1
|
Dwivedi R, Kaushik M, Tripathi M, Dada R, Tiwari P. Unraveling the genetic basis of epilepsy: Recent advances and implications for diagnosis and treatment. Brain Res 2024; 1843:149120. [PMID: 39032529 DOI: 10.1016/j.brainres.2024.149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Epilepsy, affecting approximately 1% of the global population, manifests as recurring seizures and is heavily influenced by genetic factors. Recent advancements in genetic technologies have revolutionized our understanding of epilepsy's genetic landscape. Key studies, such as the discovery of mutations in ion channels (e.g., SCN1A and SCN2A), neurotransmitter receptors (e.g., GABRA1), and synaptic proteins (e.g., SYNGAP1, KCNQ2), have illuminated critical pathways underlying epilepsy susceptibility and pathogenesis. Genome-wide association studies (GWAS) have identified specific genetic variations linked to epilepsy risk, such as variants near SCN1A and PCDH7, enhancing diagnostic accuracy and enabling personalized treatment strategies. Moreover, epigenetic mechanisms, including DNA methylation (e.g., MBD5), histone modifications (e.g., HDACs), and non-coding RNAs (e.g., miR-134), play pivotal roles in altering gene expression and synaptic plasticity, contributing to epileptogenesis. These discoveries offer promising avenues for therapeutic interventions aimed at improving outcomes for epilepsy patients. Genetic testing has become essential in clinical practice, facilitating precise diagnosis and tailored management approaches based on individual genetic profiles. Furthermore, insights into epigenetic regulation suggest novel therapeutic targets for developing more effective epilepsy treatments. In summary, this review highlights significant progress in understanding the genetic and epigenetic foundations of epilepsy. By integrating findings from key studies and specifying genes involved in epigenetic modifications, we underscore the potential for advanced therapeutic strategies in this complex neurological disorder, emphasizing the importance of personalized medicine approaches in epilepsy management.
Collapse
Affiliation(s)
- Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
2
|
Han JY, Kim TY, Gwack J, Park J. The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. Int J Mol Sci 2024; 25:10327. [PMID: 39408661 PMCID: PMC11476583 DOI: 10.3390/ijms251910327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The ARX mutations encompass a nearly continuous spectrum of neurodevelopmental disorders (NDDs), ranging from lissencephaly to Proud syndrome, as well as infantile spasms without brain malformations, and including both syndromic and non-syndromic intellectual disabilities (IDs). We describe worsening neuropsychiatric symptoms in the offspring of a Korean family with ID/developmental delay (DD) caused by a novel ARX p.Lys385Ter variant. Sequential genetic testing was performed to investigate the ID, DD, agenesis of the corpus callosum (ACC), and developmental epileptic encephalopathy (DEE) observed in the proband. A comprehensive trio clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Given the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous ARX variant, c.1153A>T/p.Lys385Ter (Reference transcript ID: NM_139058.3), as the most likely cause of ID, DD, ACC, and DEE in the proband. Sanger sequencing confirmed the segregation of the ARX variant, c.1153A>T/p.Lys385Ter, with the phenotype and established the maternally inherited dominant status of the heterozygous variant in the patient, as well as in her grandmother, mother, and aunt. Our case report adds to the understanding of the female phenotype in ARX-related disorders caused by loss-of-function variants in the ARX gene. Genetic counseling for ARX families should proceed with caution, as female carriers can exhibit a wide range of phenotypes, from normal cognitive development to ID/DD, ACC, and DEE.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
3
|
Zaker E, Nouri N, Movahedinia M, Dadbinpour A, Vahidi Mehrjardi MY. Type 1 early infantile epileptic encephalopathy: A case report and literature review. Mol Genet Genomic Med 2024; 12:e2412. [PMID: 38400608 PMCID: PMC10891437 DOI: 10.1002/mgg3.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Variants in the Aristaless-related homeobox (ARX) gene lead to a variety of phenotypes, with intellectual disability being a steady feature. Other features can include severe epilepsy, spasticity, movement disorders, hydranencephaly, and ambiguous genitalia in males. X-linked Ohtahara syndrome or Type 1 early infantile epileptic encephalopathy (EIEE1) is a severe early-onset epileptic encephalopathy with arrested psychomotor development caused by hemizygous mutations in the ARX gene, which encodes a transcription factor in fundamental brain developmental processes. METHODS We presented a case report of a 2-year-old boy who exhibited symptoms such as microcephaly, seizures, and severe multifocal epileptic abnormalities, and genetic techniques such as autozygosity mapping, Sanger sequencing, and whole-exome sequencing. RESULTS We confirmed that the patient had the NM_139058.3:c.84C>A; p.(Cys28Ter) mutation in the ARX gene. CONCLUSION The patient with EIEE1 had physical symptoms and hypsarrhythmia on electroencephalogram. Genetic testing identified a causative mutation in the ARX gene, emphasizing the role of genetic testing in EIEE diagnosis.
Collapse
Affiliation(s)
- Erfan Zaker
- Department of Medical Genetics, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | - Negar Nouri
- Department of Medical Genetics, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | - Mojtaba Movahedinia
- Department of Children Growth Disorder Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Ali Dadbinpour
- Department of Medical GeneticsSchool of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | | |
Collapse
|
4
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Scalia B, Venti V, Ciccia LM, Criscione R, Lo Bianco M, Sciuto L, Falsaperla R, Zanghì A, Praticò AD. Aristaless-Related Homeobox (ARX): Epilepsy Phenotypes beyond Lissencephaly and Brain Malformations. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:320-327. [DOI: 10.1055/s-0041-1727140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans and are responsible for both malformation (in particular lissencephaly) and nonmalformation complex phenotypes. The epilepsy phenotypes related to ARX mutations are West syndrome and X-linked infantile spasms, X-linked myoclonic epilepsy with spasticity and intellectual development and Ohtahara and early infantile epileptic encephalopathy syndrome, which are related in most of the cases to intellectual disability and are often drug resistant. In this article, we shortly reviewed current knowledge of the function of ARX with a particular attention on its consequences in the development of epilepsy during early childhood.
Collapse
Affiliation(s)
- Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina M. Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Pham T, Patel A, Muquith M, Zimmern V, Goodspeed K. Abnormal Genetic Testing in Males With Concomitant Neurodevelopmental Disabilities and Genital Malformation. Pediatr Neurol 2022; 134:72-77. [PMID: 35841714 DOI: 10.1016/j.pediatrneurol.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) affect 1:6 children in the United States and are often linked to genetic disorders. Because many genes are enriched in brain and testicular tissue, genital malformations identified early may be a predictor of genetic disorders in children with NDDs. However, few studies have evaluated the specific effects of genital malformations. This study assesses the association between genital malformations and abnormal genetic testing among male patients with NDD. METHODS A retrospective chart review was performed of 447 male patients seen at Children's Health Dallas (2009 to 2019) with concomitant genital malformations and NDDs. We assessed the strength of factors associated with obtaining a genetic test and having abnormal results. RESULTS We identified 447 patients with concomitant genital malformations and NDD. Fifty-six percent (251 of 447) received genetic testing, of which 68.5% (172 of 251) had abnormal results. Patients with mixed genitourinary malformations, global developmental delay (GDD), intellectual delay, or autism spectrum disorder were more likely to have a genetic test. Patients with bilateral testicular involvement, GDD, severe language delay, wheelchair dependence, or abnormal magnetic resonance imaging findings were more likely to have abnormal results. CONCLUSION The diagnostic yield of 68.5% in our cohort of male patients with genital malformations was higher than previous reports of 5% to 35% in NDD populations. More severe phenotypic features may be associated with increased yield. Identification of genital malformations during infancy may guide clinical surveillance, and copresentations with NDDs may support genetic testing.
Collapse
Affiliation(s)
- Tri Pham
- University of Texas Southwestern Medical School, Dallas, Texas
| | - Akshat Patel
- University of Texas Southwestern Medical School, Dallas, Texas
| | | | - Vincent Zimmern
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
7
|
Pong AW, Ross J, Tyrlikova I, Giermek AJ, Kohli MP, Khan YA, Salgado RD, Klein P. Epilepsy: expert opinion on emerging drugs in phase 2/3 clinical trials. Expert Opin Emerg Drugs 2022; 27:75-90. [PMID: 35341431 DOI: 10.1080/14728214.2022.2059464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite the existence of over 30 anti-seizure medications (ASM), including 20 over the last 30 years, a third of patients with epilepsy remain refractory to treatment, with no disease-modifying or preventive therapies until very recently. The development of new ASMs with new mechanisms of action is therefore critical. Recent clinical trials of new treatments have shifted focus from traditional common epilepsies to rare, genetic epilepsies with known mechanistic targets for treatment and disease-specific animal models. AREAS COVERED ASMs in phase 2a/b-3 clinical trials target cholesterol, serotonin, sigma-1 receptors, potassium channels and metabotropic glutamate receptors. Neuroinflammation, protein misfolding, abnormal thalamocortical firing, and molecular deficiencies are among the targeted pathways. Clinically, the current phase 2a/b-3 agents hold promise for variety of epilepsy conditions, from developmental epileptic encephalopathies (Dravet Syndrome, Lennox-Gastaut syndrome, CDKL5 and PCDH19, Rett's Syndrome), infantile spasms, tuberous sclerosis as well as focal and idiopathic generalized epilepsies and acute rescue therapy for cluster seizures. EXPERT OPINION New delivery mechanisms increase potency and site-specificity of existing drugs. Novel mechanisms of action involve cholesterol degradation, mitochondrial pathways, anti-inflammation, and neuro-regeneration. Earlier identification of genetic conditions through genetic testing will allow for earlier use of disease specific and disease-modifying therapies.
Collapse
Affiliation(s)
- Amanda W Pong
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Jonathan Ross
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Ivana Tyrlikova
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Alexander J Giermek
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Maya P Kohli
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Yousef A Khan
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Roger D Salgado
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Comprehensive Neurology Clinics of Bethesda, Bethesda, MD, USA
| |
Collapse
|
8
|
Rodgers J, Calvert S, Shoubridge C, McGaughran J. A novel ARX loss of function variant in female monozygotic twins is associated with chorea. Eur J Med Genet 2021; 64:104315. [PMID: 34419634 DOI: 10.1016/j.ejmg.2021.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Pathogenic variants in ARX lead to a variety of phenotypes with intellectual disability being a uniform feature. Other features can include severe epilepsy, spasticity, movement disorders, agenesis of the corpus callosum, lissencephaly, hydranencephaly and ambiguous genitalia in males. We present the first report of monozygotic female twins with a de novo ARX pathogenic variant (c.1406_1415del; p. Ala469Aspfs*20), predicted to result in a truncated ARX protein missing the important regulatory Aristaless domain. The twins presented with profound developmental delay and seizures, consistent with the known genotype-phenotype correlation. Twin 2's features were significantly more severe. She also developed chorea; the first time this movement disorder has been seen in an ARX variant other than an expansion of the first polyalanine tract. Differential X-chromosome inactivation was the most likely explanation for the differing severities but could not be conclusively proven.
Collapse
Affiliation(s)
- Jonathan Rodgers
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children's Hospital, Brisbane, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Fallah MS, Eubanks JH. Seizures in Mouse Models of Rare Neurodevelopmental Disorders. Neuroscience 2020; 445:50-68. [PMID: 32059984 DOI: 10.1016/j.neuroscience.2020.01.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. These mouse models have not only allowed for assessments of behavioral and electrographic seizure phenotypes to be ascertained, but also have allowed effects on the neurodevelopmental alterations and cognitive impairments associated with these disorders to be examined. In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
10
|
Aeby A. Infantile and Early Childhood Epileptic Syndromes. CLINICAL CHILD NEUROLOGY 2020:831-861. [DOI: 10.1007/978-3-319-43153-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Abstract
The new concept of developmental and epileptic encephalopathy is based on the understanding that many genetic epilepsies are associated with developmental impairment as a direct consequence of the genetic mutation, in addition to the effect of the frequent epileptic activity on brain development. As an example, in infants with KCNQ2 or STXBP1 encephalopathy, seizures may be controlled early after onset or cease spontaneously after a few years, but the developmental consequences tend to remain profound. The term "developmental and epileptic encephalopathy" expresses the concept that the genetic defect may be responsible for both the epilepsy and adverse development which is crucial to understanding the disease process for both families and clinicians. The increased use of EEG monitoring, neuroimaging, and metabolic and genetic testing in the Neonatal Intensive Care Unit has greatly improved our understanding of neonatal-onset epilepsies as seen with the syndromes Ohtahara and Early Myoclonic Encephalopathy outlined in the 1970s into distinct etiology-specific electroclinical phenotypes.
Collapse
Affiliation(s)
- Charbel El Kosseifi
- Catholic University of Louvain, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | | | - Maria Roberta Cilio
- Division of Pediatric Neurology, Saint-Luc University Hospital, and Institute of Experimental and Clinical Research (IREC), University of Louvain, Brussels, Belgium.
| |
Collapse
|
12
|
Nakamura JP, Schroeder A, Hudson M, Jones N, Gillespie B, Du X, Notaras M, Swaminathan V, Reay WR, Atkins JR, Green MJ, Carr VJ, Cairns MJ, Sundram S, Hill RA. The maternal immune activation model uncovers a role for the Arx gene in GABAergic dysfunction in schizophrenia. Brain Behav Immun 2019; 81:161-171. [PMID: 31175998 DOI: 10.1016/j.bbi.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
A hallmark feature of schizophrenia is altered high frequency neural oscillations, including reduced auditory-evoked gamma oscillatory power, which is underpinned by parvalbumin (PV) interneuron dysfunction. Maternal immune activation (MIA) in rodents models an environmental risk factor for schizophrenia and recapitulates these PV interneuron changes. This study sought to link reduced PV expression in the MIA model with alterations to auditory-evoked gamma oscillations and transcript expression. We further aligned transcriptional findings from the animal model with human genome sequencing data. We show that MIA, induced by the viral mimetic, poly-I:C in C57Bl/6 mice, caused in adult offspring reduced auditory-evoked gamma and theta oscillatory power paralleled by reduced PV protein levels. We then showed the Arx gene, critical to healthy neurodevelopment of PV interneurons, is reduced in the forebrain of MIA exposed mice. Finally, in a whole-genome sequenced patient cohort, we identified a novel missense mutation of ARX in a patient with schizophrenia and in the Psychiatric Genomics Consortium 2 cohort, a nominal association of proximal ARX SNPs with the disorder. This suggests MIA, as a risk factor for schizophrenia, may be influencing Arx expression to induce the GABAergic dysfunction seen in schizophrenia and that the ARX gene may play a role in the prenatal origins of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Jay P Nakamura
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Anna Schroeder
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew Hudson
- University of Melbourne, Parkville, Victoria 3010, Australia; Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Nigel Jones
- University of Melbourne, Parkville, Victoria 3010, Australia; Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Xin Du
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Michael Notaras
- Centre for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York 10021, USA
| | - Vaidy Swaminathan
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia (NeuRA), Barker St, Randwick, NSW 2031, Australia
| | - Vaughan J Carr
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia; School of Psychiatry, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia (NeuRA), Barker St, Randwick, NSW 2031, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Suresh Sundram
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia; University of Melbourne, Parkville, Victoria 3010, Australia; Monash Medical Centre, Monash Health, Clayton, Victoria 3168, Australia
| | - Rachel A Hill
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
13
|
Shoubridge C, Jackson M, Grinton B, Berkovic SF, Scheffer IE, Huskins S, Thomas A, Ware T. Splice variant in ARX leading to loss of C-terminal region in a boy with intellectual disability and infantile onset developmental and epileptic encephalopathy. Am J Med Genet A 2019; 179:1483-1490. [PMID: 31145546 DOI: 10.1002/ajmg.a.61216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
Pathogenic variants in the X-chromosome Aristaless-related homeobox (ARX) gene contribute to intellectual disability, epilepsy, and associated comorbidities in affected males. Here, we report a novel splice variant in ARX in a family with three affected individuals. The proband had early onset developmental and epileptic encephalopathy, his brother and mother had severe and mild intellectual disability, respectively. Massively parallel sequencing identified a novel c.1449-1G>C in intron 4 of the ARX gene, predicted to abolish the splice acceptor site, retaining intron 4 and leading to a premature termination codon immediately after exon 4. As exon 5 is the last exon of the ARX gene, the premature termination codon at position p.L484* would be predicted to escape nonsense-mediated mRNA decay, potentially producing at least some C-terminally truncated protein. Analysis of cDNA from patient lymphoblastoid cells confirmed retention of intron 4 and loss of detectable expression of ARX mRNA across exon 4 to exon 5. We review published cases of variants that lead to altered or early termination of the ARX protein, but not complete loss of function, and are associated with phenotypes of intellectual disability and infantile onset developmental and epileptic encephalopathies, including Ohtahara and West syndromes. Taken together, this novel splice variant retaining intron 4 is likely to be the cause of the early onset developmental and epileptic encephalopathy in the proband.
Collapse
Affiliation(s)
- Cheryl Shoubridge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Matilda Jackson
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bronwyn Grinton
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia
| | - Shannon Huskins
- Department of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alison Thomas
- Department of Medical Imaging, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Tyson Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
15
|
Detection of Aristaless-related homeobox protein in ovarian sex cord-stromal tumors. Exp Mol Pathol 2017; 104:38-44. [PMID: 29275192 DOI: 10.1016/j.yexmp.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine the potential of ARX as a novel biomarker of ovarian endometriosis and other ovarian pathologies. METHODS The mRNA level of ARX in ovarian endometriosis and normal endometrium samples was determined by real-time PCR, while the protein level was determined by Western blotting and immunohistochemical staining. Immunohistochemical analysis was performed on nearly 200 tissue samples of different ovarian pathologies. GraphPad Prism was used for statistical analysis. RESULTS The expression of ARX was significantly increased in ovarian endometriosis samples as compared to normal endometrium. Also Western blotting data showed higher ARX levels in the ovarian endometriosis samples versus normal endometrium. Immunohistochemical analysis revealed that the protein is localized in the ovarian stroma and does not originate from endometriosis. Further immunohistochemical analysis performed on several different non-neoplastic and neoplastic ovarian tissue samples revealed that in the non-neoplastic ovary ARX protein is present only in the stromal cells and their derivates (luteinized stromal cells, theca and Leydig cells) and not in granulosa cells, oocites, surface epithelium or rete ovarii, while all stromal and sex cord tumors showed strong nuclear staining for ARX. All other primary or metastatic epithelial tumors of the ovary were ARX negative. CONCLUSIONS ARX is not associated with endometriosis and cannot be used as a biomarker for ovarian endometriosis. ARX is present in ovarian stroma and cells derived from ovarian stroma as well as in all types of sex cord-stromal tumors of the ovary and could thus be used as a marker for sex cord-stromal differentiation in ovarian tumors.
Collapse
|
16
|
Mattiske T, Moey C, Vissers LE, Thorne N, Georgeson P, Bakshi M, Shoubridge C. An Emerging Female Phenotype with Loss-of-Function Mutations in the Aristaless-Related Homeodomain Transcription Factor ARX. Hum Mutat 2017; 38:548-555. [PMID: 28150386 DOI: 10.1002/humu.23190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023]
Abstract
The devastating clinical presentation of X-linked lissencephaly with abnormal genitalia (XLAG) is invariably caused by loss-of-function mutations in the Aristaless-related homeobox (ARX) gene. Mutations in this X-chromosome gene contribute to intellectual disability (ID) with co-morbidities including seizures and movement disorders such as dystonia in affected males. The detection of affected females with mutations in ARX is increasing. We present a family with multiple affected individuals, including two females. Two male siblings presenting with XLAG were deceased prior to full-term gestation or within the first few weeks of life. Of the two female siblings, one presented with behavioral disturbances, mild ID, a seizure disorder, and complete agenesis of the corpus callosum (ACC), similar to the mother's phenotype. A novel insertion mutation in Exon 2 of ARX was identified, c.982delCinsTTT predicted to cause a frameshift at p.(Q328Ffs* 37). Our finding is consistent with loss-of-function mutations in ARX causing XLAG in hemizygous males and extends the findings of ID and seizures in heterozygous females. We review the reported phenotypes of females with mutations in ARX and highlight the importance of screening ARX in male and female patients with ID, seizures, and in particular with complete ACC.
Collapse
Affiliation(s)
- Tessa Mattiske
- Department of Paediatrics, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ching Moey
- Department of Paediatrics, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Lisenka E Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Natalie Thorne
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia.,Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Peter Georgeson
- Melbourne Genomics Health Alliance, Melbourne, Australia.,Victorian Life Sciences Computation Initiative, The University of Melbourne, Melbourne, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Tapie A, Pi-Denis N, Souto J, Vomero A, Peluffo G, Boidi M, Ciganda M, Curbelo N, Raggio V, Roche L, Pastro L. A novel mutation in the OAR domain of the ARX gene. Clin Case Rep 2017; 5:170-174. [PMID: 28174645 PMCID: PMC5290510 DOI: 10.1002/ccr3.769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 11/12/2022] Open
Abstract
Mutations in ARX gene should be considered in patients with mental disability or/and epilepsy. It is an X-linked gene that has pleiotropic effects. Here, we report the case of a boy diagnosed with Ohtahara syndrome. We performed the molecular analysis of the gene and identified a new missense mutation.
Collapse
Affiliation(s)
- Alejandra Tapie
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Natalia Pi-Denis
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Jorge Souto
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Alejandra Vomero
- Facultad de Medicina Departamento de Pediatría Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Gabriel Peluffo
- Facultad de Medicina Departamento de Pediatría Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - María Boidi
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Martín Ciganda
- Facultad de Ciencias Laboratorio de Interacciones Moleculares Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Nicolás Curbelo
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Victor Raggio
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Leda Roche
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Lucía Pastro
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay; Facultad de Ciencias Laboratorio de Interacciones Moleculares Universidad de la República Oriental del Uruguay Montevideo Uruguay
| |
Collapse
|
18
|
Auvin S, Cilio MR, Vezzani A. Current understanding and neurobiology of epileptic encephalopathies. Neurobiol Dis 2016; 92:72-89. [PMID: 26992889 DOI: 10.1016/j.nbd.2016.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
Epileptic encephalopathies are a group of diseases in which epileptic activity itself contributes to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone. These impairments can worsen over time. This concept has been continually redefined since its introduction. A few syndromes are considered epileptic encephalopathies: early myoclonic encephalopathy and Ohtahara syndrome in the neonatal period, epilepsy of infancy with migrating focal seizures, West syndrome or infantile spasms, Dravet syndrome during infancy, Lennox-Gastaut syndrome, epileptic encephalopathy with continuous spikes-and-waves during sleep, and Landau-Kleffner syndrome during childhood. The inappropriate use of this term to refer to all severe epilepsy syndromes with intractable seizures and severe cognitive dysfunction has led to confusion regarding the concept of epileptic encephalopathy. Here, we review our current understanding of those epilepsy syndromes considered to be epileptic encephalopathies. Genetic studies have provided a better knowledge of neonatal and infantile epilepsy syndromes, while neuroimaging studies have shed light on the underlying causes of childhood-onset epileptic encephalopathies such as Lennox-Gastaut syndrome. Apart from infantile spasm models, we lack animal models to explain the neurobiological mechanisms at work in these conditions. Experimental studies suggest that neuroinflammation may be a common neurobiological pathway that contributes to seizure refractoriness and cognitive involvement in the developing brain.
Collapse
Affiliation(s)
- Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, 75019 Paris, France; AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, 75019 Paris, France.
| | - Maria Roberta Cilio
- Benioff Children's Hospital, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy
| |
Collapse
|
19
|
Moey C, Topper S, Karn M, Johnson AK, Das S, Vidaurre J, Shoubridge C. Reinitiation of mRNA translation in a patient with X-linked infantile spasms with a protein-truncating variant in ARX. Eur J Hum Genet 2015; 24:681-9. [PMID: 26306640 DOI: 10.1038/ejhg.2015.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Aristaless-related homeobox gene (ARX) lead to a range of X-linked intellectual disability phenotypes, with truncating variants generally resulting in severe X-linked lissencephaly with ambiguous genitalia (XLAG), and polyalanine expansions and missense variants resulting in infantile spasms. We report two male patients with early-onset infantile spasms in whom a novel c.34G>T (p.(E12*)) variant was identified in the ARX gene. A similar variant c.81C>G (p.(Y27*)), has previously been described in two affected cousins with early-onset infantile spasms, leading to reinitiation of ARX mRNA translation resulting in an N-terminal truncated protein. We show that the novel c.34G>T (p.(E12*)) variant also reinitiated mRNA translation at the next AUG codon (c.121-123 (p.M41)), producing the same N-terminally truncated protein. The production of both of these truncated proteins was demonstrated to be at markedly reduced levels using in vitro cell assays. Using luciferase reporter assays, we demonstrate that transcriptional repression capacity of ARX was diminished by both the loss of the N-terminal corepressor octapeptide domain, as a consequence of truncation, and the marked reduction in mutant protein expression. Our study indicates that premature termination mutations very early in ARX lead to reinitiation of translation to produce N-terminally truncated protein at markedly reduced levels of expression. We conclude that even low levels of N-terminally truncated ARX is sufficient to improve the patient's phenotype compared with the severe phenotype of XLAG that includes malformations of the brain and genitalia normally seen in complete loss-of-function mutations in ARX.
Collapse
Affiliation(s)
- Ching Moey
- Department of Paediatrics, School of Peadiatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Scott Topper
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mary Karn
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Jorge Vidaurre
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Peadiatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Marques I, Sá MJ, Soares G, Mota MDC, Pinheiro C, Aguiar L, Amado M, Soares C, Calado A, Dias P, Sousa AB, Fortuna AM, Santos R, Howell KB, Ryan MM, Leventer RJ, Sachdev R, Catford R, Friend K, Mattiske TR, Shoubridge C, Jorge P. Unraveling the pathogenesis of ARX polyalanine tract variants using a clinical and molecular interfacing approach. Mol Genet Genomic Med 2015; 3:203-14. [PMID: 26029707 PMCID: PMC4444162 DOI: 10.1002/mgg3.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
The Aristaless-related homeobox (ARX) gene is implicated in intellectual disability with the most frequent pathogenic mutations leading to expansions of the first two polyalanine tracts. Here, we describe analysis of the ARX gene outlining the approaches in the Australian and Portuguese setting, using an integrated clinical and molecular strategy. We report variants in the ARX gene detected in 19 patients belonging to 17 families. Seven pathogenic variants, being expansion mutations in both polyalanine tract 1 and tract 2, were identifyed, including a novel mutation in polyalanine tract 1 that expands the first tract to 20 alanines. This precise number of alanines is sufficient to cause pathogenicity when expanded in polyalanine tract 2. Five cases presented a probably non-pathogenic variant, including the novel HGVS: c.441_455del, classified as unlikely disease causing, consistent with reports that suggest that in frame deletions in polyalanine stretches of ARX rarely cause intellectual disability. In addition, we identified five cases with a variant of unclear pathogenic significance. Owing to the inconsistent ARX variants description, publications were reviewed and ARX variant classifications were standardized and detailed unambiguously according to recommendations of the Human Genome Variation Society. In the absence of a pathognomonic clinical feature, we propose that molecular analysis of the ARX gene should be included in routine diagnostic practice in individuals with either nonsyndromic or syndromic intellectual disability. A definitive diagnosis of ARX-related disorders is crucial for an adequate clinical follow-up and accurate genetic counseling of at-risk family members.
Collapse
Affiliation(s)
- Isabel Marques
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Maria João Sá
- Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Gabriela Soares
- Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal
| | - Maria do Céu Mota
- Department of Pediatrics, Centro Hospitalar do Porto, EPE Porto, Portugal
| | - Carla Pinheiro
- Department of Pediatrics, Hospital Santa Maria Maior, EPE Barcelos, Portugal
| | - Lisa Aguiar
- Department of Pediatrics, Hospital Distrital de Santarém, EPE Santarém, Portugal
| | - Marta Amado
- Department of Pediatrics, Unidade Hospitalar de Portimão, Centro Hospitalar do Algarve Portimão, Portugal
| | - Christina Soares
- Department of Pediatrics, Unidade Hospitalar de Portimão, Centro Hospitalar do Algarve Portimão, Portugal
| | - Angelina Calado
- Department of Pediatrics, Unidade Hospitalar de Portimão, Centro Hospitalar do Algarve Portimão, Portugal
| | - Patrícia Dias
- Department of Genetics, Hospital de Santa Maria Lisboa, Portugal
| | - Ana Berta Sousa
- Department of Genetics, Hospital de Santa Maria Lisboa, Portugal
| | - Ana Maria Fortuna
- Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| | - Katherine B Howell
- Department of Neurology, Royal Children's Hospital Melbourne, Victoria, Australia ; Murdoch Childrens Research Institute Melbourne, Victoria, Australia, 3052 ; University of Melbourne Department of Paediatrics Melbourne, Victoria, Australia, 3052
| | - Monique M Ryan
- Department of Neurology, Royal Children's Hospital Melbourne, Victoria, Australia ; Murdoch Childrens Research Institute Melbourne, Victoria, Australia, 3052 ; University of Melbourne Department of Paediatrics Melbourne, Victoria, Australia, 3052
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital Melbourne, Victoria, Australia ; Murdoch Childrens Research Institute Melbourne, Victoria, Australia, 3052 ; University of Melbourne Department of Paediatrics Melbourne, Victoria, Australia, 3052
| | - Rani Sachdev
- Department of Medical Genetics, Sydney Children's Hospital High St., Randwick, New South Wales, 2031, Australia
| | - Rachael Catford
- SA Pathology at the Women's and Children's Hospital North Adelaide, South Australia, Australia
| | - Kathryn Friend
- SA Pathology at the Women's and Children's Hospital North Adelaide, South Australia, Australia
| | - Tessa R Mattiske
- Department of Paediatrics, University of Adelaide Adelaide, South Australia, 5006, Australia ; Robinson Research Institute, University of Adelaide Adelaide, South Australia, 5006, Australia
| | - Cheryl Shoubridge
- Department of Paediatrics, University of Adelaide Adelaide, South Australia, 5006, Australia ; Robinson Research Institute, University of Adelaide Adelaide, South Australia, 5006, Australia
| | - Paula Jorge
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, EPE Porto, Portugal ; Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP Porto, Portugal
| |
Collapse
|
21
|
Kim GE, Kaczmarek LK. Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 2014; 8:209. [PMID: 25120433 PMCID: PMC4112808 DOI: 10.3389/fncel.2014.00209] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023] Open
Abstract
The sodium-activated potassium KNa channels Slack and Slick are encoded by KCNT1 and KCNT2, respectively. These channels are found in neurons throughout the brain, and are responsible for a delayed outward current termed I KNa. These currents integrate into shaping neuronal excitability, as well as adaptation in response to maintained stimulation. Abnormal Slack channel activity may play a role in Fragile X syndrome, the most common cause for intellectual disability and inherited autism. Slack channels interact directly with the fragile X mental retardation protein (FMRP) and I KNa is reduced in animal models of Fragile X syndrome that lack FMRP. Human Slack mutations that alter channel activity can also lead to intellectual disability, as has been found for several childhood epileptic disorders. Ongoing research is elucidating the relationship between mutant Slack channel activity, development of early onset epilepsies and intellectual impairment. This review describes the emerging role of Slack channels in intellectual disability, coupled with an overview of the physiological role of neuronal I KNa currents.
Collapse
Affiliation(s)
- Grace E Kim
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
22
|
Abstract
Advances in genetic tools and sequencing technology in the past few years have vastly expanded our understanding of the genetics of neurodevelopmental disorders. Recent high-throughput sequencing analyses of structural brain malformations, cognitive and neuropsychiatric disorders, and localized cortical dysplasias have uncovered a diverse genetic landscape beyond classic Mendelian patterns of inheritance. The underlying genetic causes of neurodevelopmental disorders implicate numerous cell biological pathways critical for normal brain development.
Collapse
Affiliation(s)
- Wen F Hu
- Division of Genetics and Genomics, Department of Medicine; Manton Center for Orphan Disease Research; and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115; , ,
| | | | | |
Collapse
|
23
|
Sirisena ND, McElreavey K, Bashamboo A, de Silva KSH, Jayasekara RW, Dissanayake VH. A Child with a Novel de novo Mutation in the Aristaless Domain of the Aristaless-Related Homeobox(ARX)Gene Presenting with Ambiguous Genitalia and Psychomotor Delay. Sex Dev 2014; 8:156-9. [DOI: 10.1159/000365458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 11/19/2022] Open
|
24
|
Charzewska A, Nawara M, Jakubiuk-Tomaszuk A, Obersztyn E, Hoffman-Zacharska D, Elert E, Jurek M, Bartnik M, Poznański J, Bal J. Expanding the phenotype associated with missense mutations of the ARX gene. Am J Med Genet A 2013; 161A:1813-6. [PMID: 23657928 DOI: 10.1002/ajmg.a.36003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/03/2013] [Indexed: 11/10/2022]
|
25
|
Bettella E, Di Rosa G, Polli R, Leonardi E, Tortorella G, Sartori S, Murgia A. Early-onset epileptic encephalopathy in a girl carrying a truncating mutation of the ARX gene: rethinking the ARX phenotype in females. Clin Genet 2012; 84:82-5. [PMID: 23039062 DOI: 10.1111/cge.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 11/26/2022]
Abstract
Severe early-onset epilepsy is due to a number of known causes, although a clear etiology is not identifiable in up to a third of all the cases. Pathogenic sequence variations in the ARX gene have been described almost exclusively in males, whereas heterozygous female relatives, such as mothers, sisters and even grandmothers have been largely reported as asymptomatic or mildly affected. To investigate the pathogenic role of ARX in refractory epilepsy of early onset even in females, we have screened the ARX sequence in a population of 50 female subjects affected with unexplained epileptic encephalopathy with onset in the first year of life. We report the identification of a novel truncating mutation of the coding region of the ARX gene in a girl with a structurally normal brain. Our findings confirm the role of ARX in the pathogenesis of early epilepsy and underline the importance of screening of the ARX gene in both male and female subjects with otherwise unexplained early onset epileptic encephalopathy.
Collapse
Affiliation(s)
- E Bettella
- Department of Pediatrics, Laboratory of Molecular Genetics of Neurodevelopment, University of Padua, Via Giustiniani 3, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Beal JC, Cherian K, Moshe SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 2012; 47:317-323. [PMID: 23044011 DOI: 10.1016/j.pediatrneurol.2012.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022]
Abstract
Ohtahara syndrome and early myoclonic encephalopathy are the earliest presenting of the epileptic encephalopathies. They are typically distinguished from each other according to specific clinical and etiologic criteria. Nonetheless, considerable overlap exists between the two syndromes in terms of clinical presentation, prognosis, and electroencephalographic signature. Newer understandings of underlying etiologies of these conditions may support the previously suggested concept that they represent a single spectrum of disease rather than two distinct disorders. We review both syndromes, with particular focus on the underlying genetics and pathophysiology and implications regarding the classification of these conditions.
Collapse
Affiliation(s)
- Jules C Beal
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
27
|
Arkenau HT, Brunetto AT, Barriuso J, Olmos D, Eaton D, de Bono J, Judson I, Kaye S. Clinical Benefit of New Targeted Agents in Phase I Trials in Patients with Advanced Colorectal Cancer. Oncology 2009; 76:151-6. [DOI: 10.1159/000195884] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022]
|