1
|
Bigelow LJ, Jarvis JH, Fiset C, Pope EK, Le Maistre-Matthys C, Benke TA, Bernard PB. Early life seizures and olfactory communication in rats. Epilepsia 2024; 65:3091-3099. [PMID: 39221936 PMCID: PMC11495993 DOI: 10.1111/epi.18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Early life seizures (ELS) are commonly associated with autism spectrum disorder (ASD); however, the exact role of ELS in the pathology is unknown. Prior studies have demonstrated social deficits, a core feature of ASD, following ELS; consequently, alterations in sensory modalities may contribute to the overall social deficits. Considering the speculated contribution of sensory deficit to social communication, we examined the developmental consequences of early postnatal kainic acid (KA)-induced seizures on olfactory preference and neural markers in the olfactory bulb in both male and female Sprague Dawley rats. METHODS KA-induced seizures or saline was administered. Rats were then exposed to a series of biologically relevant scents including male scent, female scent, nest scent, and phenylethylamine during the juvenile period and again during adulthood. Alterations in sensory modalities were expected to be expressed via abnormal preference for certain scents and/or production of abnormal ultrasonic vocalizations in response to scents. The olfactory bulbs were also assessed for the biologically relevant markers glial fibrillary acidic protein (GFAP) and calcium/calmodulin-dependent protein kinase II (CAMKII). RESULTS Our findings resulted in no significant differences in olfactory preference following ELS for juveniles or adults compared to controls. Similarly, there were no differences in GFAP expression or the ratio of phosphorylated CAMKII to CAMKII in either olfactory bulb. Interestingly, despite a lack of treatment differences, different scents were shown to elicit different responses in juvenile rats, yet these differences subsided in adulthood. SIGNIFICANCE Overall, the results of this study suggest that olfaction does not contribute to socialization deficit following ELS within the KA model.
Collapse
Affiliation(s)
- Logan J. Bigelow
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | - Jack H.M. Jarvis
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | - Catherine Fiset
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | - Emily K. Pope
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| | | | - Tim A. Benke
- University of Colorado School of Medicine, Department of Pediatrics, Aurora, CO, United States
| | - Paul B. Bernard
- University of Prince Edward Island, Biomedical Sciences, Charlottetown, PE, Canada
| |
Collapse
|
2
|
Li C, Cai Y, Chen Y, Tong J, Li Y, Liu D, Wang Y, Li Z, Wang Y, Li Q. ABCG2 shields against epilepsy, relieves oxidative stress and apoptosis via inhibiting the ISGylation of STAT1 and mTOR. Redox Biol 2024; 75:103262. [PMID: 38981367 PMCID: PMC11280404 DOI: 10.1016/j.redox.2024.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
The transporter protein ABC subfamily G member 2 (ABCG2) is implicated in epilepsy; however, its specific role remains unclear. In this study, we assessed changes in ABCG2 expression and its role in epilepsy both in vitro and in vivo. We observed an instantaneous increase in ABCG2 expression in epileptic animals and cells. Further, ABCG2 overexpression significantly suppressed the oxidative stress and apoptosis induced by glutamate, kainic acid (KA), and lipopolysaccharide (LPS) in neuronal and microglia cells. Furthermore, inhibiting ABCG2 activity offset this protective effect. ABCG2-deficient mice (ABCG2-/-) showed shorter survival times and decreased survival rates when administered with pentylenetetrazole (PTZ). We also noticed the accumulation of signal transducer and activator of transcription 1 (STAT1) and decreased phosphorylation of mammalian target of rapamycin kinase (mTOR) along with increased ISGylation in ABCG2-/- mice. ABCG2 overexpression directly interacted with STAT1 and mTOR, leading to a decrease in their ISGylation. Our findings indicate the rapid increase in ABCG2 expression acts as a shield in epileptogenesis, indicating ABCG2 may serve as a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yi Cai
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yongmin Chen
- Department of Functional Diagnosis, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingyi Tong
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Youbin Li
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Dong Liu
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yun Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Department of Clinical Pharmacy, Kunshan Maternity and Children's Health Care Hospital, Children's Hospital of Fudan University Kunshan Branch, Kunshan, Jiangsu, China.
| | - Yan Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Key Laboratory for Research and Development of Tropical Herbs, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Obot P, Cibelli A, Pan J, Velíšek L, Velíšková J, Scemes E. Pannexin1 Mediates Early-Life Seizure-Induced Social Behavior Deficits. ASN Neuro 2024; 16:2371164. [PMID: 39024558 PMCID: PMC11262470 DOI: 10.1080/17590914.2024.2371164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/11/2024] [Indexed: 07/20/2024] Open
Abstract
There is a high co-morbidity between childhood epilepsy and autism spectrum disorder (ASD), with age of seizure onset being a critical determinant of behavioral outcomes. The interplay between these comorbidities has been investigated in animal models with results showing that the induction of seizures at early post-natal ages leads to learning and memory deficits and to autistic-like behavior in adulthood. Modifications of the excitation/inhibition (glutamate/GABA, ATP/adenosine) balance that follows early-life seizures (ELS) are thought to be the physiological events that underlie neuropsychiatric and neurodevelopmental disorders. Although alterations in purinergic/adenosinergic signaling have been implicated in seizures and ASD, it is unknown whether the ATP release channels, Pannexin1 (Panx1), contribute to ELS-induced behavior changes. To tackle this question, we used the ELS-kainic acid model in transgenic mice with global and cell type specific deletion of Panx1 to evaluate whether these channels were involved in behavioral deficits that occur later in life. Our studies show that ELS results in Panx1 dependent social behavior deficits and also in poor performance in a spatial memory test that does not involve Panx1. These findings provide support for a link between ELS and adult behavioral deficits. Moreover, we identify neuronal and not astrocyte Panx1 as a potential target to specifically limit astrogliosis and social behavioral deficits resultant from early-life seizures.
Collapse
Affiliation(s)
- Price Obot
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jian Pan
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
- Department of Neurology, New York Medical College, Valhalla, New York, USA
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
- Department of Neurology, New York Medical College, Valhalla, New York, USA
- Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
5
|
Kazis D, Chatzikonstantinou S, Ciobica A, Kamal FZ, Burlui V, Calin G, Mavroudis I. Epidemiology, Risk Factors, and Biomarkers of Post-Traumatic Epilepsy: A Comprehensive Overview. Biomedicines 2024; 12:410. [PMID: 38398011 PMCID: PMC10886732 DOI: 10.3390/biomedicines12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This paper presents an in-depth exploration of Post-Traumatic Epilepsy (PTE), a complex neurological disorder following traumatic brain injury (TBI), characterized by recurrent, unprovoked seizures. With TBI being a global health concern, understanding PTE is crucial for effective diagnosis, management, and prognosis. This study aims to provide a comprehensive overview of the epidemiology, risk factors, and emerging biomarkers of PTE, thereby informing clinical practice and guiding future research. The epidemiological aspect of the study reveals PTE as a significant contributor to acquired epilepsies, with varying incidence influenced by injury severity, age, and intracranial pathologies. The paper delves into the multifactorial nature of PTE risk factors, encompassing clinical, demographic, and genetic elements. Key insights include the association of injury severity, intracranial hemorrhages, and early seizures with increased PTE risk, and the roles of age, gender, and genetic predispositions. Advancements in neuroimaging, electroencephalography, and molecular biology are presented, highlighting their roles in identifying potential PTE biomarkers. These biomarkers, ranging from radiological signs to electroencephalography EEG patterns and molecular indicators, hold promise for enhancing PTE pathogenesis understanding, early diagnosis, and therapeutic guidance. The paper also discusses the critical roles of astrocytes and microglia in PTE, emphasizing the significance of neuroinflammation in PTE development. The insights from this review suggest potential therapeutic targets in neuroinflammation pathways. In conclusion, this paper synthesizes current knowledge in the field, emphasizing the need for continued research and a multidisciplinary approach to effectively manage PTE. Future research directions include longitudinal studies for a better understanding of TBI and PTE outcomes, and the development of targeted interventions based on individualized risk profiles. This research contributes significantly to the broader understanding of epilepsy and TBI.
Collapse
Affiliation(s)
- Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Gabriela Calin
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Martins TG, Soliman R, Cordero-Maldonado ML, Donato C, Ameli C, Mombaerts L, Skupin A, Peri F, Crawford AD. Seizure-induced increase in microglial cell population in the developing zebrafish brain. Epilepsy Res 2023; 195:107203. [PMID: 37572541 DOI: 10.1016/j.eplepsyres.2023.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity. Given the advantage of zebrafish larvae for minimally-invasive imaging approaches, we sought for the first time to describe the microglial responses after acute seizures in two different zebrafish larval models: a chemically-induced epileptic model by the systemic injection of kainate at 3 days post-fertilization, and the didys552 genetic epilepsy model, which carries a mutation in scn1lab that leads to spontaneous epileptiform discharges. Kainate-treated larvae exhibited transient brain damage as shown by increased numbers of apoptotic nuclei as early as one day post-injection, which was followed by an increase in the number of microglia in the brain. A similar microglial phenotype was also observed in didys552-/- mutants, suggesting that microglia numbers change in response to seizure-like activity in the brain. Interestingly, kainate-treated larvae also displayed a decreased seizure threshold towards subsequent pentylenetetrazole-induced seizures, as shown by higher locomotor and encephalographic activity in comparison with vehicle-injected larvae. These results are comparable to kainate-induced rodent seizure models and suggest the suitability of these zebrafish seizure models for future studies, in particular to elucidate the links between epileptogenesis and microglial dynamic changes after seizure induction in the developing brain, and to understand how these modulate seizure susceptibility.
Collapse
Affiliation(s)
- Teresa G Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Remon Soliman
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Cristina Donato
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Corrado Ameli
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Francesca Peri
- Developmental Biology Group, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Institute for Orphan Drug Discovery, Bremerhaven, Germany.
| |
Collapse
|
7
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
8
|
Vizuete AFK, Leal MB, Moreira AP, Seady M, Taday J, Gonçalves CA. Arundic acid (ONO-2506) downregulates neuroinflammation and astrocyte dysfunction after status epilepticus in young rats induced by Li-pilocarpine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110704. [PMID: 36565981 DOI: 10.1016/j.pnpbp.2022.110704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Astrocytes, the most abundant glial cells, have several metabolic functions, including ionic, neurotransmitter and energetic homeostasis for neuronal activity. Reactive astrocytes and their dysfunction have been associated with several brain disorders, including the epileptogenic process. Glial Fibrillary Acidic Protein (GFAP) and S100 calcium-binding protein B (S100B) are astrocyte biomarkers associated with brain injury. We hypothesize that arundic acid (ONO-2506), which is known as an inhibitor of S100B synthesis and secretion, protects the hippocampal tissue from neuroinflammation and astrocyte dysfunction after status epileptics (SE) induction by Li-pilocarpine in young rats. Herein, we investigated the effects of arundic acid treatment, at time points of 6 or 24 h after the induction of SE by Li-pilocarpine, in young rats. In SE animals, arundic acid was able to prevent the damage induced by Li-pilocarpine in the hippocampus, decreasing neuroinflammatory signaling (reducing IL-1β, COX2, TLR4 and RAGE contents), astrogliosis (decreasing GFAP and S100B) and astrocytic dysfunction (recovering levels of GSH, glutamine synthetase and connexin-43). Furthermore, arundic acid improved glucose metabolism and reduced the glutamate excitotoxicity found in epilepsy. Our data reinforce the role of astrocytes in epileptogenesis development and the neuroprotective role of arundic acid, which modulates astrocyte function and neuroinflammation in SE animals.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Miriara B Leal
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Paula Moreira
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Taday
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Dahal A, Govindarajan K, Kar S. Administration of Kainic Acid Differentially Alters Astrocyte Markers and Transiently Enhanced Phospho-tau Level in Adult Rat Hippocampus. Neuroscience 2023; 516:27-41. [PMID: 36805001 DOI: 10.1016/j.neuroscience.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Kainic acid (KA), an analogue of the excitatory neurotransmitter glutamate, when administered systemically can trigger seizures and neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy (mTLE), which affects ∼50 million people globally. Evidence suggests that changes in astrocytes which precede neuronal damage play an important role in the degeneration of neurons and/or development of seizures in TLE pathogenesis. Additionally, a role for microtubule associated tau protein, involved in various neurodegenerative diseases including Alzheimer's disease, has also been suggested in the development of seizure and/or neurodegeneration in TLE pathogenesis. At present, possible alterations of different subtypes of astrocytes and their association, if any, with tau protein in TLE remain unclear. In this study, we evaluated alterations of different subtypes of astrocytes and phospho-/cleaved-tau levels in KA-treated rat model of TLE. Our results reveal that levels/expression of various astrocyte markers such as GFAP, vimentin, S100B, Aldh1L1, but not GS, are increased in the hippocampus of KA-treated rats. The levels/expression of both A1(C3+) and A2(S100A10+)-like astrocytes are also increased in KA-treated rats. Concurrently, the total (Tau1 and Tau5) and phospho-tau (AT270 and PHF1) levels are transiently enhanced following KA administration. Furthermore, the level/expression of cleaved-tau, which is apparent in a subset of GFAP-, S100B- and A2-positive astrocytes, are increased in KA-treated rats. These results, taken together, suggest a differential role for various astrocytic subpopulations and tau protein in the development of seizure and/or loss of neurons in KA model of TLE and possibly in human mTLE pathogenesis.
Collapse
Affiliation(s)
- Abhishek Dahal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Karthivashan Govindarajan
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Satyabrata Kar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta T6G 2M8, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2M8, Canada.
| |
Collapse
|
10
|
Nukala KM, Lilienthal AJ, Lye SH, Bassuk AG, Chtarbanova S, Manak JR. Downregulation of oxidative stress-mediated glial innate immune response suppresses seizures in a fly epilepsy model. Cell Rep 2023; 42:112004. [PMID: 36641750 PMCID: PMC9942582 DOI: 10.1016/j.celrep.2023.112004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Previous work in our laboratory has shown that mutations in prickle (pk) cause myoclonic-like seizures and ataxia in Drosophila, similar to what is observed in humans carrying mutations in orthologous PRICKLE genes. Here, we show that pk mutant brains show elevated, sustained neuronal cell death that correlates with increasing seizure penetrance, as well as an upregulation of mitochondrial oxidative stress and innate immune response (IIR) genes. Moreover, flies exhibiting more robust seizures show increased levels of IIR-associated target gene expression suggesting they may be linked. Genetic knockdown in glia of either arm of the IIR (Immune Deficiency [Imd] or Toll) leads to a reduction in neuronal death, which in turn suppresses seizure activity, with oxidative stress acting upstream of IIR. These data provide direct genetic evidence that oxidative stress in combination with glial-mediated IIR leads to progression of an epilepsy disorder.
Collapse
Affiliation(s)
- Krishna M Nukala
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Shu Hui Lye
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; The Iowa Neuroscience Institute, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
11
|
Oey NE, Tan PT, Pande SD. Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2301. [PMID: 36767668 PMCID: PMC9915627 DOI: 10.3390/ijerph20032301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
We aimed to determine the potentially modifiable risk factors that are predictive of post-traumatic brain injury seizures in relation to the severity of initial injury, neurosurgical interventions, neurostimulant use, and comorbidities. This retrospective study was conducted on traumatic brain injury (TBI) patients admitted to a single center from March 2008 to October 2017. We recruited 151 patients from a multiracial background with TBI, of which the data from 141 patients were analyzed, as 10 were excluded due to incomplete follow-up records or a past history of seizures. Of the remaining 141 patients, 33 (24.4%) patients developed seizures during long-term follow up post-TBI. Young age, presence of cerebral contusion, Indian race, low Glasgow Coma Scale (GCS) scores on admission, and use of neurostimulant medications were associated with increased risk of seizures. In conclusion, due to increased risk of seizures, younger TBI patients, as well as patients with low GCS on admission, cerebral contusions on brain imaging, and those who received neurostimulants or neurosurgical interventions should be monitored for post-TBI seizures. While it is possible that these findings may be explained by the differing mechanisms of injury in younger vs. older patients, the finding that patients on neurostimulants had an increased risk of seizures will need to be investigated in future studies.
Collapse
Affiliation(s)
| | - Pei Ting Tan
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore 529889, Singapore
| | | |
Collapse
|
12
|
Erisken S, Nune G, Chung H, Kang JW, Koh S. Time and age dependent regulation of neuroinflammation in a rat model of mesial temporal lobe epilepsy: Correlation with human data. Front Cell Dev Biol 2022; 10:969364. [PMID: 36172274 PMCID: PMC9512631 DOI: 10.3389/fcell.2022.969364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute brain insults trigger diverse cellular and signaling responses and often precipitate epilepsy. The cellular, molecular and signaling events relevant to the emergence of the epileptic brain, however, remain poorly understood. These multiplex structural and functional alterations tend also to be opposing - some homeostatic and reparative while others disruptive; some associated with growth and proliferation while others, with cell death. To differentiate pathological from protective consequences, we compared seizure-induced changes in gene expression hours and days following kainic acid (KA)-induced status epilepticus (SE) in postnatal day (P) 30 and P15 rats by capitalizing on age-dependent differential physiologic responses to KA-SE; only mature rats, not immature rats, have been shown to develop spontaneous recurrent seizures after KA-SE. To correlate gene expression profiles in epileptic rats with epilepsy patients and demonstrate the clinical relevance of our findings, we performed gene analysis on four patient samples obtained from temporal lobectomy and compared to four control brains from NICHD Brain Bank. Pro-inflammatory gene expressions were at higher magnitudes and more sustained in P30. The inflammatory response was driven by the cytokines IL-1β, IL-6, and IL-18 in the acute period up to 72 h and by IL-18 in the subacute period through the 10-day time point. In addition, a panoply of other immune system genes was upregulated, including chemokines, glia markers and adhesion molecules. Genes associated with the mitogen activated protein kinase (MAPK) pathways comprised the largest functional group identified. Through the integration of multiple ontological databases, we analyzed genes belonging to 13 separate pathways linked to Classical MAPK ERK, as well as stress activated protein kinases (SAPKs) p38 and JNK. Interestingly, genes belonging to the Classical MAPK pathways were mostly transiently activated within the first 24 h, while genes in the SAPK pathways had divergent time courses of expression, showing sustained activation only in P30. Genes in P30 also had different regulatory functions than in P15: P30 animals showed marked increases in positive regulators of transcription, of signaling pathways as well as of MAPKKK cascades. Many of the same inflammation-related genes as in epileptic rats were significantly upregulated in human hippocampus, higher than in lateral temporal neocortex. They included glia-associated genes, cytokines, chemokines and adhesion molecules and MAPK pathway genes. Uniquely expressed in human hippocampus were adaptive immune system genes including immune receptors CDs and MHC II HLAs. In the brain, many immune molecules have additional roles in synaptic plasticity and the promotion of neurite outgrowth. We propose that persistent changes in inflammatory gene expression after SE leads not only to structural damage but also to aberrant synaptogenesis that may lead to epileptogenesis. Furthermore, the sustained pattern of inflammatory genes upregulated in the epileptic mature brain was distinct from that of the immature brain that show transient changes and are resistant to cell death and neuropathologic changes. Our data suggest that the epileptogenic process may be a result of failed cellular signaling mechanisms, where insults overwhelm the system beyond a homeostatic threshold.
Collapse
Affiliation(s)
- Sinem Erisken
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - George Nune
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Hyokwon Chung
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
| | - Joon Won Kang
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- Department of Pediatrics & Medical Science, Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sookyong Koh
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- *Correspondence: Sookyong Koh,
| |
Collapse
|
13
|
Therapeutic treatment with the anti-inflammatory drug candidate MW151 may partially reduce memory impairment and normalizes hippocampal metabolic markers in a mouse model of comorbid amyloid and vascular pathology. PLoS One 2022; 17:e0262474. [PMID: 35081152 PMCID: PMC8791470 DOI: 10.1371/journal.pone.0262474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly, but therapeutic options are lacking. Despite long being able to effectively treat the ill-effects of pathology present in various rodent models of AD, translation of these strategies to the clinic has so far been disappointing. One potential contributor to this situation is the fact that the vast majority of AD patients have other dementia-contributing comorbid pathologies, the most common of which are vascular in nature. This situation is modeled relatively infrequently in basic AD research, and almost never in preclinical studies. As part of our efforts to develop small molecule, anti-inflammatory therapeutics for neurological injury and disease, we have recently been exploring potentially promising treatments in preclinical multi-morbidity contexts. In the present study, we generated a mouse model of mixed amyloid and hyperhomocysteinemia (HHcy) pathology in which to test the efficacy of one of our anti-inflammatory compounds, MW151. HHcy can cause cerebrovascular damage and is an independent risk factor for both AD dementia and vascular contributions to cognitive impairment and dementia. We found that MW151 was able to partially rescue hippocampal-dependent spatial memory and learning deficits in this comorbidity context, and further, that the benefit is associated with a normalization of hippocampal metabolites detectable via magnetic resonance spectroscopy. These findings provide evidence that MW151 in particular, and potentially anti-inflammatory treatment more generally, may be beneficial in AD patients with comorbid vascular pathology.
Collapse
|
14
|
Wu Y, Wei H, Li P, Zhao H, Li R, Yang F. Quercetin Administration Following Hypoxia-Induced Neonatal Brain Damage Attenuates Later-Life Seizure Susceptibility and Anxiety-Related Behavior: Modulating Inflammatory Response. Front Pediatr 2022; 10:791815. [PMID: 35223693 PMCID: PMC8873174 DOI: 10.3389/fped.2022.791815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neonatal seizures commonly caused by hypoxia could lead to brain injury and cognitive deficits. Quercetin could cross the blood brain barrier and exerts neuroprotective effects in many neurological disease settings. In this study, we aim to investigate the role of quercetin in attenuating cognitive impairment following hypoxia-induced neonatal seizure (HINS). METHOD Sprague-Dawley rats at P7 were exposed to a premixed gas in a hypoxic chamber to induce brain injury, and then continuously administered with quercetin for 21 days. Pentylenetetrazol kindling was used to induce seizures in the evolution. After the hypoxic lesion was stablished, anxiety-related behavior of rats after HINS was assessed using open field test. Memory impairment of rats after HINS was evaluated using novel object-recognition test and elevated plus maze test. The serum and hippocampal concentrations of TNF-a, iNOS, IL-6 MCP-1, and IL-1β were measured using ELISA. The mRNA expression levels of TNF-a, iNOS, IL-6 in the hippocampus were determined using qRT-PCR. The protein levels of TLR4, NF-κB p65, and p-NF-κB p65 in the hippocampus were determined using Western blot. RESULTS Quercetin administration significantly reduced later-life seizure susceptibility, anxiety-related behavior, and memory impairments in the rats following the HINS when compared to the HINS group without treatment. Both serum and hippocampal proinflammatory cytokines levels were significantly elevated in the rat after HINS. TLR4 protein expressions were increased in the HINS group when compared to control group, and decreased in the group of quercetin. The protein level of p-NF-κB p65 was significantly lower in the quercetin group compared to the HINS group. CONCLUSION We demonstrated that Quercetin significantly reduced susceptibility to later-life seizures. Quercetin could downregulate inflammatory response through TLR4/ NF-κB pathway, thereby attenuating HINS-induced anxiety, hippocampal memory impairment, and cognitive impairment in later life following HINS.
Collapse
Affiliation(s)
- Yan Wu
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Li
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruifang Li
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Feiyun Yang
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical College, Weihui, China
| |
Collapse
|
15
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
16
|
Okada M, Fukuyama K, Shiroyama T, Ueda Y. Brivaracetam prevents astroglial l-glutamate release associated with hemichannel through modulation of synaptic vesicle protein. Biomed Pharmacother 2021; 138:111462. [PMID: 33706129 DOI: 10.1016/j.biopha.2021.111462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The antiepileptic/anticonvulsive action of brivaracetam is considered to occur via modulation of synaptic vesicle protein 2A (SV2A); however, the pharmacological mechanisms of action have not been fully characterised. To explore the antiepileptic/anticonvulsive mechanism of brivaracetam associated with SV2A modulation, this study determined concentration-dependent effects of brivaracetam on astroglial L-glutamate release associated with connexin43 (Cx43), tumour-necrosis factor-α (TNFα) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor of rat primary cultured astrocytes using ultra-high-performance liquid chromatography. Furthermore, interaction among TNFα, elevated extracellular K+ and brivaracetam on expression of SV2A and Cx43 was determined using capillary immunoblotting. TNFα and elevated extracellular K+ predominantly enhanced astroglial L-glutamate release associated with respective AMPA/glutamate receptor and hemichannel. These effects were enhanced by a synergistic effect of TNFα and elevated extracellular K+ in combination. The activation of astroglial L-glutamate release, and expression of SV2A and Cx43 in the plasma membrane was suppressed by subchronic brivaracetam administration but were unaffected by acute administration. These results suggest that migration of SV2A to the astroglial plasma membrane by hyperexcitability activates astroglial glutamatergic transmission, perhaps via hemichannel activation. Subchronic brivaracetam administration suppressed TNFα-induced activation of AMPA/glutamate receptor and hemichannel via inhibition of ectopic SV2A. These findings suggest that combined inhibition of vesicular and ectopic SV2A functions contribute to the antiepileptic/anticonvulsive mechanism of brivaracetam action.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Yuto Ueda
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
17
|
Najafian SA, Farbood Y, Sarkaki A, Ghafouri S. FTY720 administration following hypoxia-induced neonatal seizure reverse cognitive impairments and severity of seizures in male and female adult rats: The role of inflammation. Neurosci Lett 2021; 748:135675. [PMID: 33516800 DOI: 10.1016/j.neulet.2021.135675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 11/15/2022]
Abstract
Hypoxia-induced neonatal seizure mainly leads to deleterious effects on brain function, especially cognitive impairments and increased susceptibility to epilepsy later in life. Early inflammation plays an important role in the pathology of these consequences. Therefore, we explored the long-term outcomes of Fingolimod treatment as an anti-inflammatory and neuroprotective agent in a rat model of HINS. Seizures were induced in rats (postnatal day 10) by 5% O2 exposure for 15 min. Sixty minutes after the onset of hypoxia, pups received FTY720 (0.3 mg.kg-1) or normal saline for 12 consecutive days (lactation period), and they were used at P60-P63 for behavioral tests, ELISA and Pentylenetetrazole kindling model. The results of open field, novel object recognition and elevated plus maze tasks showed that Fingolimod prevents hippocampal memory dysfunction and anxiety-like behavior in both male and female hypoxic groups, which was accompanied with decreased TNF-α level in hippocampus. In addition, FTY720 postponed epileptogenesis just in female hypoxic + FTY group and decreased severity of seizures in both genders. Our results suggest that, FTY720 treatment in immature rats, which were previously subjected to HINS, prevented the long-lasting deficits, like cognitive impairments, decreased the severity of seizures and related inflammation. In addition, FTY720 did not show significant interaction with gender in most of the experiments, except the average day to reach fully kindled state. Taken together, FTY720 has therapeutic potential for long lasting effects of HINS in both male and female animals at puberty.
Collapse
Affiliation(s)
- Seyed Ahmad Najafian
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Andoh M, Ikegaya Y, Koyama R. Microglia modulate the structure and function of the hippocampus after early-life seizures. J Pharmacol Sci 2020; 144:212-217. [PMID: 33070840 DOI: 10.1016/j.jphs.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The hippocampus is a brain region well-known to exhibit structural and functional changes in temporal lobe epilepsy. Studies analyzing the brains of patients with epilepsy and those from animal models of epilepsy have revealed that microglia are excessively activated, especially in the hippocampus. These findings suggest that microglia may contribute to the onset and aggravation of epilepsy; however, direct evidence for microglial involvement or the underlying mechanisms by which this occurs remain to be fully discovered. To date, neuron-microglia interactions have been vigorously studied in adult epilepsy models; such studies have clarified microglial responses to excessive synchronous firing of neurons. In contrast, the role of microglia in the postnatal brain of patients with epileptic seizures remain largely unclear. Some early-life seizures, such as complex febrile seizures, have been shown to cause structural and functional changes in the brain, which is a risk factor for future development of epilepsy. Because brain structure and function are actively modulated by microglia in both health and disease, it is essential to clarify the role of microglia in early-life seizures and its impact on epileptogenesis.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
19
|
Mukherjee S, Arisi GM, Mims K, Hollingsworth G, O'Neil K, Shapiro LA. Neuroinflammatory mechanisms of post-traumatic epilepsy. J Neuroinflammation 2020; 17:193. [PMID: 32552898 PMCID: PMC7301453 DOI: 10.1186/s12974-020-01854-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) occurs in as many as 64-74 million people worldwide each year and often results in one or more post-traumatic syndromes, including depression, cognitive, emotional, and behavioral deficits. TBI can also increase seizure susceptibility, as well as increase the incidence of epilepsy, a phenomenon known as post-traumatic epilepsy (PTE). Injury type and severity appear to partially predict PTE susceptibility. However, a complete mechanistic understanding of risk factors for PTE is incomplete. MAIN BODY From the earliest days of modern neuroscience, to the present day, accumulating evidence supports a significant role for neuroinflammation in the post-traumatic epileptogenic progression. Notably, substantial evidence indicates a role for astrocytes, microglia, chemokines, and cytokines in PTE progression. Although each of these mechanistic components is discussed in separate sections, it is highly likely that it is the totality of cellular and neuroinflammatory interactions that ultimately contribute to the epileptogenic progression following TBI. CONCLUSION This comprehensive review focuses on the neuroinflammatory milieu and explores putative mechanisms involved in the epileptogenic progression from TBI to increased seizure-susceptibility and the development of PTE.
Collapse
Affiliation(s)
- Sanjib Mukherjee
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gabriel M Arisi
- Department of Physiology, Federal University of Sao Paulo - Escola Paulista de Medicina, Sao Paulo, Brazil.
| | - Kaley Mims
- Texas A&M University, College Station, TX, USA
| | | | | | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
20
|
Dexamethasone after early-life seizures attenuates increased susceptibility to seizures, seizure-induced microglia activation and neuronal injury later in life. Neurosci Lett 2020; 728:134953. [DOI: 10.1016/j.neulet.2020.134953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
|
21
|
Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy. Mol Neurobiol 2019; 57:1674-1687. [PMID: 31813125 DOI: 10.1007/s12035-019-01797-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
An initial precipitating injury in the brain, such as after status epilepticus (SE), evolves into chronic temporal lobe epilepsy (TLE). We investigated changes in the miRNA composition of extracellular vesicles (EVs) in the forebrain after the establishment of SE-induced chronic TLE. We induced SE in young Fischer 344 rats through graded intraperitoneal injections of kainic acid, which resulted in consistent spontaneous recurrent seizures at ~ 3 months post-SE. We isolated EVs from the entire forebrain of chronically epileptic rats and age-matched naïve control animals through an ultracentrifugation method and performed miRNA-sequencing studies to discern changes in the miRNA composition of forebrain-derived EVs in chronic epilepsy. EVs from both naïve and epileptic forebrains displayed spherical or cup-shaped morphology, a comparable size range, and CD63 expression but lacked the expression of a deep cellular marker GM130. However, miRNA-sequencing studies suggested downregulation of 3 miRNAs (miR-187-5p, miR-346, and miR-331-3p) and upregulation of 4 miRNAs (miR-490-5p, miR-376b-3p, miR-493-5p, and miR-124-5p) in EVs from epileptic forebrains with fold changes ranging from 1.5 to 2.4 (p < 0.0006; FDR < 0.05). By using geNorm and Normfinder software, we identified miR-487 and miR-221 as the best combination of reference genes for measurement of altered miRNAs found in the epileptic forebrain through qRT-PCR studies. The validation revealed that only miR-346 and miR-331-3p were significantly downregulated in EVs from the epileptic forebrain. The enrichment pathway analysis of these miRNAs showed an overrepresentation of signaling pathways that are linked to molecular mechanisms underlying chronic epilepsy, including GABA-ergic (miR-346 targets) and mTOR (miR-331-3p targets) systems. Thus, the packaging of two miRNAs into EVs in neural cells is considerably altered in chronic epilepsy. Functional studies on these two miRNAs may uncover their role in the pathophysiology and treatment of TLE.
Collapse
|
22
|
Protective effect of minocycline on LPS-induced mitochondrial dysfunction and decreased seizure threshold through nitric oxide pathway. Eur J Pharmacol 2019; 858:172446. [DOI: 10.1016/j.ejphar.2019.172446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
|
23
|
Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A 2A Receptor. Int J Mol Sci 2019; 20:ijms20153727. [PMID: 31366130 PMCID: PMC6695599 DOI: 10.3390/ijms20153727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines.
Collapse
|
24
|
Shin N, Kim HG, Shin HJ, Kim S, Kwon HH, Baek H, Yi MH, Zhang E, Kim JJ, Hong J, Lee SY, Lee W, Triantafillu UL, Kim CS, Kim Y, Kim DW. Uncoupled Endothelial Nitric Oxide Synthase Enhances p-Tau in Chronic Traumatic Encephalopathy Mouse Model. Antioxid Redox Signal 2019; 30:1601-1620. [PMID: 30070145 DOI: 10.1089/ars.2017.7280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease thought to be caused by repetitive traumatic brain injury (TBI) and subconcussive injuries. While hyperphosphorylation of tau (p-Tau), which is attributed to astrocytic tangles (ATs) and neurofibrillary tangles, is known to be involved in CTE, there are limited neuropathological or molecular data. By utilizing repetitive mild TBI (rmTBI) mouse models, our aim was to examine the pathological changes of CTE-associated structures, specifically the ATs. RESULTS Our rmTBI mouse models showed symptoms of depressive behavior and memory deficit, alongside an increased p-Tau expression in their neurons and astrocytes in both the hippocampus and cortex. rmTBI induced oxidative stress in endothelial cells and nitric oxide (NO) generation in astrocytes, which were mediated by hypoxia and increased hypoxia-inducible factor 1-α (HIF1α). There was also correlated decreased regional cerebral tissue perfusion units, mild activation of astrocytes and NFκB phosphorylation, increased expression of inducible nitric oxide synthase (iNOS), increased endothelial nitric oxide synthase (eNOS) uncoupling with decreased tetrahydrobiopterin, and increased expression of nitrotyrosine, NADPH oxidase 2 (Nox2)/nuclear factor (erythroid-derived 2) factor 2 (Nrf2) signaling proteins. Combined, these effects induced peroxynitrite formation and hyperphosphorylation of tau in the hippocampus and cortex toward the formation of ATs. INNOVATION Our model features molecular pathogenesis events of CTE with clinically relevant latency periods. In particular, this is the first demonstration of an increased astrocytic iNOS expression in an in vivo model. CONCLUSION We propose a novel mechanism of uncoupled eNOS and NO contribution to Tau phosphorylation and AT formation in rmTBI brain, toward an increased molecular understanding of the pathophysiology of human CTE.
Collapse
Affiliation(s)
- Nara Shin
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,2 Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyeong-Geug Kim
- 4 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hyo Jung Shin
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sena Kim
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyeok Hee Kwon
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyunjung Baek
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Min-Hee Yi
- 5 Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Enji Zhang
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,6 Department of Anesthesia Medicine, Yanbian University Hospital, Yanbian, China
| | - Jwa-Jin Kim
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,7 LES Corporation, Inc., Daejeon, Republic of Korea
| | - Jinpyo Hong
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sun Yeul Lee
- 2 Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Wonhyung Lee
- 2 Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ursula L Triantafillu
- 8 Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama
| | - Cuk-Seong Kim
- 3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,9 Department of Physiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yonghyun Kim
- 8 Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama
| | - Dong Woon Kim
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Rezk S, Althani A, Abd-elmaksoud A, Kassab M, Farag A, Lashen S, Cenciarelli C, Caceci T, Marei H. Effects of estrogen on Survival and Neuronal Differentiation of adult human olfactory bulb neural stem Cells Transplanted into Spinal Cord Injured Rats.. [DOI: 10.1101/571950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractIn the present study we developed an excitotoxic spinal cord injury (SCI) model using kainic acid (KA) to evaluate of the therapeutic potential of human olfactory bulb neural stem cells (h-OBNSCs) for spinal cord injury (SCI). In a previous study, we assessed the therapeutic potential of these cells for SCI; all transplanted animals showed successful engraftment. These cells differentiated predominantly as astrocytes, not motor neurons, so no improvement in motor functions was detected. In the current study we used estrogen as neuroprotective therapy before transplantation of OBNSCs to preserve some of endogenous neurons and enhance the differentiation of these cells towards neurons. The present work demonstrated that the h-GFP-OBNSCs were able to survive for more than eight weeks after sub-acute transplantation into injured spinal cord. Stereological quantification of OBNSCs showed approximately a 2.38-fold increase in the initial cell population transplanted. 40.91% of OBNSCs showed differentiation along the neuronal lineages, which was the predominant fate of these cells. 36.36% of the cells differentiated into mature astrocytes; meanwhile 22.73% of the cells differentiated into oligodendrocytes. Improvement in motor functions was also detected after cell transplantation.
Collapse
|
26
|
Alam P, Borkokoty S, Siddiqi MK, Ehtram A, Majid N, Uddin M, Khan RH. DARK Classics in Chemical Neuroscience: Opium, a Friend or Foe. ACS Chem Neurosci 2019; 10:182-189. [PMID: 30403473 DOI: 10.1021/acschemneuro.8b00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Opium has found great use medicinally for its analgesic properties and has been witnessed as one of the most popular medications used in psychiatry. Opium derivatives have been shown as efficacious for relieving pain and the treatment of epileptic seizures, but progressive research toward their use in the treatment of neurodegenerative diseases remain elusive. To gain more insight into the other properties of opium such as anti-inflammatory properties, herein we discuss basic information regarding opium, opium content and mechanism of action, pharmacology of opium derivatives, the role of opium in the prevention of neurodegeneration, and adverse effects of opium derivatives on neuronal health.
Collapse
Affiliation(s)
- Parvez Alam
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Subhomoi Borkokoty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | | | - Aquib Ehtram
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Moin Uddin
- Department of IlmulAdvia (Unani Pharmacology), Ajmal Khan Tibbiya College, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
27
|
Fukuyama K, Okada M. Effects of levetiracetam on astroglial release of kynurenine-pathway metabolites. Br J Pharmacol 2018; 175:4253-4265. [PMID: 30153331 DOI: 10.1111/bph.14491] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Several preclinical studies have demonstrated the unique profiles of levetiracetam (LEV), inhibits spontaneous absence epilepsy models but does not affect traditional convulsion models; however, the detailed pharmacological mechanisms of action of LEV remain to be clarified. EXPERIMENTAL APPROACH We determined the interaction between LEV and IFNγ regarding astroglial release of anti-convulsive (kynurenic acid and xanthurenic acid), pro-convulsive (quinolinic acid) and anti-convulsive but pro-absence (cinnabarinic acid) kynurenine-pathway metabolites from rat cortical primary cultured astrocytes using ultra-HPLC equipped with MS. KEY RESULTS IFNγ increased basal astroglial release of cinnabarinic acid and quinolinic acid but decreased that of kynurenic acid and xanthurenic acid. IFNγ enhanced inositol 1,4,5-trisphosphate (IP3 ) receptor agonist (adenophostin A, AdA)-induced astroglial release of kynurenine-pathway metabolites, without affecting AMPA-induced release. LEV increased basal astroglial release of kynurenic acid and xanthurenic acid without affecting cinnabarinic acid or quinolinic acid. Chronic and acute LEV administration inhibited AMPA- and AdA-induced kynurenine-pathway metabolite release. Upon chronic administration, LEV enhanced stimulatory effects of IFNγ on kynurenic acid and xanthurenic acid, and reduced its stimulatory effects on cinnabarinic acid and quinolinic acid. Furthermore, LEV inhibited stimulatory effects of chronic IFNγ on AdA-induced release of kynurenine-pathway metabolites. CONCLUSIONS AND IMPLICATIONS This study demonstrated several mechanisms of LEV: (i) inhibition of AMPA- and AdA-induced astroglial release, (ii) inhibition of IFNγ-induced IP3 receptor activation and (iii) inhibition of release of cinnabarinic acid and quinolinic acid with activation of that of kynurenic acid induced by IFNγ. These combined actions of LEV may contribute to its unique profile.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| |
Collapse
|
28
|
Effect of Rufinamide on the kainic acid-induced excitotoxic neuronal death in the mouse hippocampus. Arch Pharm Res 2018; 41:776-783. [DOI: 10.1007/s12272-018-1043-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/25/2018] [Indexed: 01/11/2023]
|
29
|
Huang WY, Lin S, Chen HY, Chen YP, Chen TY, Hsu KS, Wu HM. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation 2018; 15:140. [PMID: 29753328 PMCID: PMC5948699 DOI: 10.1186/s12974-018-1186-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Systemic inflammation associated with sepsis can induce neuronal hyperexcitability, leading to enhanced seizure predisposition and occurrence. Brain microglia are rapidly activated in response to systemic inflammation and, in this activated state, release multiple cytokines and signaling factors that amplify the inflammatory response and increase neuronal excitability. NADPH oxidase (NOX) enzymes promote microglial activation through the generation of reactive oxygen species (ROS), such as superoxide anion. We hypothesized that NOX isoforms, particularly NOX2, are potential targets for prevention of sepsis-associated seizures. METHODS To reduce NADPH oxidase 2-derived ROS production, mice with deficits of NOX regulatory subunit/NOX2 organizer p47phox (p47phox-/-) or NOX2 major subunit gp91phox (gp91phox-/-) were used or the NOX2-selective inhibitor diphenyleneiodonium (DPI) was used to treat wild-type (WT) mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS). Seizure susceptibility was compared among mouse groups in response to intraperitoneal injection of pentylenetetrazole (PTZ). Brain tissues were assayed for proinflammatory gene and protein expression, and immunofluorescence staining was used to estimate the proportion of activated microglia. RESULTS Increased susceptibility to PTZ-induced seizures following sepsis was significantly attenuated in gp91phox-/- and p47phox-/- mice compared with WT mice. Both gp91phox-/- and p47phox-/- mice exhibited reduced microglia activation and lower brain induction of multiple proconvulsive cytokines, including TNFα, IL-1β, IL-6, and CCL2, compared with WT mice. Administration of DPI following LPS injection significantly attenuated the increased susceptibility to PTZ-induced seizures and reduced both microglia activation and brain proconvulsive cytokine concentrations compared with vehicle-treated controls. DPI also inhibited the upregulation of gp91phox transcripts following LPS injection. CONCLUSIONS Our results indicate that NADPH oxidases contribute to the development of increased seizure susceptibility in mice after sepsis. Pharmacologic inhibition of NOX may be a promising therapeutic approach to reducing sepsis-associated neuroinflammation, neuronal hyperexcitability, and seizures.
Collapse
Affiliation(s)
- Wan-Yu Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Pediatrics of Kung-Ten General Hospital, Taichung City, Taiwan
| | - Shankung Lin
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Ping Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Yu Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hung-Ming Wu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Neurology, Changhua Christian Hospital, Changhua City, Taiwan.
- Institute of Acupuncture, School of Chinese Medicine, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
30
|
Vezzani A, Dingledine R, Rossetti AO. Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Rev Neurother 2018; 15:1081-92. [PMID: 26312647 DOI: 10.1586/14737175.2015.1079130] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- a 1 Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | |
Collapse
|
31
|
Vizuete AFK, Hansen F, Negri E, Leite MC, de Oliveira DL, Gonçalves CA. Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis. J Neuroinflammation 2018; 15:68. [PMID: 29506554 PMCID: PMC5839012 DOI: 10.1186/s12974-018-1109-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and is accompanied, in one third of cases, by resistance to antiepileptic drugs (AED). Most AED target neuronal activity modulated by ionic channels, and the steroid sensitivity of these channels has supported the use of corticosteroids as adjunctives to AED. Assuming the importance of astrocytes in neuronal activity, we investigated inflammatory and astroglial markers in the hippocampus, a key structure affected in TLE and in the Li-pilocarpine model of epilepsy. Methods Initially, hippocampal slices were obtained from sham rats and rats subjected to the Li-pilocarpine model of epilepsy, at 1, 14, and 56 days after status epilepticus (SE), which correspond to the acute, silent, and chronic phases. Dexamethasone was added to the incubation medium to evaluate the secretion of S100B, an astrocyte-derived protein widely used as a marker of brain injury. In the second set of experiments, we evaluated the in vivo effect of dexamethasone, administrated at 2 days after SE, on hippocampal inflammatory (COX-1/2, PGE2, and cytokines) and astroglial parameters: GFAP, S100B, glutamine synthetase (GS) and water (AQP-4), and K+ (Kir 4.1) channels. Results Basal S100B secretion and S100B secretion in high-K+ medium did not differ at 1, 14, and 56 days for the hippocampal slices from epileptic rats, in contrast to sham animal slices, where high-K+ medium decreased S100B secretion. Dexamethasone addition to the incubation medium per se induced a decrease in S100B secretion in sham and epileptic rats (1 and 56 days after SE induction). Following in vivo dexamethasone administration, inflammatory improvements were observed, astrogliosis was prevented (based on GFAP and S100B content), and astroglial dysfunction was partially abrogated (based on Kir 4.1 protein and GSH content). The GS decrease was not prevented by dexamethasone, and AQP-4 was not altered in this epileptic model. Conclusions Changes in astroglial parameters emphasize the importance of these cells for understanding alterations and mechanisms of epileptic disorders in this model. In vivo dexamethasone administration prevented most of the parameters analyzed, reinforcing the importance of anti-inflammatory steroid therapy in the Li-pilocarpine model and possibly in other epileptic conditions in which neuroinflammation is present. Electronic supplementary material The online version of this article (10.1186/s12974-018-1109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Hansen
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Elisa Negri
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marina Concli Leite
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Losch de Oliveira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
32
|
Abstract
Until a decade ago, epilepsy research had focused mainly on alterations of neuronal activities and excitability. Such neurocentric emphasis has neglected the role of glia and involvement of inflammation in the pathogenesis of epilepsy. It is becoming clear that immune and inflammatory reactions do occur in the brain despite the brain's lack of conventional lymphatic drainage and graft acceptance and the presence of vascular brain barrier that tightly regulates infiltration of blood monocytes and lymphocytes. The critical roles of brain-resident immune mediators and of brain-infiltrating peripheral leukocytes are increasingly recognized. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, occur in human epilepsy as well as in experimental models of epilepsy. Immune mechanism that underlies evolution of drug-resistant epilepsy and epileptic encephalopathy represents a new target and will aid in development of novel immunotherapeutic drugs and therapies against the key constituents in immune pathways.
Collapse
Affiliation(s)
- Sookyong Koh
- 1 Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Xian W, Tao H, Zhao J, Fu J, Zhong W, Chen Y, Zhou H, Li K, Pan S. Association Between Clusterin Gene Polymorphisms and Epilepsy in a Han Chinese Population. Genet Test Mol Biomarkers 2017; 21:692-697. [PMID: 28972394 DOI: 10.1089/gtmb.2017.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenchuan Xian
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yusen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
- Neurology & Neurosurgery Division, Stroke Center, The Clinical Medicine Research Institute & The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Blaylock RL. Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 2017; 8:65. [PMID: 28540131 PMCID: PMC5421223 DOI: 10.4103/sni.sni_441_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is one of the several neurodegenerative disorders that affects aging individuals, with approximately 1% of those over the age of 60 years developing the disorder in their lifetime. The disease has the characteristics of a progressive disorder in most people, with a common pattern of pathological change occurring in the nervous system that extends beyond the classical striatal degeneration of dopaminergic neurons. Earlier studies concluded that the disease was a disorder of alpha-synuclein, with the formation of aggregates of abnormal alpha-synuclein being characteristic. More recent studies have concluded that inflammation plays a central role in the disorder and that the characteristic findings can be accounted for by either mutation or oxidative damage to alpha-synuclein, with resulting immune reactions from surrounding microglia, astrocytes, and macrophages. What has been all but ignored in most of these studies is the role played by excitotoxicity and that the two processes are intimately linked, with inflammation triggered cell signaling enhancing the excitotoxic cascade. Further, there is growing evidence that it is the excitotoxic reactions that actually cause the neurodegeneration. I have coined the name immunoexcitotoxicity to describe this link between inflammation and excitotoxicity. It appears that the two processes are rarely, if ever, separated in neurodegenerative diseases.
Collapse
|
35
|
Phase-Dependent Astroglial Alterations in Li-Pilocarpine-Induced Status Epilepticus in Young Rats. Neurochem Res 2017; 42:2730-2742. [PMID: 28444637 DOI: 10.1007/s11064-017-2276-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Epilepsy prevalence is high in infancy and in the elderly population. Lithium-pilocarpine is widely used to induce experimental animal models of epilepsy, leading to similar neurochemical and morphological alterations to those observed in temporal lobe epilepsy. As astrocytes have been implicated in epileptic disorders, we hypothesized that specific astroglial changes accompany and contribute to epileptogenesis. Herein, we evaluated time-dependent astroglial alterations in the hippocampus of young (27-day-old) rats at 1, 14 and 56 days after Li-pilocarpine-induced status epilepticus (SE), corresponding to different phases in this model of epilepsy. We determined specific markers of astroglial activation: GFAP, S100B, glutamine synthetase (GS), glutathione (GSH) content, aquaporin-4 (AQP-4) and potassium channel Kir 4.1; as well as epileptic behavioral, inflammatory and neurodegenerative changes. Phase-dependent signs of hippocampal astrogliosis were observed, as demonstrated by increments in GFAP, S100B and GS. Astrocyte dysfunction in the hippocampus was characterized, based on the decrease in GSH content, AQP-4 and Kir 4.1 channels. Degenerating neurons were identified by Fluoro-Jade C staining. We found a clear, early (at SE1) and persistent (at SE56) increase in cerebrospinal fluid (CSF) S100B levels. Additionally, serum S100B was found to decrease soon after SE induction, implicating a rapid-onset increase in the CSF/serum S100B ratio. However, serum S100B increased at SE14, possibly reflecting astroglial activation and/or long-term increase in cerebrovascular permeability. Moreover, we suggest that peripheral S100B levels may represent a useful marker for SE in young rats and for follow up during the chronic phases of this model of epilepsy. Together, results reinforce and extend the idea of astroglial involvement in epileptic disorders.
Collapse
|
36
|
Karvigh SA, Motamedi M, Arzani M, Roshan JHN. HD-tDCS in refractory lateral frontal lobe epilepsy patients. Seizure 2017; 47:74-80. [DOI: 10.1016/j.seizure.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 01/23/2023] Open
|
37
|
Scorza CA, Marques MJG, Gomes da Silva S, Naffah-Mazzacoratti MDG, Scorza FA, Cavalheiro EA. Status epilepticus does not induce acute brain inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis. Neurosci Lett 2017; 668:169-173. [PMID: 28235602 DOI: 10.1016/j.neulet.2017.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/31/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022]
Abstract
Mesial temporal lobe epilepsy is a serious brain disorder in adults that is often preceded by an initial brain insult, such as status epilepticus (SE), that after a latent period leads to recurrent seizures. Post-SE models are widely used for studies on epileptogenic processes. Previous findings of our laboratory suggested that the Neotropical rodents Proechimys exhibit endogenous antiepileptogenic mechanisms in post-SE models. Strong body of research supports that SE triggers a rapid and dramatic upregulation of inflammatory mediators and vascular endothelial growth factor (VEGF). In this work we found that, in the epilepsy-resistant Proechimys, hippocampal and cortical levels of inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α) and VEGF remained unchanged 24h after SE, strongly contrasting to the high levels of post-SE changes observed in Wistar rats. Furthermore, substantial differences in the brain baseline levels of these proteins were encountered between animal species studied. Since inflammatory cytokines and VEGF have been recognized as major orchestrators of the epileptogenic process, our results suggest their role in the antiepileptogenic mechanisms previously described in Proechimys.
Collapse
Affiliation(s)
- Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, Brazil.
| | - Marcia J G Marques
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, Brazil
| | - Sérgio Gomes da Silva
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.
| | | | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, Brazil
| | - Esper A Cavalheiro
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, Brazil
| |
Collapse
|
38
|
Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 2017; 14:10. [PMID: 28086980 PMCID: PMC5237206 DOI: 10.1186/s12974-016-0786-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023] Open
Abstract
Background Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. Body We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. Conclusion Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
Collapse
Affiliation(s)
- Kyria M Webster
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Mujun Sun
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Peter Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Terence J O'Brien
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Sandy R Shultz
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Bridgette D Semple
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
39
|
Uyanıkgil Y, Solmaz V, Çavuşoğlu T, Çınar BP, Çetin EÖ, Sur HY, Erbaş O. Inhibitor effect of paricalcitol in rat model of pentylenetetrazol-induced seizures. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1117-22. [PMID: 27438482 DOI: 10.1007/s00210-016-1273-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/05/2016] [Indexed: 12/16/2022]
Abstract
Vitamin D has various systemic effects on bone metabolism, modulation of the immune system, stabilization of the cell membrane, oxidative stress, inflammation, apoptosis, and various other hormones. Differing from active vitamin D, paricalcitol is a relatively safe VDR agonist due to its relatively few side effects. This study has investigated the anticonvulsant effect of paricalcitol in convulsions induced by pentylenetetrazole (PTZ). 36 male Sprague-Dawley rats were divided randomly into two groups: 18 for EEG recording (PTZ 35 mg/kg) and 18 for behavioral studies (PTZ 70 mg/kg). Forty-five minutes before the PTZ injection, both groups of rats were given 5 and 10 μg/kg of paricalcitol i.p., respectively. Racine convulsion scores, first myoclonic jerk time, spike percentages, and antioxidant status were evaluated in the groups. Our results showed that the Racine's Convulsion Scale (RCS) score significantly dropped in the paricalcitol-treated group, analysis of the first myoclonic jerk (FMJ) latencies demonstrated a significantly longer latency in the paricalcitol-applied group, and spike percentages at EEG recordings significantly decreased with paricalcitol. Moreover, MDA levels were lower and SOD activity were higher in the 5 μg/kg paricalcitol group compared to the saline group; these results were more prominent in 10 μg/kg paricalcitol group. Our study has demonstrated that paricalcitol has protective effects on PTZ-induced convulsions. Based on the SOD and MDA levels in our study, these effects may result from the antioxidant characteristics of paricalcitol.
Collapse
Affiliation(s)
- Yiğit Uyanıkgil
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey. .,Cord Blood, Cell-Tissue Application and Research Center, Ege University, Izmir, Turkey.
| | - Volkan Solmaz
- Department of Neurology, Trakya University Medical Faculty, Edirne, Turkey
| | - Türker Çavuşoğlu
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Application and Research Center, Ege University, Izmir, Turkey
| | - Bilge Piri Çınar
- Department of Neurology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Emel Öykü Çetin
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | - Halil Yılmaz Sur
- Department of Internal Medicine, Division of Pathophysiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Oytun Erbaş
- Department of Physiology, Bilim University School of Medicine, Istanbul, Turkey
| |
Collapse
|
40
|
Kim SH, Millichap JJ, Koh S. Brain Inflammation in an Infant With Hemimegalencephaly, Escalating Seizures, and Epileptic Encephalopathy. Child Neurol Open 2016; 3:2329048X16633629. [PMID: 28503608 PMCID: PMC5417290 DOI: 10.1177/2329048x16633629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/23/2016] [Indexed: 11/17/2022] Open
Abstract
Hemimegalencephaly, a congenital brain malformation typically characterized by enlargement of one hemisphere, is frequently associated with intractable epilepsy. The authors report a case of a 12-month-old girl with hemimegalencephaly who underwent semiurgent hemispherectomy because of rapidly escalating seizures, arrested development, and associated encephalopathy. The brain tissue was examined and evaluated for neuroinflammation. Immunohistochemical analysis of the brain tissue revealed the presence of abundant activated CD68-positive microglia and reactive astrogliosis. Detection of active inflammatory changes in the brain of a patient with hemimegalencephaly complicated by intractable epilepsy suggests a potential role of ongoing brain inflammation in seizure exacerbation and epileptic encephalopathy.
Collapse
Affiliation(s)
- Se Hee Kim
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John J Millichap
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sookyong Koh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
Heinemann SD, Posimo JM, Mason DM, Hutchison DF, Leak RK. Synergistic stress exacerbation in hippocampal neurons: Evidence favoring the dual-hit hypothesis of neurodegeneration. Hippocampus 2016; 26:980-94. [PMID: 26934478 DOI: 10.1002/hipo.22580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
Abstract
The dual-hit hypothesis of neurodegeneration states that severe stress sensitizes vulnerable cells to subsequent challenges so that the two hits are synergistic in their toxic effects. Although the hippocampus is vulnerable to a number of neurodegenerative disorders, there are no models of synergistic cell death in hippocampal neurons in response to combined proteotoxic and oxidative stressors, the two major characteristics of these diseases. Therefore, a relatively high-throughput dual-hit model of stress synergy was developed in primary hippocampal neurons. In order to increase the rigor of the study and strengthen the interpretations, three independent, unbiased viability assays were employed at multiple timepoints. Stress synergy was elicited when hippocampal neurons were treated with the proteasome inhibitor MG132 followed by exposure to the oxidative toxicant paraquat, but only after 48 h. MG132 and paraquat only elicited additive effects 24 h after the final hit and even loss of heat shock protein 70 activity and glutathione did not promote stress synergy at this early timepoint. Dual hits of MG132 elicited modest glutathione loss and slightly synergistic toxic effects 48 h after the second hit, but only at some concentrations and only according to two viability assays (metabolic fitness and cytoskeletal integrity). The thiol N-acetyl cysteine protected hippocampal neurons against dual MG132/MG132 hits but not dual MG132/paraquat hits. These findings support the view that proteotoxic and oxidative stress propel and propagate each other in hippocampal neurons, leading to synergistically toxic effects, but not as the default response and only after a delay. The neuronal stress synergy observed here lies in contrast to astrocytic responses to dual hits, because astrocytes that survive severe proteotoxic stress resist additional cell loss following second hits. In conclusion, a new model of hippocampal vulnerability was developed for the testing of therapies, because neuroprotective treatments that are effective against severe, synergistic stress are more likely to succeed in the clinic. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott D Heinemann
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Jessica M Posimo
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Daniel M Mason
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Bachstetter AD, Zhou Z, Rowe RK, Xing B, Goulding DS, Conley AN, Sompol P, Meier S, Abisambra JF, Lifshitz J, Watterson DM, Van Eldik LJ. MW151 Inhibited IL-1β Levels after Traumatic Brain Injury with No Effect on Microglia Physiological Responses. PLoS One 2016; 11:e0149451. [PMID: 26871438 PMCID: PMC4752278 DOI: 10.1371/journal.pone.0149451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/31/2016] [Indexed: 12/26/2022] Open
Abstract
A prevailing neuroinflammation hypothesis is that increased production of proinflammatory cytokines contributes to progressive neuropathology, secondary to the primary damage caused by a traumatic brain injury (TBI). In support of the hypothesis, post-injury interventions that inhibit the proinflammatory cytokine surge can attenuate the progressive pathology. However, other post-injury neuroinflammatory responses are key to endogenous recovery responses. Therefore, it is critical that pharmacological attenuation of detrimental or dysregulated neuroinflammatory processes avoid pan-suppression of inflammation. MW151 is a CNS-penetrant, small molecule experimental therapeutic that restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis without immunosuppression. Post-injury administration of MW151 in a closed head injury model of mild TBI suppressed acute cytokine up-regulation and downstream cognitive impairment. Here, we report results from a diffuse brain injury model in mice using midline fluid percussion. Low dose (0.5–5.0 mg/kg) administration of MW151 suppresses interleukin-1 beta (IL-1β) levels in the cortex while sparing reactive microglia and astrocyte responses. To probe molecular mechanisms, we used live cell imaging of the BV-2 microglia cell line to demonstrate that MW151 does not affect proliferation, migration, or phagocytosis of the cells. Our results provide insight into the roles of glial responses to brain injury and indicate the feasibility of using appropriate dosing for selective therapeutic modulation of injurious IL-1β increases while sparing other glial responses to injury.
Collapse
Affiliation(s)
- Adam D. Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, United States of America
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhengqiu Zhou
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Rachel K. Rowe
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, United States of America
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Bin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Danielle S. Goulding
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Alyssa N. Conley
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shelby Meier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jose F. Abisambra
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jonathan Lifshitz
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, United States of America
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - D. Martin Watterson
- Department of Pharmacology, Northwestern University, Chicago, Illinois, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, United States of America
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
43
|
Astrocyte-mediated metaplasticity in the hippocampus: Help or hindrance? Neuroscience 2015; 309:113-24. [DOI: 10.1016/j.neuroscience.2015.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
44
|
Choi HS, Park JH, Ahn JH, Hong S, Cho JH, Won MH, Lee CH. The anti-inflammatory activity of duloxetine, a serotonin/norepinephrine reuptake inhibitor, prevents kainic acid-induced hippocampal neuronal death in mice. J Neurol Sci 2015; 358:390-7. [PMID: 26453128 DOI: 10.1016/j.jns.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
Abstract
Duloxetine (DXT), a potent serotonin/norepinephrine reuptake inhibitor, is widely used in the treatment of major depressive disorder. In the present study, we examined the effects of DXT treatment on seizure behavior and excitotoxic neuronal damage in the mouse hippocampal CA3 region following intraperitoneal kainic acid (KA) injection. DXT treatment showed no effect on KA-induced behavioral seizure activity. However, treatment with 10mg/kg DXT reduced KA-induced neuronal death in the hippocampal CA3 region at 72h after KA administration, and treatment with 20 and 40mg/kg DXT showed a noticeable neuroprotection in the hippocampal CA3 region after KA injection. In addition, KA-induced activations of microglia and astrocytes as well as KA-induced increases of TNF-α and IL-1β levels were also suppressed by DXT treatment. These results indicate that DXT displays the neuroprotective effect against KA-induced excitotoxic neuronal death through anti-inflammatory action.
Collapse
Affiliation(s)
- Hee-Soo Choi
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714, South Korea.
| |
Collapse
|
45
|
Chan PM, Tan YS, Chua KH, Sabaratnam V, Kuppusamy UR. Attenuation of Inflammatory Mediators (TNF-α and Nitric Oxide) and Up-Regulation of IL-10 by Wild and Domesticated Basidiocarps of Amauroderma rugosum (Blume & T. Nees) Torrend in LPS-Stimulated RAW264.7 Cells. PLoS One 2015; 10:e0139593. [PMID: 26427053 PMCID: PMC4591274 DOI: 10.1371/journal.pone.0139593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Amauroderma rugosum, commonly known as “Jiǎzī” in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation.
Collapse
Affiliation(s)
- Pui-Mun Chan
- Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee-Shin Tan
- Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Mushroom Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
46
|
Eun BL, Abraham J, Mlsna L, Kim MJ, Koh S. Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav 2015; 5:e00348. [PMID: 26357586 PMCID: PMC4559014 DOI: 10.1002/brb3.348] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged febrile seizures (FS) have both acute and long-lasting effects on the developing brain. Because FS are often associated with peripheral infection, we aimed to develop a preclinical model of FS that simulates fever and immune activation in order to facilitate the implementation of targeted therapy after prolonged FS in young children. METHODS The innate immune activator lipopolysaccharide (LPS) was administered to postnatal day 14 rat (200 μg/kg) and mouse (100 μg/kg) pups 2-2.5 h prior to hyperthermic seizures (HT) induced by hair dryer or heat lamp. To determine whether simulation of infection enhances neuronal excitability, latency to seizure onset, threshold temperature and total number of seizures were quantified. Behavioral seizures were correlated with electroencephalographic changes in rat pups. Seizure-induced proinflammatory cytokine production was assessed in blood samples at various time points after HT. Seizure-induced microglia activation in the hippocampus was quantified using Cx3cr1(GFP/+) mice. RESULTS Lipopolysaccharide priming increased susceptibility of rats and mice to hyperthemic seizures and enhanced seizure-induced proinflammatory cytokine production and microglial activation. CONCLUSIONS Peripheral inflammation appears to work synergistically with hyperthermia to potentiate seizures and to exacerbate seizure-induced immune responses. By simulating fever, a regulated increase in body temperature from an immune challenge, we developed a more clinically relevant animal model of prolonged FS.
Collapse
Affiliation(s)
- Baik-Lin Eun
- Department of Pediatrics, Korea University College of Medicine Seoul, Korea
| | - Jayne Abraham
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| | - Lauren Mlsna
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| | - Min Jung Kim
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| | - Sookyong Koh
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| |
Collapse
|
47
|
Leclercq K, Kaminski RM. Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 2015; 49:55-60. [PMID: 26123104 DOI: 10.1016/j.yebeh.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023]
Abstract
Several factors may influence the efficacy of antiepileptic drugs (AEDs) in patients with epilepsy, and treatment resistance could be related to genetics, neuronal network alterations, and modification of drug transporters or targets. Consequently, preclinical models used for the identification of potential new, more efficacious AEDs should reflect at least a few of these factors. Previous studies indicate that induction of status epilepticus (SE) may alter drug efficacy and that this effect could be long-lasting. In this context, we wanted to assess the protective effects of mechanistically diverse AEDs in mice subjected to pilocarpine-induced SE in another seizure model. We first determined seizure thresholds in mice subjected to pilocarpine-induced SE in the 6-Hz model, 2 weeks and 8 weeks following SE. We then evaluated the protective effects of mechanistically diverse AEDs in post-SE and control animals. No major differences in 6-Hz seizure susceptibility were observed between control groups, while the seizure threshold of pilocarpine mice at 8 weeks after SE was higher than at 2 weeks and higher than in control groups. Treatment with AEDs revealed major differences in drug response depending on their mechanism of action. Diazepam produced a dose-dependent protection against 6-Hz seizures in control and pilocarpine mice, both at 2 weeks and 8 weeks after SE, but with a more pronounced increase in potency in post-SE animals at 2 weeks. Levetiracetam induced a potent and dose-dependent protection in pilocarpine mice, 2 weeks after SE, while its protective effects were observed only at much higher doses in control mice. Its potency decreased in post-SE mice at 8 weeks and was very limited (30% protection at the highest tested dose) in the control group. Carbamazepine induced a dose-dependent protection at 2 weeks in control mice but only limited effect (50% at the highest tested dose) in pilocarpine mice. Its efficacy deeply decreased in post-SE mice at 8 weeks after SE. Perampanel and phenytoin showed almost comparable protective effects in all groups of mice. These experiments confirm that prior SE may have an impact on both potency and efficacy of AEDs and indicate that this effect may be dependent on the underlying epileptogenic processes. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
|
48
|
Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. J Neurosci 2015; 35:6554-69. [PMID: 25904805 DOI: 10.1523/jneurosci.0291-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies have associated increased risk of Alzheimer's disease (AD)-related clinical symptoms with a medical history of head injury. Currently, little is known about pathophysiology mechanisms linked to this association. Persistent neuroinflammation is one outcome observed in patients after a single head injury. Neuroinflammation is also present early in relevant brain regions during AD pathology progression. In addition, previous mechanistic studies in animal models link neuroinflammation as a contributor to neuropathology and cognitive impairment in traumatic brain injury (TBI) or AD-related models. Therefore, we explored the potential interplay of neuroinflammatory responses in TBI and AD by analysis of the temporal neuroinflammatory changes after TBI in an AD model, the APP/PS1 knock-in (KI) mouse. Discrete temporal aspects of astrocyte, cytokine, and chemokine responses in the injured KI mice were delayed compared with the injured wild-type mice, with a peak neuroinflammatory response in the injured KI mice occurring at 7 d after injury. The neuroinflammatory responses were more persistent in the injured KI mice, leading to a chronic neuroinflammation. At late time points after injury, KI mice exhibited a significant impairment in radial arm water maze performance compared with sham KI mice or injured wild-type mice. Intervention with a small-molecule experimental therapeutic (MW151) that selectively attenuates proinflammatory cytokine production yielded improved cognitive behavior outcomes, consistent with a link between neuroinflammatory responses and altered risk for AD-associated pathology changes with head injury.
Collapse
|
49
|
Bachstetter AD, Webster SJ, Goulding DS, Morton JE, Watterson DM, Van Eldik LJ. Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J Neuroinflammation 2015; 12:69. [PMID: 25886256 PMCID: PMC4396836 DOI: 10.1186/s12974-015-0289-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
Background Evidence from clinical studies and preclinical animal models suggests that proinflammatory cytokine overproduction is a potential driving force for pathology progression in traumatic brain injury (TBI). This raises the possibility that selective targeting of the overactive cytokine response, a component of the neuroinflammation that contributes to neuronal dysfunction, may be a useful therapeutic approach. MW151 is a CNS-penetrant, small molecule experimental therapeutic that selectively restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis. We previously reported that MW151 administered post-injury (p.i.) is efficacious in a closed head injury (CHI) model of diffuse TBI in mice. Here we test dose dependence of MW151 to suppress the target mechanism (proinflammatory cytokine up-regulation), and explore the therapeutic window for MW151 efficacy. Methods We examined suppression of the acute cytokine surge when MW151 was administered at different times post-injury and the dose-dependence of cytokine suppression. We also tested a more prolonged treatment with MW151 over the first 7 days post-injury and measured the effects on cognitive impairment and glial activation. Results MW151 administered up to 6 h post-injury suppressed the acute cytokine surge, in a dose-dependent manner. Administration of MW151 over the first 7 days post-injury rescues the CHI-induced cognitive impairment and reduces glial activation in the focus area of the CHI. Conclusions Our results identify a clinically relevant time window post-CHI during which MW151 effectively restores cytokine production back towards normal, with a resultant attenuation of downstream cognitive impairment.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, 800 S Limestone Street, Lexington, KY, USA.
| | - Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky, 800 S Limestone Street, Lexington, KY, USA.
| | - Danielle S Goulding
- Sanders-Brown Center on Aging, University of Kentucky, 800 S Limestone Street, Lexington, KY, USA.
| | - Jonathan E Morton
- Sanders-Brown Center on Aging, University of Kentucky, 800 S Limestone Street, Lexington, KY, USA.
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University, 303 E Chicago Avenue, Chicago, IL, USA.
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S Limestone Street, Lexington, KY, USA. .,Department of Anatomy and Neurobiology, University of Kentucky, 800 Rose Street, Lexington, KY, USA.
| |
Collapse
|
50
|
Dupuis N, Auvin S. Inflammation and epilepsy in the developing brain: clinical and experimental evidence. CNS Neurosci Ther 2014; 21:141-51. [PMID: 25604829 DOI: 10.1111/cns.12371] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
There is an increasing evidence to support a role of inflammatory processes in epilepsy. However, most clinical and experimental studies have been conducted in adult patients or using adult rodents. The pediatric epilepsies constitute a varied group of diseases that are most frequently age specific. In this review, we will focus on the possible role of inflammation in pediatric epilepsy syndromes. We will first describe the clinical data available and provide an overview of our current understanding of the role of inflammation in these clinical situations. We will then review experimental data regarding the role of inflammation in epilepsy in the developing brain. To summarize, inflammation contributes to seizure precipitation, and reciprocally, prolonged seizures induce inflammation. There is also a relationship between inflammation and cell injury following status epilepticus, which differs according to the developmental stage. Finally, inflammation seems to contribute to epileptogenesis even in the developing brain. Based on the available data, we highlight the need for further studies dissecting the exact role of inflammation in epilepsy during development.
Collapse
Affiliation(s)
- Nina Dupuis
- INSERM U1141, Paris, France; APHP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, DHU Protect, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|