1
|
Mullagulova AI, Timechko EE, Solovyeva VV, Yakimov AM, Ibrahim A, Dmitrenko DD, Sufianov AA, Sufianova GZ, Rizvanov AA. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int J Mol Sci 2024; 25:12081. [PMID: 39596149 PMCID: PMC11593886 DOI: 10.3390/ijms252212081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis.
Collapse
Affiliation(s)
- Aysilu I. Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Valeriya V. Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Ahmad Ibrahim
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Diana D. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia;
| | - Albert A. Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, Kazan 420111, Russia
| |
Collapse
|
2
|
Cai AJ, Gao K, Zhang F, Jiang YW. Recent advances and current status of gene therapy for epilepsy. World J Pediatr 2024; 20:1115-1137. [PMID: 39395088 DOI: 10.1007/s12519-024-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disorder with complex pathogenic mechanisms, and refractory epilepsy often lacks effective treatments. Gene therapy is a promising therapeutic option, with various preclinical experiments achieving positive results, some of which have progressed to clinical studies. DATA SOURCES This narrative review was conducted by searching for papers published in PubMed/MEDLINE with the following single and/or combination keywords: epilepsy, children, neurodevelopmental disorders, genetics, gene therapy, vectors, transgenes, receptors, ion channels, micro RNAs (miRNAs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 (CRISPR/Cas9), expression regulation, optogenetics, chemical genetics, mitochondrial epilepsy, challenges, ethics, and disease models. RESULTS Currently, gene therapy research in epilepsy primarily focuses on symptoms attenuation mediated by viral vectors such as adeno-associated virus and other types. Advances in gene therapy technologies, such as CRISPR/Cas9, have provided a new direction for epilepsy treatment. However, the clinical application still faces several challenges, including issues related to vectors, models, expression controllability, and ethical considerations. CONCLUSIONS Here, we summarize the relevant research and clinical advances in gene therapy for epilepsy and outline the challenges facing its clinical application. In addition to the shortcomings inherent in gene therapy components, the reconfiguration of excitatory and inhibitory properties in epilepsy treatment is a delicate process. On-demand, cell-autonomous treatments and multidisciplinary collaborations may be crucial in addressing these issues. Understanding gene therapy for epilepsy will help clinicians gain a clearer perception of the research progress and challenges, guiding the design of future clinical protocols and research decisions.
Collapse
Affiliation(s)
- Ao-Jie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
3
|
Alessandri M, Osorio-Forero A, Lüthi A, Chatton JY. The lactate receptor HCAR1: A key modulator of epileptic seizure activity. iScience 2024; 27:109679. [PMID: 38655197 PMCID: PMC11035371 DOI: 10.1016/j.isci.2024.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Epilepsy affects millions globally with a significant portion exhibiting pharmacoresistance. Abnormal neuronal activity elevates brain lactate levels, which prompted the exploration of its receptor, the hydroxycarboxylic acid receptor 1 (HCAR1) known to downmodulate neuronal activity in physiological conditions. This study revealed that HCAR1-deficient mice (HCAR1-KO) exhibited lowered seizure thresholds, and increased severity and duration compared to wild-type mice. Hippocampal and whole-brain electrographic seizure analyses revealed increased seizure severity in HCAR1-KO mice, supported by time-frequency analysis. The absence of HCAR1 led to uncontrolled inter-ictal activity in acute hippocampal slices, replicated by lactate dehydrogenase A inhibition indicating that the activation of HCAR1 is closely associated with glycolytic output. However, synthetic HCAR1 agonist administration in an in vivo epilepsy model did not modulate seizures, likely due to endogenous lactate competition. These findings underscore the crucial roles of lactate and HCAR1 in regulating circuit excitability to prevent unregulated neuronal activity and terminate epileptic events.
Collapse
Affiliation(s)
- Maxime Alessandri
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland
| |
Collapse
|
4
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
5
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Shimoda Y, Beppu K, Ikoma Y, Morizawa YM, Zuguchi S, Hino U, Yano R, Sugiura Y, Moritoh S, Fukazawa Y, Suematsu M, Mushiake H, Nakasato N, Iwasaki M, Tanaka KF, Tominaga T, Matsui K. Optogenetic stimulus-triggered acquisition of seizure resistance. Neurobiol Dis 2021; 163:105602. [PMID: 34954320 DOI: 10.1016/j.nbd.2021.105602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kaoru Beppu
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Yosuke M Morizawa
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Satoshi Zuguchi
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Utaro Hino
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ryutaro Yano
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yugo Fukazawa
- Division of Cell Biology and Neuroscience, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Makoto Suematsu
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Matsui
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.
| |
Collapse
|
7
|
Perna A, Marathe S, Dreos R, Falquet L, Akarsu Egger H, Auber LA. Revealing NOTCH-dependencies in synaptic targets associated with Alzheimer's disease. Mol Cell Neurosci 2021; 115:103657. [PMID: 34314836 DOI: 10.1016/j.mcn.2021.103657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies have identified NOTCH signaling as a contributor of neurodegeneration including Alzheimer's disease' (AD) pathophysiology. As part of the efforts to understand molecular mechanisms and players involved in neurodegenerative dementia, we employed transgenic mouse models with Notch1 and Rbpjk loss of function (LOF) mutation in pyramidal neurons of the CA fields. Using RNA-seq, we have investigated the differential expression of NOTCH-dependent genes either upon environmental enrichment (EE) or upon kainic acid (KA) injury. We found a substantial genetic diversity in absence of both NOTCH1 receptor or RBPJK transcriptional activator. Among differentially expressed genes, we observed a significant upregulation of Gabra2a in both knockout models, suggesting a role for NOTCH signaling in the modulation of E/I balance. Upon excitotoxic stimulation, loss of RBPJK results in decreased expression of synaptic proteins with neuroprotective effects. We confirmed Nptx2, Npy, Pdch8, TncC as direct NOTCH1/RBPJK targets and Bdnf and Scg2 as indirect targets. Finally, we translate these findings into human entorhinal cortex containing the hippocampal region from AD patients performing targeted transcripts analysis. We observe an increased trend for RBPJK and the ligand DNER starting in the mild-moderate stage of the disease with no change of NOTCH1 expression. Alongside, expression of the Notch targets Hes5 and Hey1 tend to rise in the intermediate stage of the disease and drop in severe AD. Similarly the newly discovered NOTCH targets, NPTX2, NPY, BDNF show an up-warding tendency during the mild-moderate stage, and decline in the severe phase of the disease. This study identifies NOTCH as a central signaling cascade capable of modulating synaptic transmission in response to excitatory insult through the activation of neuroprotective genes that have been associated to AD.
Collapse
Affiliation(s)
- A Perna
- Section of Medicine, Department NMS, University of Fribourg, Fribourg, Switzerland
| | - S Marathe
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - R Dreos
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - L Falquet
- Biochemistry Unit, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - H Akarsu Egger
- Biochemistry Unit, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - L Alberi Auber
- Section of Medicine, Department NMS, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center for Human Health, Fribourg, Switzerland.
| |
Collapse
|
8
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
9
|
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 2021; 13:608001. [PMID: 33551745 PMCID: PMC7862707 DOI: 10.3389/fnmol.2020.608001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the central nervous system, NPY acts as a neuromodulator, affecting pathways that range from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain perception). NPY has a broad repertoire of receptor subtypes, each activating specific signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy, NPY is thought to act as an endogenous anticonvulsant that performs its action through Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy may represent a novel approach for the treatment of epilepsy patients, particularly for pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the aforementioned aspects of NPY signaling, the study of possible NPY applications as a therapeutic molecule is not devoid of critical aspects. The present review will summarize data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal of key elements that could be exploited to improve the already existing NPY-based gene therapy approaches for epilepsy.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Verlengia
- San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Pietro Marino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Szczygieł JA, Danielsen KI, Melin E, Rosenkranz SH, Pankratova S, Ericsson A, Agerman K, Kokaia M, Woldbye DPD. Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future Treatment of Epilepsy: Preclinical Data in Rats. Front Mol Neurosci 2020; 13:232. [PMID: 33343295 PMCID: PMC7746806 DOI: 10.3389/fnmol.2020.603409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
Gene therapy to treat pharmacoresistant temporal lobe epilepsy in humans is now being developed using an AAV vector (CG01) that encodes the combination of neuropeptide Y and its antiepileptic receptor Y2. With this in mind, the present study aimed to provide important preclinical data on the effects of CG01 on the duration of transgene expression, cellular tropism, and potential side effects on body weight and cognitive function. The CG01 vector was administered unilaterally into the dorsal and ventral hippocampus of adult male rats and expression of both transgenes was found to remain elevated without a sign of decline at 6 months post-injection. CG01 appeared to mediate expression selectively in hippocampal neurons, without expression in astrocytes or oligodendrocytes. No effects were seen on body weight as well as on short- or long-term memory as revealed by testing in the Y-maze or Morris water maze tests. Thus these data show that unilateral CG01 vector treatment as future gene therapy in pharmacoresistant temporal lobe epilepsy patients should result in stable and long-term expression predominantly in neurons and be well tolerated without side effects on body weight and cognitive function.
Collapse
Affiliation(s)
| | - Kira Iben Danielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | - Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | | | | | | | | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | |
Collapse
|
11
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
12
|
Melin E, Nanobashvili A, Avdic U, Gøtzsche CR, Andersson M, Woldbye DPD, Kokaia M. Disease Modification by Combinatorial Single Vector Gene Therapy: A Preclinical Translational Study in Epilepsy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:179-193. [PMID: 31660420 PMCID: PMC6807261 DOI: 10.1016/j.omtm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Gene therapy has been suggested as a plausible novel approach to achieve seizure control in patients with focal epilepsy that do not adequately respond to pharmacological treatment. We investigated the seizure-suppressant potential of combinatorial neuropeptide Y and Y2 receptor single vector gene therapy based on adeno-associated virus serotype 1 (AAV1) in rats. First, a dose-response study in the systemic kainate-induced acute seizure model was performed, whereby the 1012 genomic particles (gp)/mL titer of the vector was selected as an optimal concentration. Second, an efficacy study was performed in the intrahippocampal kainate chronic model of spontaneous recurrent seizures (SRSs), designed to reflect a likely clinical scenario, with magnetic resonance image (MRI)-guided focal unilateral administration of the vector in the hippocampus during the chronic stage of the disease. The efficacy study demonstrated a favorable outcome of the gene therapy, with a 31% responder rate (more than 50% reduction in SRS frequency) and 13% seizure-freedom rate, whereas no such effects were observed in the control animals. The inter-SRS and SRS cluster intervals were also significantly prolonged in the treated group compared to controls. In addition, the SRS duration was significantly reduced in the treated group but not in the controls. This study establishes the SRS-suppressant ability of the single vector combinatorial neuropeptide Y/Y2 receptor gene therapy in a clinically relevant chronic model of epilepsy.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Avtandil Nanobashvili
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden.,CombiGene AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden
| | - Una Avdic
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden.,Laboratory of Neural Plasticity, Center for Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Center for Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| |
Collapse
|
13
|
Snowball A, Chabrol E, Wykes RC, Shekh-Ahmad T, Cornford JH, Lieb A, Hughes MP, Massaro G, Rahim AA, Hashemi KS, Kullmann DM, Walker MC, Schorge S. Epilepsy Gene Therapy Using an Engineered Potassium Channel. J Neurosci 2019; 39:3159-3169. [PMID: 30755487 PMCID: PMC6468110 DOI: 10.1523/jneurosci.1143-18.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/24/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Refractory focal epilepsy is a devastating disease for which there is frequently no effective treatment. Gene therapy represents a promising alternative, but treating epilepsy in this way involves irreversible changes to brain tissue, so vector design must be carefully optimized to guarantee safety without compromising efficacy. We set out to develop an epilepsy gene therapy vector optimized for clinical translation. The gene encoding the voltage-gated potassium channel Kv1.1, KCNA1, was codon optimized for human expression and mutated to accelerate the recovery of the channels from inactivation. For improved safety, this engineered potassium channel (EKC) gene was packaged into a nonintegrating lentiviral vector under the control of a cell type-specific CAMK2A promoter. In a blinded, randomized, placebo-controlled preclinical trial, the EKC lentivector robustly reduced seizure frequency in a male rat model of focal neocortical epilepsy characterized by discrete spontaneous seizures. When packaged into an adeno-associated viral vector (AAV2/9), the EKC gene was also effective at suppressing seizures in a male rat model of temporal lobe epilepsy. This demonstration of efficacy in a clinically relevant setting, combined with the improved safety conferred by cell type-specific expression and integration-deficient delivery, identify EKC gene therapy as being ready for clinical translation in the treatment of refractory focal epilepsy.SIGNIFICANCE STATEMENT Pharmacoresistant epilepsy affects up to 0.3% of the population. Although epilepsy surgery can be effective, it is limited by risks to normal brain function. We have developed a gene therapy that builds on a mechanistic understanding of altered neuronal and circuit excitability in cortical epilepsy. The potassium channel gene KCNA1 was mutated to bypass post-transcriptional editing and was packaged in a nonintegrating lentivector to reduce the risk of insertional mutagenesis. A randomized, blinded preclinical study demonstrated therapeutic effectiveness in a rodent model of focal neocortical epilepsy. Adeno-associated viral delivery of the channel to both hippocampi was also effective in a model of temporal lobe epilepsy. These results support clinical translation to address a major unmet need.
Collapse
Affiliation(s)
- Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Robert C Wykes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Tawfeeq Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Jonathan H Cornford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Andreas Lieb
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Michael P Hughes
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom, and
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom, and
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom, and
| | - Kevan S Hashemi
- Open Source Instruments Inc., Watertown, Massachusetts 02472
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom,
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom,
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
14
|
Shimazaki K, Kobari T, Oguro K, Yokota H, Kasahara Y, Murashima Y, Watanabe E, Kawai K, Okada T. Hippocampal GAD67 Transduction Using rAAV8 Regulates Epileptogenesis in EL Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:180-186. [PMID: 30788386 PMCID: PMC6369250 DOI: 10.1016/j.omtm.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/29/2018] [Indexed: 12/01/2022]
Abstract
Gene therapy has been employed as a therapeutic approach for intractable focal epilepsies. Considering the potential of focal GABAergic neuromodulation in regulating epileptogenesis, the GABA-producing enzyme, γ-aminobutyric acid decarboxylase 67 (GAD67), is highly suitable for epilepsy therapy. The EL/Suz (EL) mouse is a model of multifactorial temporal lobe epilepsy. In the present study, we examined focal gene transduction in epileptic EL mice using recombinant adeno-associated virus serotype 8 (rAAV8) expressing human GAD67 to enhance GABA-mediated neural inhibition. Eight-week-old mice were bilaterally injected with rAAV8-GFP or rAAV8-GAD67 in the hippocampal CA3 region. After four weeks, the GAD67-transduced EL mice, but not the rAAV-GFP-treated EL mice, exhibited a significant reduction in seizure generation. The GAD67-mediated depression became stable after 14 weeks. The excitability of the CA3 region was markedly reduced in the GAD67-transduced EL mice, consistent with the results of the Ca2+ imaging using hippocampal slices. In addition, downregulation of c-Fos expression was observed in GAD67-transduced hippocampi. Our findings showed that rAAV8-GAD67 induced significant changes in the GABAergic system in the EL hippocampus. Thus, rAAV8-mediated GAD67 gene transfer is a promising therapeutic strategy for the treatment of epilepsies.
Collapse
Affiliation(s)
- Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takashi Kobari
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Keiji Oguro
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hidenori Yokota
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Yuko Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yoshiya Murashima
- Division of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashioku, Arakawa-ku, Tokyo, Japan
| | - Eiju Watanabe
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
15
|
Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model. Neurobiol Dis 2018; 113:23-32. [DOI: 10.1016/j.nbd.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 02/01/2023] Open
|
16
|
Wykes RC, Lignani G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology 2017; 132:108-117. [PMID: 28564577 DOI: 10.1016/j.neuropharm.2017.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/14/2023]
Abstract
Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- R C Wykes
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, UK.
| | - G Lignani
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
17
|
Neuropeptide FF receptors as novel targets for limbic seizure attenuation. Neuropharmacology 2015; 95:415-23. [DOI: 10.1016/j.neuropharm.2015.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 01/08/2023]
|
18
|
Winden KD, Bragin A, Engel J, Geschwind DH. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy. Neurobiol Dis 2015; 78:35-44. [PMID: 25818007 DOI: 10.1016/j.nbd.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
The molecular basis of epileptogenesis is poorly characterized. Studies in humans and animal models have identified an electrophysiological signature that precedes the onset of epilepsy, which has been termed fast ripples (FRs) based on its frequency. Multiple lines of evidence implicate regions generating FRs in epileptogenesis, and FRs appear to demarcate the seizure onset zone, suggesting a role in ictogenesis as well. We performed gene expression analysis comparing areas of the dentate gyrus that generate FRs to those that do not generate FRs in a well-characterized rat model of epilepsy. We identified a small cohort of genes that are differentially expressed in FR versus non-FR brain tissue and used quantitative PCR to validate some of those that modulate neuronal excitability. Gene expression network analysis demonstrated conservation of gene co-expression between non-FR and FR samples, but examination of gene connectivity revealed changes that were most pronounced in the cm-40 module, which contains several genes associated with synaptic function and the differentially expressed genes Kcna4, Kcnv1, and Npy1r that are down-regulated in FRs. We then demonstrate that the genes within the cm-40 module are regulated by seizure activity and enriched for the targets of the RNA binding protein Elavl4. Our data suggest that seizure activity induces co-expression of genes associated with synaptic transmission and that this pattern is attenuated in areas displaying FRs, implicating the failure of this mechanism in the generation of FRs.
Collapse
Affiliation(s)
- Kellen D Winden
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA; Program in Neurogenetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA; The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dan H Geschwind
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA; Program in Neurogenetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Christiansen SH, Olesen MV, Gøtzsche CR, Woldbye DPD. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice. Neuropeptides 2014; 48:335-44. [PMID: 25267070 DOI: 10.1016/j.npep.2014.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) causes anxiolytic- and antidepressant-like effects after central administration in rodents. These effects could theoretically be utilized in future gene therapy for anxiety and depression using viral vectors for induction of overexpression of NPY in specific brain regions. Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala, injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined rAAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests after intra-amygdaloid rAAV-NPY. Taken together, the present data show that rAAV-NPY treatment may confer non-additive anxiolytic-like effect after injection into the amygdala or hippocampus, being most pronounced in the amygdala.
Collapse
Affiliation(s)
- S H Christiansen
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - M V Olesen
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - C R Gøtzsche
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - D P D Woldbye
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
|
21
|
Dyrvig M, Christiansen SH, Woldbye DPD, Lichota J. Temporal gene expression profile after acute electroconvulsive stimulation in the rat. Gene 2014; 539:8-14. [PMID: 24518690 DOI: 10.1016/j.gene.2014.01.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 01/20/2023]
Abstract
Electroconvulsive therapy (ECT) remains one of the most effective treatments of major depression. It has been suggested that the mechanisms of action involve gene expression. In recent decades there have been several investigations of gene expression following both acute and chronic electroconvulsive stimulation (ECS). These studies have focused on several distinct gene targets but have generally included only few time points after ECS for measuring gene expression. Here we measured gene expression of three types of genes: Immediate early genes, synaptic proteins, and neuropeptides at six time points following an acute ECS. We find significant increases for c-Fos, Egr1, Neuritin 1 (Nrn 1), Bdnf, Snap29, Synaptotagmin III (Syt 3), Synapsin I (Syn 1), and Psd95 at differing time points after ECS. For some genes these changes are prolonged whereas for others they are transient. Npy expression significantly increases whereas the gene expression of its receptors Npy1r, Npy2r, and Npy5r initially decreases. These decreases are followed by a significant increase for Npy2r, suggesting anticonvulsive adaptations following seizures. In summary, we find distinct changes in mRNA quantities that are characteristic for each gene. Considering the observed transitory and inverse changes in expression patterns, these data underline the importance of conducting measurements at several time points post-ECS.
Collapse
Affiliation(s)
- Mads Dyrvig
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren H Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Lichota
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
22
|
NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 2013; 38:1352-64. [PMID: 23358240 PMCID: PMC3656378 DOI: 10.1038/npp.2013.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Collapse
|
23
|
Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 2012; 4:161ra152. [PMID: 23147003 DOI: 10.1126/scitranslmed.3004190] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neocortical epilepsy is frequently drug-resistant. Surgery to remove the epileptogenic zone is only feasible in a minority of cases, leaving many patients without an effective treatment. We report the potential efficacy of gene therapy in focal neocortical epilepsy using a rodent model in which epilepsy is induced by tetanus toxin injection in the motor cortex. By applying several complementary methods that use continuous wireless electroencephalographic monitoring to quantify epileptic activity, we observed increases in high frequency activity and in the occurrence of epileptiform events. Pyramidal neurons in the epileptic focus showed enhanced intrinsic excitability consistent with seizure generation. Optogenetic inhibition of a subset of principal neurons transduced with halorhodopsin targeted to the epileptic focus by lentiviral delivery was sufficient to attenuate electroencephalographic seizures. Local lentiviral overexpression of the potassium channel Kv1.1 reduced the intrinsic excitability of transduced pyramidal neurons. Coinjection of this Kv1.1 lentivirus with tetanus toxin fully prevented the occurrence of electroencephalographic seizures. Finally, administration of the Kv1.1 lentivirus to an established epileptic focus progressively suppressed epileptic activity over several weeks without detectable behavioral side effects. Thus, gene therapy in a rodent model can be used to suppress seizures acutely, prevent their occurrence after an epileptogenic stimulus, and successfully treat established focal epilepsy.
Collapse
|
24
|
|
25
|
Olesen MV, Christiansen SH, Gøtzsche CR, Holst B, Kokaia M, Woldbye DPD. Y5 neuropeptide Y receptor overexpression in mice neither affects anxiety- and depression-like behaviours nor seizures but confers moderate hyperactivity. Neuropeptides 2012; 46:71-9. [PMID: 22342800 DOI: 10.1016/j.npep.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Neuropeptide Y (NPY) has been implicated in anxiolytic- and antidepressant-like behaviour as well as seizure-suppressant effects in rodents. Although these effects appear to be predominantly mediated via other NPY receptors (Y1 and/or Y2), several studies have also indicated a role for Y5 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY, Y1 or Y2 receptors in the hippocampus or amygdala has previously been shown to modulate emotional behaviour and seizures in rodents. The present study explored the potential effects of gene therapy with the Y5 receptor, by testing effects of recombinant adeno-associated viral vector (rAAV) encoding Y5 (rAAV-Y5) in anxiety- and depression-like behaviour as well as in kainate-induced seizures in adult mice. The rAAV-Y5 vector injected into the hippocampus and amygdala induced a pronounced and sustained increase in Y5 receptor mRNA expression and functional Y5 receptor binding, but no significant effects were found with regard to anxiety- and depression-like behaviours or seizure susceptibility. Instead, rAAV-mediated Y5 receptor transgene overexpression resulted in moderate hyperactivity in the open field test. These results do not support a potential role for single transgene overexpression of Y5 receptors for modulating anxiety-/depression-like behaviours or seizures in adult mice. Whether the induction of hyperactivity by rAAV-Y5 could be relevant for other conditions remains to be studied.
Collapse
Affiliation(s)
- M V Olesen
- Protein Laboratory & Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D, Mathé AA. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 2012; 15:1317-31. [PMID: 21995655 DOI: 10.1517/14728222.2011.628314] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neuropeptide Y (NPY) is a highly conserved neuropeptide belonging to the pancreatic polypeptide family. Its potential role in the etiology and pathophysiology of mood and anxiety disorders has been extensively studied. NPY also has effects on feeding behavior, ethanol intake, sleep regulation, tissue growth and remodeling. Findings from animal studies have delineated the physiological and behavioral effects mediated by specific NPY receptor subtypes, of which Y1 and Y2 are the best understood. AREAS COVERED Physiological roles and alterations of the NPYergic system in anxiety disorders, depression, posttraumatic stress disorder (PTSD), alcohol dependence and epilepsy. For each disorder, studies in animal models and human investigations are outlined and discussed, focusing on behavior, neurophysiology, genetics and potential for novel treatment targets. EXPERT OPINION The wide implications of NPY in psychiatric disorders such as depression and PTSD make the NPYergic system a promising target for the development of novel therapeutic interventions. These include intranasal NPY administration, currently under study, and the development of agonists and antagonists targeting NPY receptors. Therefore, we are proposing that via this mode of administration, NPY might exert CNS therapeutic actions without untoward systemic effects. Future work will show if this is a feasible approach.
Collapse
Affiliation(s)
- Gang Wu
- Karolinska Institutet-Clinical Neuroscience, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Neuropeptide Y increases in vivo hippocampal extracellular glutamate levels through Y1 receptor activation. Neurosci Lett 2012; 510:143-7. [DOI: 10.1016/j.neulet.2012.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 01/19/2023]
|
28
|
Weinberg MS, McCown TJ. Current prospects and challenges for epilepsy gene therapy. Exp Neurol 2011; 244:27-35. [PMID: 22008258 DOI: 10.1016/j.expneurol.2011.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/16/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
This review addresses the state of gene therapy research for the treatment of epilepsy. Preclinical studies have demonstrated the anti-seizure efficacy of viral vector-based gene transfer through the use of a variety of strategies - from modulating classic neurotransmitter systems to targeting or overexpressing of neuropeptide receptors in seizure-specific brain regions. While these studies provide substantive proof of principle for viral vector gene therapy, future studies must address the challenges of vector immunity, cellular specificity and effective global delivery. As these issues are resolved, viral vector gene therapy should significantly impact the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Marc S Weinberg
- University of North Carolina Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | |
Collapse
|
29
|
Olesen MV, Christiansen SH, Gøtzsche CR, Nikitidou L, Kokaia M, Woldbye DPD. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice. J Neurosci Res 2011; 90:498-507. [PMID: 21971867 DOI: 10.1002/jnr.22770] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/15/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
Neuropeptide Y (NPY) exerts anxiolytic- and antidepressant-like effects in rodents that appear to be mediated via Y1 receptors. Gene therapy using recombinant viral vectors to induce overexpression of NPY in the hippocampus or amygdala has previously been shown to confer anxiolytic-like effect in rodents. The present study explored an alternative and more specific approach: overexpression of Y1 receptors. Using a recombinant adeno-associated viral vector (rAAV) encoding the Y1 gene (rAAV-Y1), we, for the first time, induced overexpression of functional transgene Y1 receptors in the hippocampus of adult mice and tested the animals in anxiety- and depression-like behavior. Hippocampal Y1 receptors have been suggested to mediate seizure-promoting effect, so the effects of rAAV-induced Y1 receptor overexpression were also tested in kainate-induced seizures. Y1 receptor transgene overexpression was found to be associated with modest anxiolytic-like effect in the open field and elevated plus maze tests, but no effect was seen on depression-like behavior using the tail suspension and forced swim tests. However, the rAAV-Y1 vector modestly aggravated kainate-induced seizures. These data indicate that rAAV-induced overexpression of Y1 receptors in the hippocampus could confer anxiolytic-like effect accompanied by a moderate proconvulsant adverse effect. Further studies are clearly needed to determine whether Y1 gene therapy might have a future role in the treatment of anxiety disorders.
Collapse
Affiliation(s)
- M V Olesen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
30
|
Neuropeptide Y has a protective role during murine retrovirus-induced neurological disease. J Virol 2010; 84:11076-88. [PMID: 20702619 DOI: 10.1128/jvi.01022-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral infections in the central nervous system (CNS) can lead to neurological disease either directly by infection of neurons or indirectly through activation of glial cells and production of neurotoxic molecules. Understanding the effects of virus-mediated insults on neuronal responses and neurotrophic support is important in elucidating the underlying mechanisms of viral diseases of the CNS. In the current study, we examined the expression of neurotrophin- and neurotransmitter-related genes during infection of mice with neurovirulent polytropic retrovirus. In this model, virus-induced neuropathogenesis is indirect, as the virus predominantly infects macrophages and microglia and does not productively infect neurons or astrocytes. Virus infection is associated with glial cell activation and the production of proinflammatory cytokines in the CNS. In the current study, we identified increased expression of neuropeptide Y (NPY), a pleiotropic growth factor which can regulate both immune cells and neuronal cells, as a correlate with neurovirulent virus infection. Increased levels of Npy mRNA were consistently associated with neurological disease in multiple strains of mice and were induced only by neurovirulent, not avirulent, virus infection. NPY protein expression was primarily detected in neurons near areas of virus-infected cells. Interestingly, mice deficient in NPY developed neurological disease at a faster rate than wild-type mice, indicating a protective role for NPY. Analysis of NPY-deficient mice indicated that NPY may have multiple mechanisms by which it influences virus-induced neurological disease, including regulating the entry of virus-infected cells into the CNS.
Collapse
|
31
|
Woldbye DPD, Angehagen M, Gøtzsche CR, Elbrønd-Bek H, Sørensen AT, Christiansen SH, Olesen MV, Nikitidou L, Hansen TVO, Kanter-Schlifke I, Kokaia M. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. ACTA ACUST UNITED AC 2010; 133:2778-88. [PMID: 20688813 DOI: 10.1093/brain/awq219] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2 and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment.
Collapse
Affiliation(s)
- David P D Woldbye
- Experimental Epilepsy Group, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2010; 5:115-25. [PMID: 18615179 DOI: 10.2174/157015907780866938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in the development of antiepileptic drugs, refractory epilepsy remains a major clinical problem affecting up to 35% of patients with partial epilepsy. Currently, there are few therapies that affect the underlying disease process. Therefore, novel therapeutic concepts are urgently needed. The recent development of experimental cell and gene therapies may offer several advantages compared to conventional systemic pharmacotherapy: (i) Specificity to underlying pathogenetic mechanisms by rational design; (ii) specificity to epileptogenic networks by focal delivery; and (iii) avoidance of side effects. A number of naturally occurring brain substances, such as GABA, adenosine, and the neuropeptides galanin and neuropeptide Y, may function as endogenous anticonvulsants and, in addition, may interact with the process of epileptogenesis. Unfortunately, the systemic application of these compounds is compromised by limited bioavailability, poor penetration of the blood-brain barrier, or the widespread systemic distribution of their respective receptors. Therefore, in recent years a new field of cell and gene-based neuropharmacology has emerged, aimed at either delivering endogenous anticonvulsant compounds by focal intracerebral transplantation of bioengineered cells (ex vivo gene therapy), or by inducing epileptogenic brain areas to produce these compounds in situ (in vivo gene therapy). In this review, recent efforts to develop GABA-, adenosine-, galanin-, and neuropeptide Y- based cell and gene therapies are discussed. The neurochemical rationales for using these compounds are discussed, the advantages of focal applications are highlighted and preclinical cell transplantation and gene therapy studies are critically evaluated. Although many promising data have been generated recently, potential problems, such as long-term therapeutic efficacy, long-term safety, and efficacy in clinically relevant animal models, need to be addressed before clinical applications can be contemplated.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| |
Collapse
|
33
|
Ghosal K, Pimplikar SW. Aging and excitotoxic stress exacerbate neural circuit reorganization in amyloid precursor protein intracellular domain transgenic mice. Neurobiol Aging 2010; 32:2320.e1-9. [PMID: 20493588 DOI: 10.1016/j.neurobiolaging.2010.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 11/27/2022]
Abstract
The cleavage of amyloid precursor protein (APP) by presenilins simultaneously generates amyloid-β (Aβ) and APP intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer's disease (AD) pathology and recently AICD was also shown to contribute to AD. Transgenic mice overexpressing AICD show age-dependent tau phosphorylation and aggregation, memory deficits, and neurodegeneration. Moreover, these mice show aberrant electrical activity and silent seizures beginning at 3-4 months of age. Here we show that AICD mice also displayed abnormal mossy fiber sprouting beginning about the same time and that this sprouting intensified as the animals aged. Expression of neuropeptide Y was increased in mossy fiber terminals in aged but not young AICD mice. Importantly, young AICD mice injected with kainic acid showed similar pathology to that observed in aged AICD mice. These data show that elevated levels of AICD render neurons hypersensitive to stress and induce hippocampal circuit reorganization, which can further exacerbate hyperexcitability. These results further demonstrate that AICD, in addition to Aβ, can play a significant role in AD pathogenesis.
Collapse
Affiliation(s)
- Kaushik Ghosal
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
34
|
Lin EJD, Lin S, Aljanova A, During MJ, Herzog H. Adult-onset hippocampal-specific neuropeptide Y overexpression confers mild anxiolytic effect in mice. Eur Neuropsychopharmacol 2010; 20:164-75. [PMID: 19781916 DOI: 10.1016/j.euroneuro.2009.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/09/2009] [Accepted: 08/18/2009] [Indexed: 01/29/2023]
Abstract
The anticonvulsive properties of neuropeptide Y (NPY) are opening up opportunity for the development of NPY gene transfer as a therapy for epilepsy. In order to pursue the potential clinical translation of this approach, the effects of somatic NPY gene transfer on other hippocampal functions need to be assessed. The present study characterized the behavioral effects of recombinant adeno-associated viral vector (rAAV)-mediated hippocampal NPY overexpression in adult male mice and also Y1 receptor knockout mice. In wild-type mice, there were no obvious adverse effects on the general health, motor function and cognition following rAAV-NPY treatment. Moreover, hippocampal NPY overexpression induced a moderate anxiolytic effect in the open field test and elevated plus maze. Intriguingly, the treatment also increased depressive-like behavior in the tail suspension test. Elevated hippocampal NPY levels in the absence of Y1 signalling had no effects on anxiety or cognition and actually improved the depressive-like phenotype observed in the wild-type mice treated with rAAV-NPY.
Collapse
Affiliation(s)
- En-Ju Deborah Lin
- Neurobiology Program, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | |
Collapse
|
35
|
Frisch C, Hanke J, Kleinerüschkamp S, Röske S, Kaaden S, Elger CE, Schramm J, Yilmazer-Hanke DM, Helmstaedter C. Positive correlation between the density of neuropeptide y positive neurons in the amygdala and parameters of self-reported anxiety and depression in mesiotemporal lobe epilepsy patients. Biol Psychiatry 2009; 66:433-40. [PMID: 19482265 DOI: 10.1016/j.biopsych.2009.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 03/10/2009] [Accepted: 03/29/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) has been implicated in depression, anxiety, and memory. Expression of human NPY and the number of NPY-positive neurons in the rodent amygdala correlate with anxiety and stress-related behavior. Increased NPY expression in the epileptic brain is supposed to represent an adaptive mechanism counteracting epilepsy-related hyperexcitability. We attempted to investigate whether NPY-positive neurons in the human amygdala are involved in these processes. METHODS In 34 adult epileptic patients undergoing temporal lobe surgery for seizure control, the density of NPY-positive neurons was assessed in the basal, lateral, and accessory-basal amygdala nuclei. Cell counts were related to self-reported depression, anxiety, quality of life, clinical parameters (onset and duration of epilepsy, seizure frequency), antiepileptic medication, and amygdala and hippocampal magnetic resonance imaging volumetric measures. RESULTS Densities of NPY-positive basolateral amygdala neurons showed significant positive correlations with depression and anxiety scores, and they were negatively correlated with lamotrigine dosage. In contrast, NPY cell counts showed no relation to clinical factors or amygdalar and hippocampal volumes. CONCLUSIONS The results point to a role of amygdalar NPY in negative emotion and might reflect state processes at least in patients with temporal lobe epilepsy. Correlations with common clinical parameters of epilepsy were not found. The question of a disease-related reduction of the density of NPY-positive amygdalar neurons in temporal lobe epilepsy requires further investigation.
Collapse
Affiliation(s)
- Christian Frisch
- Department of Epileptology, University of Bonn, Medical Center, Sigmund Freud-Strasse 25, Bonn 53105, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J Neurosci 2009; 29:1457-68. [PMID: 19193892 DOI: 10.1523/jneurosci.4688-08.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
About one-third of women with epilepsy have a catamenial seizure pattern, in which seizures fluctuate with the menstrual cycle. Catamenial seizures occur more frequently when the ratio of circulating estradiol to progesterone is high, suggesting that estradiol is proconvulsant. We used adult female rats to test how estradiol-induced suppression of GABAergic inhibition in the hippocampus affects behavioral seizures induced by kainic acid. As expected, estradiol decreased the latency to initiate seizures, indicating increased seizure susceptibility. At the same time, however, estradiol also shortened the duration of late-stage seizures, indicating decreased seizure severity. Additional analyses showed that the decrease in seizure severity was attributable to greater release of the anticonvulsant neuropeptide, neuropeptide Y (NPY). First, blocking hippocampal NPY during seizures eliminated the estradiol-induced decrease in seizure duration. Second, light and electron microscopic studies indicated that estradiol increases the potentially releasable pool of NPY in inhibitory presynaptic boutons and facilitates the release of NPY from inhibitory boutons during seizures. Finally, the presence of estrogen receptor-alpha on large dense-core vesicles (LDCVs) in the hippocampus suggests that estradiol could facilitate neuropeptide release by acting directly on LDCVs themselves. Understanding how estradiol regulates NPY-containing LDCVs could point to molecular targets for novel anticonvulsant therapies.
Collapse
|
37
|
Sørensen AT, Nikitidou L, Ledri M, Lin EJD, During MJ, Kanter-Schlifke I, Kokaia M. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP. Exp Neurol 2008; 215:328-33. [PMID: 19038255 DOI: 10.1016/j.expneurol.2008.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/25/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Recently, hippocampal neuropeptide Y (NPY) gene therapy has been shown to effectively suppress both acute and chronic seizures in animal model of epilepsy, thus representing a promising novel antiepileptic treatment strategy, particularly for patients with intractable mesial temporal lobe epilepsy (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY gene therapy. Here we report how rAAV vector-mediated overexpression of NPY in the hippocampus affects rapid kindling, and subsequently explore how synaptic plasticity and transmission is affected by kindling and NPY overexpression by field recordings in CA1 stratum radiatum of brain slices. In animals injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected by rAAV-NPY treatment, and may be considered less critical for clinical application in epilepsy patients already experiencing memory disturbances.
Collapse
Affiliation(s)
- Andreas T Sørensen
- Experimental Epilepsy Group, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Activity-dependent volume transmission by transgene NPY attenuates glutamate release and LTP in the subiculum. Mol Cell Neurosci 2008; 39:229-37. [DOI: 10.1016/j.mcn.2008.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/05/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022] Open
|
39
|
Abstract
Results from animal models suggest gene therapy is a promising new approach for the treatment of epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances have been made in the areas of cell transplantation and in the development of recombinant viral vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity, and stable persistence in neurons, which results in robust, long-term expression of the transgene. rAAV vectors have been recently used in phase I clinical trials of Parkinson's disease with an excellent safety profile. Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are ongoing including evaluation of the therapeutic benefit in chronic models of epileptogenesis, as well as assessment of safety in toxicological studies.
Collapse
Affiliation(s)
- Véronique Riban
- Department of Molecular Virology, The Ohio State University, Biological Research Tower, Columbus, Ohio, USA
| | | | | |
Collapse
|
40
|
Abstract
Although often overshadowed by factors influencing seizure initiation, seizure termination is a critical step in the return to the interictal state. Understanding the mechanisms contributing to seizure termination could potentially identify novel targets for anticonvulsant drug development and may also highlight the pathophysiological processes contributing to seizure initiation. In this article, we review known physiological mechanisms contributing to seizure termination and discuss additional mechanisms that are likely to be relevant even though specific data are not yet available. This review is organized according to successively increasing "size scales"-from membranes to synapses to networks to circuits. We first discuss mechanisms of seizure termination acting at the shortest distances and affecting the excitable membranes of neurons in the seizure onset zone. Next we consider the contributions of ensembles of neurons and glia interacting at intermediate distances within the region of the seizure onset zone. Lastly, we consider the contribution of brain nuclei, such as the substantia nigra pars reticulata (SNR), that are capable of modulating seizures and exert their influence over the seizure onset zone (and neighboring areas) from a relatively great-in neuroanatomical terms-distance. It is our hope that the attention to the mechanisms contributing to seizure termination will stimulate novel avenues of epilepsy research and will contribute to improved patient care.
Collapse
Affiliation(s)
- Fred A Lado
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, NY 10461, USA.
| | | |
Collapse
|
41
|
Foti S, Haberman RP, Samulski RJ, McCown TJ. Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 suppresses seizure activity in vivo. Gene Ther 2007; 14:1534-6. [PMID: 17713567 PMCID: PMC3557464 DOI: 10.1038/sj.gt.3303013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) is a 36-amino-acid peptide that attenuates seizure activity following direct infusion or adeno-associated virus (AAV)-mediated expression in the central nervous system. However, NPY activates all NPY receptor subtypes, potentially causing unwanted side effects. NPY13-36 is a C-terminal peptide fragment of NPY that primarily activates the NPY Y2 receptor, thought to mediate the antiseizure activity. Therefore, we investigated if recombinant adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 could alter limbic seizure sensitivity. Rats received bilateral piriform cortex infusions of AAV vectors that express and constitutively secrete full-length NPY (AAV-FIB-NPY) or NPY13-36 (AAV-FIB-NPY13-36). Control rats received no infusion, as we have previously shown that vectors expressing and secreting reporter genes like GFP (AAV-FIB-EGFP), as well as vectors expressing peptides that lack secretion sequences (AAV-GAL) have no effect on seizures. One week later, all animals received kainic acid (10 mg kg(-1), intraperitoneally), and the latencies to wet dog shakes and limbic seizure behaviors were determined. Although both control and vector-treated rats developed wet dog shake behaviors with similar latencies, the latencies to class III and class IV limbic seizures were significantly prolonged in both NPY- and NPY13-36-treated groups. Thus, AAV-mediated expression and constitutive secretion of NPY and NPY13-36 is effective in attenuating limbic seizures, and provides a platform for delivering therapeutic peptide fragments with increased receptor selectivity.
Collapse
Affiliation(s)
- S Foti
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - RP Haberman
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - RJ Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - TJ McCown
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|