1
|
Kumaraswamy B, Hemalatha K, Pal R, Matada GSP, Hosamani KR, Aayishamma I, Aishwarya NVSS. An insight into sustainable and green chemistry approaches for the synthesis of quinoline derivatives as anticancer agents. Eur J Med Chem 2024; 275:116561. [PMID: 38870832 DOI: 10.1016/j.ejmech.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Quinolones, a key class of heterocyclics, are gaining popularity among organic and medicinal chemists due to their promising properties. Quinoline, with its broad spectrum of action, plays a primordial role in chemotherapy for cancer. Drugs include lenvatinib and its structural derivatives carbozantinib and bosutinib, and tipifarnib are the popular anticancer agents. Owing to the importance of quinoline, there are several classical methods for the synthesis such as, such as Gould-Jacobs, Conrad-Limpach, Camps cyclization, Skraup, Doebnervon Miller, Combes, Friedlander, Pfitzinger, and Niementowski synthesis. These methods are well-commended for developing an infinite variety of quinoline analogues. However, these procedures are associated with several drawbacks such as long reaction times, use of hazardous chemicals or stoichiometric proportions, difficulty of working up conditions, high temperatures, organic solvents, and the presence of numerous steps, all of which have an impact on the environment and the economy. As a result, researchers are working hard to develop green quinoline compounds in the hopes of making groundbreaking discoveries in the realm of cancer. In this review, we have highlighted significant research on quinoline-based compounds and their structure-activity relationship (SAR). Furthermore, because of the significant economic and environmental health and safety (EHS) concerns, more research is being dedicated to the green synthesis of quinolone derivatives. The current review offers recent advances in quinoline derivatives as anticancer agents for green synthesis using microwave, ultrasound, and one-pot synthesis. We believe that our findings will provide useful insight and inspire more green research on this framework to produce powerful and selective quinoline derivatives.
Collapse
Affiliation(s)
- B Kumaraswamy
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Ketan R Hosamani
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | | |
Collapse
|
2
|
Ishikawa T, Irie N, Tashiro J, Osaki T, Warita T, Warita K, Naito M. Comparison of the anticancer effects of various statins on canine oral melanoma cells. Vet Comp Oncol 2024; 22:156-161. [PMID: 38044042 DOI: 10.1111/vco.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Canine oral melanoma is a highly malignant cancer with a poor prognosis. Statins, commonly used drugs for treating dyslipidemia, exhibit pleiotropic anticancer effects and marked anti-proliferative effects against melanoma cells. The anticancer effects among statins vary; in human cancers, lipophilic statins have shown stronger anticancer effects compared with hydrophilic statins. However, data on the differences in the effects of various statins on canine cancer cells are lacking, hence the optimal statins for treating canine melanoma remain unknown. Therefore, this study aimed to clarify the most effective statin by comparing the anticancer effects of hydrophilic rosuvastatin and lipophilic atorvastatin, simvastatin, fluvastatin and pitavastatin on three canine oral melanoma cell lines. Time-dependent measurement of cell confluence showed that lipophilic statins had a stronger anti-proliferative effect on all cell lines than hydrophilic rosuvastatin. Quantification of lactate dehydrogenase release, an indicator of cytotoxicity, showed that lipophilic statins more effectively induced cell death than hydrophilic rosuvastatin. Lipophilic statins affected both inhibition of cell proliferation and induction of cell death. The anticancer effects of statins on canine oral melanoma cells differed in the following ascending order of IC50 values: pitavastatin < fluvastatin = simvastatin < atorvastatin < rosuvastatin. The required concentration of pitavastatin was approximately 1/20th that of rosuvastatin. Among the statins used in this study, pitavastatin had the highest anticancer effect. Our results suggest lipophilic pitavastatin as the optimal statin for treating canine oral melanoma.
Collapse
Affiliation(s)
- Takuro Ishikawa
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Nanami Irie
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
3
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
4
|
Prado Y, Aravena D, Llancalahuen FM, Aravena C, Eltit F, Echeverría C, Gatica S, Riedel CA, Simon F. Statins and Hemostasis: Therapeutic Potential Based on Clinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:25-47. [PMID: 37093420 DOI: 10.1007/978-3-031-26163-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hemostasis preserves blood fluidity and prevents its loss after vessel injury. The maintenance of blood fluidity requires a delicate balance between pro-coagulant and fibrinolytic status. Endothelial cells (ECs) in the inner face of blood vessels maintain hemostasis through balancing anti-thrombotic and pro-fibrinolytic activities. Dyslipidemias are linked to hemostatic alterations. Thus, it is necessary a better understanding of the underlying mechanisms linking hemostasis with dyslipidemia. Statins are drugs that decrease cholesterol levels in the blood and are the gold standard for treating hyperlipidemias. Statins can be classified into natural and synthetic molecules, approved for the treatment of hypercholesterolemia. The classical mechanism of action of statins is by competitive inhibition of a key enzyme in the synthesis pathway of cholesterol, the HMG-CoA reductase. Statins are frequently administrated by oral ingestion and its interaction with other drugs and food supplements is associated with altered bioavailability. In this review we deeply discuss the actions of statins beyond the control of dyslipidemias, focusing on the actions in thrombotic modulation, vascular and cardiovascular-related diseases, metabolic diseases including metabolic syndrome, diabetes, hyperlipidemia, and hypertension, and chronic diseases such as cancer, chronic obstructive pulmonary disease, and chronic kidney disease. Furthermore, we were prompted to delved deeper in the molecular mechanisms by means statins regulate coagulation acting on liver, platelets, and endothelium. Clinical evidence show that statins are effective regulators of dyslipidemia with a high impact in hemostasis regulation and its deleterious consequences. However, studies are required to elucidate its underlying molecular mechanism and improving their therapeutical actions.
Collapse
Affiliation(s)
- Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Cesar Echeverría
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapo, Chile
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A Riedel
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
5
|
Blass BE, Chen PJ, Taylor M, Griffin SA, Gordon JC, Luedtke RR. Design, synthesis, and evaluation of functionalized 5-(4-arylpiperazin-1-yl)-N-quinolinyl-pentanamides as selective dopamine D3 receptor ligands. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Clinical evaluation of [18F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug Metab Pharmacokinet 2022; 44:100449. [DOI: 10.1016/j.dmpk.2022.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
7
|
Na JY, Yang E, Kim JH, Kwon IS, Jin EH, Yu KS, Kim J, Lee S, Hong JH. Comparative Pharmacokinetics Between a Fixed-Dose Combination of Pitavastatin/Valsartan 4/160 mg and the Corresponding Individual Components Through a Partial Replicated Crossover Design in Healthy Male Subjects. Clin Pharmacol Drug Dev 2022; 11:615-622. [PMID: 34997835 DOI: 10.1002/cpdd.1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/10/2021] [Indexed: 11/05/2022]
Abstract
Hypertension and hyperlipidemia are often comorbid, requiring combination therapies of antihypertensive drugs and antihyperlipidemia drugs. Taking 1 fixed-dose combination (FDC) may increase patient compliance rather than taking each of the drugs separately. This study aimed to evaluate the pharmacokinetic bioequivalence between an FDC of pitavastatin/valsartan 4/160 mg and the corresponding individual components. Considering that valsartan is a highly variable drug for maximum plasma concentration (Cmax ), an open-label, randomized, partial replicated crossover study was conducted in 54 healthy subjects. The subjects received a single oral dose of the FDC of pitavastatin/valsartan 4/160 mg in 1 period or the corresponding individual components in the other 2 periods. The geometric mean ratios and their 90%CIs of the FDC to the corresponding individual components for Cmax and area under the concentration-time curve from time 0 to the last measurable time point were 1.05 (90%CI, 0.96-1.15) and 0.10 (90%CI, 0.95-1.04) for pitavastatin and 1.15 (90%CI, 1.06-1.25) and 1.06 (0.99-1.14) for valsartan, respectively. The geometric mean ratios (90%CIs) for area under the concentration-time curve from time 0 to the last measurable time point and Cmax of both drugs were included in the bioequivalence criteria. In conclusion, the FDC of pitavastatin/valsartan 4/160 mg showed pharmacokinetic equivalence with the corresponding individual components.
Collapse
Affiliation(s)
- Joo Young Na
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Eunsol Yang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jae-Hoon Kim
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - In Sun Kwon
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eun-Heui Jin
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jinsook Kim
- JW Pharmaceutical Corporation, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
8
|
A New Ecological RP-HPLC Method for the Determination of Pitavastatin, Fenofibrate and Their Impurities in a Novel Fixed Dose Combination. Chromatographia 2022. [DOI: 10.1007/s10337-021-04119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Elnour A, Ramadan A. Mini-Review on the efficacy and safety of pitavastatin: “The novel seventh statin gaining momentum”. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:72-80. [PMID: 36034492 PMCID: PMC9416105 DOI: 10.4103/jpbs.jpbs_455_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022] Open
Abstract
Background: Recently, a plethora of events have affected the statin arena such as muscle-induced myalgia, myopathy, myositis, rare rhabdomyolysis, and new-onset diabetes. The latest statin pitavastatin has emerged with descent stamina (optimum efficacy and improved safety). Objective: The objective of the current review is to explore the pros and cons of pitavastatin as a novel second-generation statin in terms of efficacy and safety that delineate its clinical utility. Methods: The review was conducted via EBSCO hosted Medline search (AL Ain University, UAE subscription) for relevant English written literature articles containing “pitavastatin” as the primary search term “pitavastatin and safety;” “pitavastatin and efficacy” and “pitavastatin and safety and randomized clinical trials;” and “pitavastatin and efficacy and randomized clinical trials.” Results: The number of articles containing the word “pitavastatin” as the primary search term used was (n = 901). The next retrieves MeSH term was “pitavastatin and safety” (n = 99) and then “pitavastatin and efficacy” (n = 132). Furthermore, narrowing down the search by adding study design terms revealed: “pitavastatin and safety and randomized clinical trials,” (n = 10) and “pitavastatin and efficacy and randomized clinical trials” (n = 13). Combining the two main searches (safety and efficacy) has yielded 23 items, of which 15 articles were satisfying the current mini-review criteria. The prominent efficacy of pitavastatin was depicted by the increase in high-dense lipoprotein cholesterol and a decrease in low-dense lipoprotein cholesterol as illustrated by the clinical trials in the results and discussions section. The safety was enlightened with a very low propensity to cause new-onset diabetes and a low tendency for statin-induced muscular adverse events. Conclusion: Pitavastatin might be suitable for patients with the acute coronary syndrome (ACS), metabolic syndrome, and patients with diabetes. We highly recommend rational individualization for the selection of statin, especially in patients with diabetes and/or with ACS.
Collapse
|
10
|
Coker JF, Hill KM, Otu AA, House A. Statin-use and perceptions of high cholesterol as predictors of healthy lifestyle behaviours in Nigerians. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000190. [PMID: 36962358 PMCID: PMC10022232 DOI: 10.1371/journal.pgph.0000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
It is unclear how statin-use influences the adoption of healthy lifestyle choices. It is important to understand the nature of this relationship as this could facilitate targeted public health interventions which could help promote a healthy lifestyle, curb the rise of non-communicable diseases, and facilitate overall health. This study aimed to explore whether statin-use influenced the adoption of healthy lifestyle choices by changing the way urban and semi-urban Nigerians thought about their high cholesterol and their future risk of cardiovascular disease. Structured questionnaires were used to compare the lifestyle behaviours, perceptions of high cholesterol and future risk of cardiovascular disease of statin users and non-statin users recruited in urban and a semi-urban Nigeria. In-depth, face-to-face interviews were used to further explore the relationship between statin-use and the adoption of healthy lifestyle choices, and explore the influence of personal and social factors on this relationship. The odds of adopting a low-fat diet increased as perceived statin-effectiveness increased (OR = 2.33, p<0.05), demonstrating a synergistic relationship between statin-use and the adoption of healthy of lifestyle choices. In addition to this synergistic association, at interview, two other relationships were found between statin use and the adoption of healthy lifestyle choices: an antagonistic relationship fuelled by a strong perception of statin effectiveness and a perceived inability to make healthy lifestyle changes, which favoured statin-use, and an antagonistic relationship fuelled by congruous cause-control beliefs and concerns about medication-use which favoured the adoption of healthy lifestyle choices. The odds of adopting a low-fat diet was 5 times greater in urban dwellers than in semi-urban dwellers (p<0.01). Statin-use influenced the adoption of healthy lifestyle choices in three different ways, which require exploration at clinical consultation. Gender, social obligations, and physical environment also influenced statin-use and the adoption of healthy lifestyle choices.
Collapse
Affiliation(s)
- Joyce F Coker
- Cambridge Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kate M Hill
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Akaninyene A Otu
- Department of Internal Medicine, University of Calabar, Calabar, Cross Rivers State, Nigeria
| | - Allan House
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Tristán-Flores FE, Casique-Aguirre D, Pliego-Arreaga R, Cervantes-Montelongo JA, García-Gutierrez P, Acosta-García G, Silva-Martínez GA. Identification of potential inhibitors of SARS-CoV-2 S protein-ACE2 interaction by in silico drug repurposing. F1000Res 2021; 10. [PMID: 34900223 PMCID: PMC8630554 DOI: 10.12688/f1000research.52168.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus discovered that appeared in Wuhan, China, in December 2019, causes COVID-19 disease which have resulted in cases similar to SARS-atypical pneumonia. Worldwide, around 116 million cases and 2.57 million deaths are reported with new cases and increasing mortality every day. To date, there is no specific commercial treatment to control the infection. Repurpose drugs targeting the angiotensin-converting enzyme 2 (ACE2) receptor represents an alternative strategy to block the binding of SARS-CoV-2 protein S and forestall virus adhesion, internalization, and replication in the host cell. Methods: We performed a rigid molecular docking using the receptor binding domain of the S1 subunit of S protein (RBD
S1)-ACE2 (PDB ID: 6VW1) interaction site and 1,283 drugs FDA approved. The docking score, frequency of the drug in receptor site, and interactions at the binding site residues were used as analyzing criteria. Results: This research yielded 40 drugs identified as a potential inhibitor of RBD
S1-ACE2 interaction. Among the inhibitors, compounds such as ipratropium, formoterol, and fexofenadine can be found. Specialists employ these drugs as therapies to treat chronic obstructive pulmonary disease, asthma and virtually any respiratory infection. Conclusions: Our results will serve as the basis for
in vitro and
in vivo studies to evaluate the potential use of those drugs to generate affordable and convenient therapies to treat COVID-19.
Collapse
Affiliation(s)
| | - Diana Casique-Aguirre
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, CDMX, 11340, Mexico
| | | | | | | | - Gerardo Acosta-García
- Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, Mexico
| | - Guillermo A Silva-Martínez
- Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, Mexico.,Ingeniería Bioquímica, Cátedras CONACYT-Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, Mexico
| |
Collapse
|
12
|
Lipid Droplet Accumulation Independently Predicts Poor Clinical Prognosis in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:cancers13205251. [PMID: 34680399 PMCID: PMC8533764 DOI: 10.3390/cancers13205251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary High-grade serous carcinoma (HGSOC) is the most aggressive subtype of ovarian cancer and accounts for the vast majority of advanced stage cases. Intracellular accumulation of lipids as lipid droplets has been recognized as one of the characteristics of cancers and implicated in poor prognosis of several cancers, such as human melanomas. Here, we investigated the relationship between prognosis and lipid accumulation in HGSOC, and found that enhanced lipid accumulation in HGSOC tissues significantly correlated with poor prognosis. In cell-based assays with human ovarian cancer cells, we provide evidence that aerobic glycolysis, which is one of the characteristic metabolic abnormalities in cancer, induced lipid accumulation within cancer cells and targeting the lipid accumulation could suppress cancer cell proliferation. Thus, our results propose abnormal lipid accumulation as a negative indicator of HGSOC prognosis and a novel therapeutic target. Abstract High-grade serous ovarian carcinoma (HGSOC) is an epithelial cancer that accounts for most ovarian cancer deaths. Metabolic abnormalities such as extensive aerobic glycolysis and aberrant lipid metabolism are well-known characteristics of cancer cells. Indeed, accumulation of lipid droplets (LDs) in certain types of malignant tumors has been known for more than 50 years. Here, we investigated the correlation between LD accumulation and clinical prognosis. In 96 HGSOC patients, we found that high expression of the LD marker adipophilin was associated with poor progression-free and overall survival (p = 0.0022 and p = 0.014, respectively). OVCAR-3 ovarian carcinoma cells accumulated LDs in a glucose-dependent manner, which suggested the involvement of aerobic glycolysis and subsequently enhanced lipogenesis, with a result being LD accumulation. The acyl-CoA: cholesterol acyltransferase 1 inhibitor K604 and the hydroxymethylglutaryl-CoA reductase inhibitor pitavastatin blocked LD accumulation in OVCAR-3 cells and reduced phosphorylation of the survival-related kinases Akt and ERK1/2, both of which have been implicated in malignancy. Our cell-based assays thus suggested that enhanced aerobic glycolysis resulted in LD accumulation and activation of survival-related kinases. Overall, our results support the idea that cancers with lipogenic phenotypes are associated with poor clinical prognosis, and we suggest that adipophilin may serve as an independent indicator of a poor prognosis in HGSOC.
Collapse
|
13
|
Shurshalova GS, Scheidt HA, Fischer M, Huster D, Aganov AV, Klochkov VV. Interaction of the pitavastatin with model membranes. Biochem Biophys Rep 2021; 28:101143. [PMID: 34632116 PMCID: PMC8487990 DOI: 10.1016/j.bbrep.2021.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022] Open
Abstract
Pitavastatin is a statin drug that, by competitively inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase, can lower serum cholesterol levels of low-density lipoprotein (LDL) accompanied by side effects due to pleiotropic effects leading to statin intolerance. These effects can be explained by the lipophilicity of statins, which creates membrane affinity and causes statin localization in cellular membranes. In the current report, the interaction of pitavastatin with POPC model membranes and its influence on the membrane structure were investigated using H, H and P solid-state NMR spectroscopy. Our experiments show the average localization of pitavastatin at the lipid/water interface of the membrane, which is biased towards the hydrocarbon core in comparison to other statin molecules. The membrane binding of pitavastatin also introduced an isotropic component into the 31P NMR powder spectra, suggesting that some of the lamellar POPC molecules are converted into highly curved structures. Solid-state NMR spectroscopy shows pitavastatin effect on the bilayer •Pitavastatin lowers the POPC order parameters •Pitavastatin localize in the upper chain of the POPC bilayer •Isotropic membrane phases are observed in the presence of pitavastatin
Collapse
Affiliation(s)
- Guzel S Shurshalova
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.,Institute of Physics, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Markus Fischer
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Albert V Aganov
- Institute of Physics, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| | - Vladimir V Klochkov
- Institute of Physics, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| |
Collapse
|
14
|
Pitavastatin stimulates retinal angiogenesis via HMG-CoA reductase-independent activation of RhoA-mediated pathways and focal adhesion. Graefes Arch Clin Exp Ophthalmol 2021; 259:2707-2716. [PMID: 34328550 DOI: 10.1007/s00417-021-05328-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/13/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive angiogenesis of the retina is a key component of irreversible causes of blindness in many ocular diseases. Pitavastatin is a cholesterol-lowering drug used to reduce the risk of cardiovascular diseases. Various studies have shown the effects of pitavastatin on angiogenesis but the conclusions are contradictory. The effects of pitavastatin on retinal angiogenesis have not been revealed. This study investigated the effects of pitavastatin at clinically relevant concentrations on retinal angiogenesis and its underlying mechanisms using retinal microvascular endothelial cells (RMECs). METHODS The effects of pitavastatin on retinal angiogenesis were determined using in vitro model of retinal angiogenesis, endothelial cell migration, adhesion, proliferation, and apoptosis assays. The mechanism studies were conducted using immunoblotting and stress fiber staining. RESULTS Pitavastatin stimulated capillary network formation of RMECs in a similar manner as vascular endothelial growth factor (VEGF) and lipopolysaccharide (LPS). Pitavastatin also increased RMEC migration, adhesion to Matrigel, growth, and survival. The combination of pitavastatin with VEGF or LPS was more effective than VEGF or LPS alone in stimulating biological activities of RMECs, suggesting that pitavastatin can enhance the stimulatory effects of VEGF and LPS on retinal angiogenesis. Pitavastatin acted on RMECs in a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase-independent manner. In contrast, pitavastatin activated pro-angiogenic microenvironment via promoting the secretion of VEGF and stimulated retinal angiogenesis via multiple mechanisms including activation of RhoA-mediated pathways, induction of focal adhesion complex formation, and activation of ERK pathway. CONCLUSION Our work provides a preclinical evidence on the pro-angiogenic effect of pitavastatin in retina via multiple mechanisms that are irrelevant to mevalonate pathway.
Collapse
|
15
|
Sun MR, Li HL, Ba MY, Cheng W, Zhu HL, Duan YT. Cyclopropyl Scaffold: A Generalist for Marketed Drugs. Mini Rev Med Chem 2021; 21:150-170. [PMID: 32727325 DOI: 10.2174/1389557520666200729161150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 04/26/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, much attention has been given to cyclopropyl scaffolds, which commonly exist in natural products and synthetic organic molecules. Clinical drug molecules with cyclopropyl rings are an area of focus in therapeutic research due to their interesting chemical properties and unique pharmacology activity. These molecular drugs against different targets are applicable in some therapeutic treatment fields including cancer, infection, respiratory disorder, cardiovascular and cerebrovascular diseases, dysphrenia, nervous system disorders, endocrine and metabolic disorders, skin disease, digestive disorders, urogenital diseases, otolaryngological and dental diseases, and eye diseases. This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress, from 1961 to the present day, of approved marketed drugs containing cyclopropyl scaffold is examined.
Collapse
Affiliation(s)
- Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Hong-Liang Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Meng-Yu Ba
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
16
|
Tanaka W, Matsuyama H, Yokoyama D, Yamashita Y, Ashida H, Sakono M, Sakakibara H. Daily consumption of black soybean (Glycine max L.) seed coat polyphenols attenuates dyslipidemia in apolipoprotein E-deficient mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Sci Rep 2020; 10:959. [PMID: 31969600 PMCID: PMC6976657 DOI: 10.1038/s41598-020-57707-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) have been shown to overcome tyrosine kinase inhibitor (TKI) resistance in epithelial growth factor receptor (EGFR) mutated non-small cell lung cancer (NSCLC) cells in vivo and in vitro. However, little is known about the putative induction of non-apoptotic cell death pathways by statins. We investigated the effects of pitavastatin and fluvastatin alone or in combination with erlotinib in three NSCLC cell lines and examined the activation of different cell death pathways. We assessed apoptosis via fluorometric caspase assay and poly (ADP-ribose) polymerase 1 (PARP) cleavage. Furthermore, annexinV/propidium iodide (PI) flow cytometry was performed. Small molecule inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD), necrostatin 1 (Nec1), ferrostatin 1 (Fer1), Ac-Lys-Lys-Norleucinal (Calp1) were used to characterise cell death pathway(s) putatively (co-)activated by pitavastatin/erlotinib co-treatment. Synergism was calculated by additivity and isobolographic analyses. Pitavastatin and fluvastatin induced cell death in EGFR TKI resistant NSCLC cells lines A549, Calu6 and H1993 as shown by caspase 3 activation and PARP cleavage. Co-treatment of cells with pitavastatin and the EGFR TKI erlotinib resulted in synergistically enhanced cytotoxicity compared to pitavastatin monotherapy. Flow cytometry indicated the induction of alternative regulated cell death pathways. However, only co-treatment with mevalonic acid (Mev) or the pan-caspase inhibitor zVAD could restore cell viability. The results show that cytotoxicity mediated by statin/erlotinib co-treatment is synergistic and can overcome erlotinib resistance in K-ras mutated NSCLC and relies only on apoptosis.
Collapse
|
18
|
Reducing shell egg cholesterol content. II. Review of approaches utilizing non-nutritive dietary factors or pharmacological agents and an examination of emerging strategies. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933907001249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Mal K, Chatterjee S, Bhaumik A, Mukhopadhyay C. Mesoporous MCM‐41 Silica Supported Pyridine Nanoparticle: A Highly Efficient, Recyclable Catalyst for Expeditious Synthesis of Quinoline Derivatives through Domino Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201803708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kajal Mal
- Department of ChemistryUniversity of Calcutta 92 APC Road Kolkata-700009 India
| | - Sauvik Chatterjee
- Department of Materials ScienceIndian Association for the Cultivation of Science, Jadavpur Kolkata 700 032 India
| | - Asim Bhaumik
- Department of Materials ScienceIndian Association for the Cultivation of Science, Jadavpur Kolkata 700 032 India
| | | |
Collapse
|
20
|
Kim J, Lee HS, Lee KY. Effect of statins on fasting glucose in non-diabetic individuals: nationwide population-based health examination in Korea. Cardiovasc Diabetol 2018; 17:155. [PMID: 30518364 PMCID: PMC6280428 DOI: 10.1186/s12933-018-0799-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increasing evidence suggest that statin therapy has a diabetogenic effect. Individual types of statin may have a different effect on glucose metabolism. Using the repeated nationwide population-based health screening data in Korea, we investigated the longitudinal changes in fasting glucose level of non-diabetic individuals by use of statins. METHODS From the National Health Screening Cohort, we included 379,865 non-diabetic individuals who had ≥ 2 health screening examinations with fasting blood glucose level measured in 2002-2013. Using the prescription records of statins in the database, we calculated the proportion of days covered (PDC) and average number of defined daily doses per day (anDDD) by statins. We constructed multivariate linear mixed models to evaluate the effects of statins on the changes in fasting glucose (Δglu). RESULTS High PDC by statins had a significant positive effect on Δglu (coefficient for PDC 0.093 mmol/L, standard error 0.007, p < 0.001). anDDD by statins was also positively associated with Δglu (coefficient for anDDD 0.119 mmol/L, standard error 0.009, p < 0.001). Unlike statins, the PDC by fibrate and ezetimibe were not significantly associated with Δglu. There was no significant interaction effect on Δglu between time interval and statin. Considering individual types of statins, use of atorvastatin, rosuvastatin, pitavastatin, and simvastatin were significantly associated with increase of Δglu. Pravastatin, lovastatin, and fluvastatin were also positively associated with Δglu, but were not statistically significant. CONCLUSIONS More adherent and intensive use of statins was significantly associated with an increase in fasting glucose of non-diabetic individuals. In subgroup analysis of individual statins, use of atorvastatin, rosuvastatin, pitavastatin and simvastatin had significant association with increase in fasting glucose. Pravastatin, lovastatin, and fluvastatin had non-significant trend toward an increased fasting glucose. Our findings suggest the medication class effect of statins inducing hyperglycemia.
Collapse
Affiliation(s)
- Jinkwon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Yul Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
21
|
Current drugs, targets, and drug delivery systems for the treatment of dyslipidemia. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
|
23
|
Dong P, Pan L, Zhang X, Zhang W, Wang X, Jiang M, Chen Y, Duan Y, Wu H, Xu Y, Zhang P, Zhu Y. Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:479-488. [PMID: 28119096 DOI: 10.1016/j.jep.2017.01.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. MATERIALS AND METHODS High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. RESULTS HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (P<0.05). In mice fed with 20mg/kg HLF, Total cholesterol (TC) level was decreased by 18.6% and very low density lipoprotein cholesterol plus low density lipoprotein cholesterol (VLDLc+LDLc) level were decreased by 23.1% whereas high density lipoprotein cholesterol (HDLc) and triglyceride (TG) levels were similar compared to that of the control group. Peroxisome proliferator activated receptor alpha (PPARα) mRNA was increased by 31.2% (P<0.05) and 60.9% (P<0.05) in mice fed with 5mg/kg and 20mg/kg HLF respectively. Sterol regulatory element binding protein-1c (SREBP-1c) was decreased by 59.3% in the group of 20mg/kg. Carnitine palmitoyl transferase 1 (CPT-1) mRNA level of 20mg/kg group was induced 66.7% (P<0.05). Superoxide dismutase 1 and 2 (SOD1 and SOD2) mRNA were induced 25.4% (P<0.05) and 71.4% (P<0.05) while induced by 36.3% (P<0.05) and 73.2% (P<0.05) in group of 20mg/kg. Glutathione peroxidase 3 (Gpx3) mRNA in the group of 20mg/kg was induced by 96.7% (P<0.05). Hepatic hydroxymethylglutaryl CoA reductase (HMG-CoAR) expression was as same level as the control group while LDL receptor (LDLR) mRNA and protein were induced by 84.2% (P<0.05) and 98.8% (P<0.05) in group of 20mg/kg. HLF inhibit the formation of foam cell by 27.9% (P<0.05) in the dosage of 25μg/ml, and 33.3% (P<0.05) in the dosage of 50μg/ml. HLF increased the reverse cholesterol transport (RCT) in vivo. DISCUSSION AND CONCLUSION Hawthorn leave flavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Pengzhi Dong
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Lanlan Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Xiting Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Wenwen Zhang
- The College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xue Wang
- The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China.
| | - Meixiu Jiang
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Yuanli Chen
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yajun Duan
- The College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Honghua Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Yantong Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| |
Collapse
|
24
|
Wiggins BS, Saseen JJ, Page RL, Reed BN, Sneed K, Kostis JB, Lanfear D, Virani S, Morris PB. Recommendations for Management of Clinically Significant Drug-Drug Interactions With Statins and Select Agents Used in Patients With Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2016; 134:e468-e495. [DOI: 10.1161/cir.0000000000000456] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Kimura H, Yagi Y, Arimitsu K, Maeda K, Ikejiri K, Takano JI, Kusuhara H, Kagawa S, Ono M, Sugiyama Y, Saji H. Radiosynthesis of novel pitavastatin derivative ([18F]PTV-F1) as a tracer for hepatic OATP using a one-pot synthetic procedure. J Labelled Comp Radiopharm 2016; 59:565-575. [DOI: 10.1002/jlcr.3464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto Japan
- Department of Analytical and Bioinorganic Chemistry; Kyoto Pharmaceutical University; Misasagi, Yamashina-ku Kyoto Japan
| | - Yusuke Yagi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto Japan
| | - Kenji Arimitsu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto Japan
- Department of Analytical and Bioinorganic Chemistry; Kyoto Pharmaceutical University; Misasagi, Yamashina-ku Kyoto Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Kazuaki Ikejiri
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Jun-ichi Takano
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Shinya Kagawa
- Shiga Medical Center Research Institute; Moriyama, Moriyama City Shiga Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center; RIKEN Cluster for Industry Partnerships, RIKEN; Tsurumi-ku Yokohama Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto Japan
| |
Collapse
|
26
|
You HY, Zhang WJ, Xie XM, Zheng ZH, Zhu HL, Jiang FZ. Pitavastatin suppressed liver cancer cells in vitro and in vivo. Onco Targets Ther 2016; 9:5383-8. [PMID: 27621652 PMCID: PMC5010166 DOI: 10.2147/ott.s106906] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pitavastatin classically functions as a blood cholesterol-lowering drug. Previously, it was discovered with antiglioma stem cell properties through drug screening. However, whether it can be used for liver cancer cell therapy has never been reported. In this study, the cell viability and colony formation assay were utilized to analyze the cytotoxicity of pitavastatin on liver cancer cells. The cell cycle alteration was checked after pitavastatin treatment. Apoptosis-related protein expression and the effect of caspase inhibitor were also checked. The in vivo inhibitory effect of pitavastatin on the growth of liver tumor was also tested. It was found that pitavastatin inhibited growth and colony formation of liver cancer Huh-7 cells and SMMC7721 cells. It induced arrest of liver cancer cells at the G1 phase. Increased proportion of sub-G1 cells was observed after pitavastatin treatment. Pitavastatin promoted caspase-9 cleavage and caspase-3 cleavage in liver cancer cells. Caspase inhibitor Z-VAD-FMK reversed the cleavage of cytotoxic effect of pitavastatin. Moreover, pitavastatin decreased the tumor growth and improved the survival of tumor-bearing mice. This study suggested the antiliver cancer effect of the old drug pitavastatin. It may be developed as a drug for liver cancer therapy.
Collapse
Affiliation(s)
- He-Yi You
- Department of Telescopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wei-Jian Zhang
- Department of Telescopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xue-Meng Xie
- Department of Telescopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhi-Hai Zheng
- Department of Telescopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Heng-Liang Zhu
- Department of Telescopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fei-Zhao Jiang
- Department of Telescopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
27
|
Filippatos TD, Elisaf MS. Pitavastatin and carbohydrate metabolism: what is the evidence? Expert Rev Clin Pharmacol 2016; 9:955-60. [DOI: 10.1586/17512433.2016.1165607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- T. D. Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
28
|
Xiang N, Zhou X, He X, Zhang Y, Zhang J, Zhang ZR, Sun X, Gong T, Fu Y. An Injectable Gel Platform for the Prolonged Therapeutic Effect of Pitavastatin in the Management of Hyperlipidemia. J Pharm Sci 2016; 105:1148-55. [DOI: 10.1016/j.xphs.2015.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
29
|
Fayed AS, Hegazy MA, Abbas EE, Salama NN. Rapid and selective determination of pitavastatin calcium in presence of its degradation products and co-formulated drug by first-derivative micelle-enhanced and synchronous fluorimetric methods. RSC Adv 2016. [DOI: 10.1039/c6ra20813d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New, selective and rapid methods are presented for determination of PIT in the presence of its hydrolytic degradation products and co-formulated drug, EZE. These methods are derivative micelle enhanced native fluorescence and synchronous fluorimetry.
Collapse
Affiliation(s)
- Ahmed S. Fayed
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo
- Egypt
| | - Maha A. Hegazy
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo
- Egypt
| | - Enas E. Abbas
- National Organization for Drug Control and Research (NODCAR)
- Giza
- Egypt
| | - Nahla N. Salama
- National Organization for Drug Control and Research (NODCAR)
- Giza
- Egypt
| |
Collapse
|
30
|
Ultra-High Performance Method on Superficially Porous Stationary Phase for the Determination of Related Substances in Pitavastatin Calcium by HPLC. Chromatographia 2015. [DOI: 10.1007/s10337-015-2922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol 2015; 15:e461-8. [PMID: 25186049 DOI: 10.1016/s1470-2045(14)70119-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Much preclinical and epidemiological evidence supports the anticancer effects of statins. Epidemiological evidence does not suggest an association between statin use and reduced incidence of breast cancer, but does support a protective effect of statins--especially simvastatin--on breast cancer recurrence. Here, we argue that the existing evidence base is sufficient to justify a clinical trial of breast cancer adjuvant therapy with statins and we advocate for such a trial to be initiated without delay. If a protective effect of statins on breast cancer recurrence is supported by trial evidence, then the indications for a safe, well tolerated, and inexpensive treatment can be expanded to improve outcomes for breast cancer survivors. We discuss several trial design opportunities--including candidate predictive biomarkers of statin safety and efficacy--and offer solutions to the key challenges involved in the enrolment, follow-up, and analysis of such a trial.
Collapse
Affiliation(s)
- Thomas P Ahern
- Departments of Surgery and Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Timothy L Lash
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Peer M Christiansen
- Unit of Breast and Endocrine Surgery, Aarhus University Hospital, Aarhus, Denmark; Danish Breast Cancer Cooperative Group, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Yin T, Liu Q, Zhao H, Zhao L, Liu H, Li M, Cui M, Ren W. LC–MS/MS assay for pitavastatin in human plasma and subsequent application to a clinical study in healthy Chinese volunteers. Asian J Pharm Sci 2014. [DOI: 10.1016/j.ajps.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci 2014; 15:20607-37. [PMID: 25391045 PMCID: PMC4264186 DOI: 10.3390/ijms151120607] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.
Collapse
Affiliation(s)
| | | | - Devinder S Arora
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | - Gary D Grant
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | | | - Anthony V Perkins
- Griffith Health Institute, Griffith University, Queensland 4222, Australia.
| | - Andrew K Davey
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
34
|
Efficacy and Safety of Pitavastatin Versus Simvastatin: A Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig 2014; 34:599-608. [DOI: 10.1007/s40261-014-0215-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Wood WG, Mΰller WE, Eckert GP. Statins and Neuroprotection: Basic Pharmacology Needed. Mol Neurobiol 2014; 50:214-20. [DOI: 10.1007/s12035-014-8647-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
|
36
|
Hu M, Tomlinson B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol 2013; 10:51-65. [PMID: 24156555 DOI: 10.1517/17425255.2014.851667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Statins are the cornerstone of lipid-lowering therapy to reduce the risk of coronary heart disease. Rosuvastatin and pitavastatin are the two recently developed statins with less potential for drug interaction resulting in improved safety profiles. AREAS COVERED This review summarizes the pharmacokinetics and drug interactions of rosuvastatin and pitavastatin. The materials reviewed were identified by searching PubMed for publications using 'rosuvastatin', 'pitavastatin', 'statins', 'pharmacokinetics' and 'drug interaction' as the search terms. EXPERT OPINION Rosuvastatin and pitavastatin have favorable pharmacokinetic and safety profiles as their disposition does not depend on or is only marginally influenced by cytochrome P450 (CYP) enzymes, thus potentially reducing the risk of drug-drug interactions of these two statins with other drugs known to inhibit CYP enzymes. However, drug transporters play a significant role in the disposition of rosuvastatin and pitavastatin and drug interactions may occur through these. Genetic polymorphisms in drug transporters may also affect the pharmacokinetics, drug interactions and/or the lipid-lowering effect of these statins to a different extent.
Collapse
Affiliation(s)
- Miao Hu
- The Chinese University of Hong Kong, Department of Medicine & Therapeutics , Shatin , Hong Kong SAR
| | | |
Collapse
|
37
|
Kondra SB, Madireddy V, Chilukuri M, Papadasu N, Jonnalagadda L. A Validated Stability-Indicative UPLC Method for Nilotinib Hydrochloride for the Determination of Process-Related and Degradation Impurities. J Chromatogr Sci 2013; 52:880-5. [DOI: 10.1093/chromsci/bmt134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Li K, Chen J, Li J, Chen Y, Qu J, Guo X, Chen C, Chen B. One-Pot Synthesis of 4-Substituted 1H-[1,2,3]triazolo[4,5-c]quinolines Through CuO-Promoted Tandem Cyclization Reactions of (E)-3-(2-Bromoaryl)-1-arylprop-2-en-1-ones with Sodium Azide. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol Appl Pharmacol 2013; 269:187-94. [PMID: 23562342 DOI: 10.1016/j.taap.2013.03.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 11/22/2022]
Abstract
Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD7.0) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC50 values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein.
Collapse
|
40
|
Kokudai M, Inui N, Takeuchi K, Sakaeda T, Kagawa Y, Watanabe H. Effects of Statins on the Pharmacokinetics of Midazolam in Healthy Volunteers. J Clin Pharmacol 2013; 49:568-73. [DOI: 10.1177/0091270009332435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Abstract
The reality of regression of atherosclerotic plaques was established as long ago as 1987 by aggressive cholesterol reduction even before the era of statin therapy. Nevertheless, the most important aspect of patient benefit to prevent cardiovascular (CV) disease events is stabilization of these plaques so they will not rupture. Lowering of low-density lipoproteins is critical to this goal and can be considered the gold standard of preventive CV medicine. The major goal for the high-risk patient and the diabetic patient is lowering these harmful lipoproteins to less than 70 mg/dL. No discussion of CV disease prevention is complete without considering tobacco abuse and its elimination. Even secondhand smoke has been established as harmful. Control of hypertension is another major aspect of CV disease prevention, and a blood pressure less than 120/80 mm Hg is ideal. With obesity a major problem in the developed world, its role in the metabolic syndrome is of major significance as is the high prevalence of this so-called syndrome versus collection of specific risk factors in a population with poor health habits. Control of diabetes mellitus has established benefit from the standpoint of CV disease prevention except that some problems have been reported with extremely tight blood sugar control. Exercise was long considered good but now there are evidence-based reasons to recommend it as essential in CV disease prevention. There are many unforeseen frontiers in CV disease prevention but, for now, everything points to elevation of high-density lipoproteins as the next focus of this prevention.
Collapse
Affiliation(s)
- Thomas F Whayne
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
42
|
Díaz Rodríguez Á, Serrano Cumplido A, Fierro González D, Rodríguez Arroyo LA, García-Norro Herreros FJ, de Abajo Olea S, López Rodríguez I, Panisello Royo JM, Minguez Villar JC, Palomo del Arco J, Colás Chacartegui R, Pascual Fuster V, Verdes-Montenegro Atalaya JC. Pitavastatina: una nueva alternativa en el tratamiento de la dislipemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2012. [DOI: 10.1016/j.arteri.2011.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts. Arch Toxicol 2011; 86:483-96. [PMID: 22038141 DOI: 10.1007/s00204-011-0772-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
Abstract
This study reports the results of an investigation of the phototoxicity mechanism induced by pitavastatin and its photoproducts, namely 6-cyclopropyl-10-fluoro-7,8-dihydrobenzo[k]phenanthridine (PP3) and 6-cyclopropyl-10-fluorobenzo[k]phenanthridine (PP4). The phototoxicity was tested in human keratinocytes cell lines NCTC-2544, and the results proved that under the same conditions, all three compounds exhibited phototoxic effects in the model tested. The reduction in cell viability was found to be both concentration- and UVA dose-dependent. A point of note is that both the photoproducts produced a dramatic decrease in cell viability with GI(50) values one order of magnitude lower compared to the parent compound. In particular, the fully aromatic derivative (PP4) showed the highest antiproliferative activity. Flow cytometric analysis indicated that pitavastatin and the photoproduct PP4 principally induced necrosis, as revealed by the large appearance of propidium iodide-positive cells and also confirmed by the rapid drop in cellular ATP levels. Further studies committed to better understanding of photoinduced cell death mechanism(s) revealed that neither pitavastatin nor PP4 induced mitochondrial depolarization or lysosomal damage, but, interestingly, extensive cell lipid membrane peroxidation along with a significant oxidation of model proteins occurred, suggesting that pitavastatin and PP4 exert their phototoxic effect mainly in the cellular membranes. The present results suggest that the phototoxicity of pitavastatin may be mediated by the formation of benzophenanthridine-like photoproducts that appear to have high potential as photosensitizers.
Collapse
|
44
|
Greupink R, Dillen L, Monshouwer M, Huisman MT, Russel FGM. Interaction of fluvastatin with the liver-specific Na+ -dependent taurocholate cotransporting polypeptide (NTCP). Eur J Pharm Sci 2011; 44:487-96. [PMID: 21945488 DOI: 10.1016/j.ejps.2011.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/15/2011] [Accepted: 09/09/2011] [Indexed: 11/16/2022]
Abstract
It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40μM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30μM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway.
Collapse
Affiliation(s)
- Rick Greupink
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Stone MT. An Improved Larock Synthesis of Quinolines via a Heck Reaction of 2-Bromoanilines and Allylic Alcohols. Org Lett 2011; 13:2326-9. [DOI: 10.1021/ol200579a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew T. Stone
- Department of Chemistry and Novartis Center for Continuous Manufacturing, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Panchal HJ, Suhagia BN. Stability-indicating liquid chromatographic method for analysis of pitavastatin calcium in tablet dosage forms. ACTA CHROMATOGR 2011. [DOI: 10.1556/achrom.23.2011.1.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Takano KI, Yamamoto S, Tomita K, Takashina M, Yokoo H, Matsuda N, Takano Y, Hattori Y. Successful treatment of acute lung injury with pitavastatin in septic mice: potential role of glucocorticoid receptor expression in alveolar macrophages. J Pharmacol Exp Ther 2011; 336:381-90. [PMID: 21057058 DOI: 10.1124/jpet.110.171462] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
There is growing evidence that the HMG-CoA reductase inhibitors (statins) provide some of the beneficial effects that are independent of their lipid-lowering effects. Recent animal experiments and clinical trials suggest that statin use may limit the development of sepsis and associated systemic inflammation. The aim of this study was to explore the potential role of statins in the prevention treatment of sepsis-induced acute lung injury (ALI). Mice were rendered septic by cecal ligation and puncture (CLP). An intraperitoneal injection of 3 mg/kg per day of pitavastatin was initiated 4 days before surgery and was maintained for life support afterward, which significantly improved the survival of CLP mice. Treatment with pitavastatin prevented the ALI development in CLP mice, as indicated by the findings that severe hypoxemia, increased pulmonary vascular permeability, and histological lung damage, including inflammatory cell infiltrate, were greatly remedied. This was associated with down-regulation of increased activity of nuclear factor-κB (NF-κB) in septic lungs. Although plasma cortisol showed a sharp rise, glucocorticoid receptor (GCR) expression in the lungs was strikingly reduced after the onset of CLP-induced sepsis. It is noteworthy that pitavastatin increased GCR expression with an increase in alveolar macrophages in which GCRs are localized, without modifying the sepsis-associated rise in plasma cortisol. These results confirm significant protection by pitavastatin on septic ALI and demonstrate that down-regulated NF-κB activation associated with the GCR expression increase consequent to the increased number of alveolar macrophages may explain, in part, the mechanisms responsible for favorable effects of statins on the ALI management.
Collapse
Affiliation(s)
- Ken-ichi Takano
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
The Isoprenoid Biosynthetic Pathway and Statins. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-415922-8.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
|
50
|
Gotto AM, Moon J. Pitavastatin for the treatment of primary hyperlipidemia and mixed dyslipidemia. Expert Rev Cardiovasc Ther 2010; 8:1079-90. [PMID: 20670185 DOI: 10.1586/erc.10.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pitavastatin is a new, synthetic member of the statin class of lipid-lowering drugs. Compared with other available statins, it has a unique cyclopropyl group on its base structure that is believed to increase 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition by a factor of five and to significantly increase the transcription and activity of LDL receptors. Pitavastatin is primarily metabolized via glucuronidation and is not a substrate for the cytochrome P450 3A4 enzyme, thus avoiding the potential for cytochrome P450-mediated drug-drug interactions. Clinical trials have shown that pitavastatin is comparable to atorvastatin and simvastatin in improving lipid measures, and more potent than pravastatin. Pitavastatin is effective in reducing triglycerides and increasing HDL-cholesterol, so it will be particularly beneficial in treating patients with mixed dyslipidemia. Its safety and adverse event profile is similar to that of other available statins, and it has an established history of use in Asia indicating tolerability and safety for treatment lasting up to 7 years.
Collapse
Affiliation(s)
- Antonio M Gotto
- Weill Cornell Medical College, 1305 York Ave. Y-805, New York, NY 10021, USA
| | | |
Collapse
|