF-1α) on proliferation of, and [3H]-proline incorporation by, CFs, PGVSMCs, and GMCs. In all three cell types, the various treatment conditions differentially increased proliferation and [3H]-proline incorporation, with a hypertensive genotype + DPP4I + NPY1-36 + SDF-1α being the most efficacious combination. Although the effects of this four-way combination were similar in male versus female CFs, physiologic (1 nM) concentrations of 2-methoxyestradiol (2ME; nonestrogenic metabolite of 17β-estradiol), abolished the effects of this combination in both male and female CFs. In conclusion, this study demonstrates that CFs, PGVSMCs, and GMCs are differentially activated by various combinations of NPY1-36, PYY1-36, SDF-1α, a hypertensive genetic background and DPP4I. We hypothesize that as these progrowth conditions accumulate, a tipping point would be reached that manifests in the long term as organ fibrosis and that 2ME would obviate any profibrotic effects of DPP4I, even under the most profibrotic conditions (i.e., hypertensive genotype with high NPY1-36 + SDF-1α levels and low 2ME levels). SIGNIFICANCE STATEMENT: This work elucidates combinations of factors that could contribute to long-term profibrotic effects of dipeptidyl peptidase 4 inhibitors and suggests a novel drug combination that could prevent any potential profibrotic effects of dipeptidyl peptidase 4 inhibitors while augmenting the protective effects of this class of antidiabetic agents.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stevan P Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Farzi A, Reichmann F, Holzer P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol (Oxf) 2015; 213:603-27. [PMID: 25545642 DOI: 10.1111/apha.12445] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY), one of the most abundant peptides in the nervous system, exerts its effects via five receptor types, termed Y1, Y2, Y4, Y5 and Y6. NPY's pleiotropic functions comprise the regulation of brain activity, mood, stress coping, ingestion, digestion, metabolism, vascular and immune function. Nerve-derived NPY directly affects immune cells while NPY also acts as a paracrine and autocrine immune mediator, because immune cells themselves are capable of producing and releasing NPY. NPY is able to induce immune activation or suppression, depending on a myriad of factors such as the Y receptors activated and cell types involved. There is an intricate relationship between psychological stress, mood disorders and the immune system. While stress represents a risk factor for the development of mood disorders, it exhibits diverse actions on the immune system as well. Conversely, inflammation is regarded as an internal stressor and is increasingly recognized to contribute to the pathogenesis of mood and metabolic disorders. Intriguingly, the cerebral NPY system has been found to protect against distinct disturbances in response to immune challenge, attenuating the sickness response and preventing the development of depression. Thus, NPY plays an important homeostatic role in balancing disturbances of physiological systems caused by peripheral immune challenge. This implication is particularly evident in the brain in which NPY counteracts the negative impact of immune challenge on mood, emotional processing and stress resilience. NPY thus acts as a unique signalling molecule in the interaction of the immune system with the brain in health and disease.
Collapse
Affiliation(s)
- A. Farzi
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - F. Reichmann
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - P. Holzer
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| |
Collapse
|
7
|
Mpouzika MDA, Papathanassoglou EDE, Giannakopoulou M, Bozas E, Middleton N, Boti S, Patiraki EI, Karabinis A. Altered serum stress neuropeptide levels in critically ill individuals and associations with lymphocyte populations. Neuropeptides 2013; 47:25-36. [PMID: 22981820 DOI: 10.1016/j.npep.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Potential physiological correlates of stress and the role of stress neuropeptides, other than those of the hypothalamic-pituitary-adrenal axis, in critical illness have not been addressed. We investigated: (a) serum levels of stress neuropeptides (ACTH, substance P (SP), neuropeptide Y (NPY), cortisol, prolactin) in critically ill individuals compared to matched controls, (b) associations with lymphocyte counts, (c) associations among stress neuropeptide levels, and (d) associations with perceived intensity of stress, critical illness severity and survival. METHODS Correlational design with repeated measures. Thirty-six critically ill patients were followed up for 14 days compared to 36 healthy matched controls. Stress was assessed by the ICUESS scale. Correlations, cross-sectional comparisons and multiple regression models were pursued. RESULTS For the first time, we report lower SP (Difference of means (DM) = 2928-3286 ng/ml, p < 0.001) and NPY (DM = 0.77-0.83 ng/ml, p < 0.0001) levels in critically ill individuals compared to controls. Cortisol levels were higher (DM = 140-173 ng/ml, p<0.0001) and lymphocyte population counts (p < 0.002) were lower in patients throughout the study. NPY levels associated with lymphocyte (r = 0.411-0.664, p < 0.04), T-lymphocyte (r = 0.403-0.781, p< 0.05), T-helper (r = 0.492-0.690, p < 0.03) and T-cytotoxic cell populations (r = 0.39-0.740, p < 0.03). On day 1, cortisol levels exhibited associations with lymphocyte (r = -0.452, p = 0.01), T-cell (r = -0.446, p = 0.02), T-helper (r = -0.428, p = 0.026) and T-cytotoxic cells ( r = -0.426, p = 0.027). ACTH levels associated with NK cell counts (r = 0.326-0.441, p < 0.05). Associations among stress neuropeptides levels were observed throughout (p < 0.05). ACTH levels associated with disease severity (r = 0.340-0.387, p < 0.005). A trend for an association between ACTH levels and intensity of stress was noted (r = 0.340, p = 0.057). CONCLUSION The significantly lowered NPY and SP levels and the associations with cortisol, ACTH and lymphocytes suggest that the role of these peptides in critical illness merit further investigation. Future studies need to address associations between these neuropeptides and functional immune cell responses and inflammatory markers in critical illness.
Collapse
Affiliation(s)
- Meropi D A Mpouzika
- Department of Nursing B, Faculty of Health and Caring Professions, Technological Educational Institute of Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
In this Editor's Review, articles published in 2011 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ replacement, recovery, and regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal would not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely well-received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ replacement, recovery, and regeneration. We look forward to recording further advances in the coming years.
Collapse
Affiliation(s)
- Paul S Malchesky
- Artificial Organs Editorial Office, 10 West Erie Street, Painesville, OH 44077, USA.
| |
Collapse
|