1
|
Cameron T, Allan K, Kay Cooper. The use of ketogenic diets in children living with drug-resistant epilepsy, glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency: A scoping review. J Hum Nutr Diet 2024; 37:827-846. [PMID: 38838079 DOI: 10.1111/jhn.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is a high fat, moderate protein and very low carbohydrate diet. It can be used as a medical treatment for drug-resistant epilepsy (DRE), glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency. The aim of this scoping review was to map the KD literature, with a focus on epilepsy and associated metabolic conditions, to summarise the current evidence-base and identify any gaps. METHODS This review was conducted using JBI scoping review methodological guidance and the PRISMA extension for scoping reviews reporting guidance. A comprehensive literature search was conducted in September 2021 and updated in February 2024 using MEDLINE, CINAHL, AMED, EmBASE, CAB Abstracts, Scopus and Food Science Source databases. RESULTS The initial search yielded 2721 studies and ultimately, data were extracted from 320 studies that fulfilled inclusion criteria for the review. There were five qualitative studies, and the remainder were quantitative, including 23 randomised controlled trials (RCTs) and seven quasi-experimental studies. The USA published the highest number of KD studies followed by China, South Korea and the UK. Most studies focused on the classical KD and DRE. The studies key findings suggest that the KD is efficacious, safe and tolerable. CONCLUSIONS There are opportunities available to expand the scope of future KD research, particularly to conduct high-quality RCTs and further qualitative research focused on the child's needs and family support to improve the effectiveness of KDs.
Collapse
Affiliation(s)
- Tracy Cameron
- Royal Aberdeen Children's Hospital, NHS Grampian, Aberdeen, Scotland, UK
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Karen Allan
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Kay Cooper
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
- Scottish Centre for Evidence-based, Multi-professional Practice: A JBI Centre of Excellence, Aberdeen, Scotland, UK
| |
Collapse
|
2
|
Dickens AM, Johnson TP, Lamichhane S, Kumar A, Pardo CA, Gutierrez EG, Haughey N, Cervenka MC. Changes in lipids and inflammation in adults with super-refractory status epilepticus on a ketogenic diet. Front Mol Biosci 2023; 10:1173039. [PMID: 37936721 PMCID: PMC10627179 DOI: 10.3389/fmolb.2023.1173039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: This study aims to test the hypothesis that increased ketone body production resulting from a ketogenic diet (KD) will correlate with reductions in pro-inflammatory cytokines and lipid subspecies and improved clinical outcomes in adults treated with an adjunctive ketogenic diet for super-refractory status epilepticus (SRSE). Methods: Adults (18 years or older) were treated with a 4:1 (fat: carbohydrate and protein) ratio of enteral KD as adjunctive therapy to pharmacologic seizure suppression in SRSE. Blood and urine samples and clinical measurements were collected at baseline (n = 10), after 1 week (n = 8), and after 2 weeks of KD (n = 5). In addition, urine acetoacetate, serum β-hydroxybutyrate, lipidomics, pro-inflammatory cytokines (IL-1β and IL-6), chemokines (CCL3, CCL4, and CXCL13), and clinical measurements were obtained at these three time points. Univariate and multivariate data analyses were performed to determine the correlation between ketone body production and circulating lipids, inflammatory biomarkers, and clinical outcomes. Results: Changes in lipids included an increase in ceramides, mono-hexosylceramide, sphingomyelin, phosphocholine, and phosphoserines, and there was a significant reduction in pro-inflammatory mediators, IL-6 and CXCL13, seen at 1 and 2 weeks of KD. Higher blood β-hydroxybutyrate levels at baseline correlated with better clinical outcomes; however, ketone body production did not correlate with other variables during treatment. Higher chemokine CCL3 levels following treatment correlated with a longer stay in the intensive care unit and a higher modified Rankin Scale score (worse neurologic disability) at discharge and 6-month follow up. Discussion: Adults receiving an adjunctive enteral ketogenic diet for super-refractory status epilepticus exhibit alterations in select pro-inflammatory cytokines and lipid species that may predict their response to treatment.
Collapse
Affiliation(s)
- Alex M. Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Tory P. Johnson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anupama Kumar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carlos A. Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erie G. Gutierrez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mackenzie C. Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Nabbout R, Matricardi S, De Liso P, Dulac O, Oualha M. Ketogenic diet for super-refractory status epilepticus (SRSE) with NORSE and FIRES: Single tertiary center experience and literature data. Front Neurol 2023; 14:1134827. [PMID: 37122314 PMCID: PMC10133555 DOI: 10.3389/fneur.2023.1134827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background and purpose Ketogenic diet (KD) is an emerging treatment option for super-refractory status epilepticus (SRSE). We evaluated the effectiveness of KD in patients presenting SRSE including NORSE (and its subcategory FIRES). Methods A retrospective review of the medical records was performed at the Necker Enfants Malades Hospital. All children with SRSE in whom KD was started during the last 10 years were included. A systematic search was carried out for all study designs, including at least one patient of any age with SRSE in whom KD was started. The primary outcome was the responder rate and Kaplan-Meier survival curves were generated for the time-to-KD response. As secondary outcomes, Cox proportional hazard models were created to assess the impact of NORSE-related factors on KD efficacy. Results Sixteen children received KD for treatment of SRSE, and three had NORSE presentation (one infectious etiology, two FIRES). In medical literature, 1,613 records were initially identified, and 75 were selected for review. We selected 276 patients receiving KD during SRSE. The most common etiology of SRSE was acute symptomatic (21.3%), among these patients, 67.7% presented with NORSE of immune and infectious etiologies. Other etiologies were remote symptomatic (6.8%), progressive symptomatic (6.1%), and SE in defined electroclinical syndromes (14.8%), including two patients with genetic etiology and NORSE presentation. The etiology was unknown in 50.7% of the patients presenting with cryptogenic NORSE, of which 102 presented with FIRES. Overall, most patients with NORSE benefit from KD (p < 0.004), but they needed a longer time to achieve RSE resolution after starting KD compared with other non-NORSE SRSE (p = 0.001). The response to KD in the NORSE group with identified etiology compared to the cryptogenic NORSE was significantly higher (p = 0.01), and the time to achieve SE resolution after starting KD was shorter (p = 0.04). Conclusions The search for underlying etiology should help to a better-targeted therapy. KD can have good efficacy in NORSE; however, the time to achieve SE resolution seems to be longer in cryptogenic cases. These findings highlight the therapeutic role of KD in NORSE, even though this favorable response needs to be better confirmed in prospective controlled studies.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University Paris Cité, Paris, France
- *Correspondence: Rima Nabbout ;
| | - Sara Matricardi
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Paola De Liso
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Member of ERN EpiCARE, Rome, Italy
| | - Olivier Dulac
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
4
|
Wang M, Yu J, Xiao X, Zhang B, Tang J. Changes of biochemical biomarkers in the serum of children with convulsion status epilepticus: a prospective study. BMC Neurol 2022; 22:196. [PMID: 35624413 PMCID: PMC9137178 DOI: 10.1186/s12883-022-02686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Convulsive status epilepticus (CSE) is a common neurologic emergency with high morbidity and mortality. This single center study is aimed to assess changes of serum biochemical biomarkers after seizure, and their associations with the development of CSE. METHODS From January 2015 to October 2016, a total of 57 CSE patients, and 30 healthy controls without central nervous system diseases were enrolled in Children's Hospital of Soochow University. CSE patients were further divided into viral encephalitis (VEN, 13 cases), primary generalized epilepsy (PGE, 30 cases), and complex febrile seizures (CFS, 14 cases). The levels of serum biochemical biomarkers were measured using the corresponding commercial ELISA kits. Logistic regression analysis was performed to identify the associations between these biomarkers and diseases. RESULTS At the 1st and 4th day of CSE, neuron-specific enolase (NSE; 1st day: 20.553 ± 5.360, 4th day: 10.094 ± 3.426) and vascular endothelial growth factor (VEGF; 1st day: 153.504 ± 31.246, 4th day: 138.536 ± 25.221) in the CSE group were increased compared to the control (NSE: 6.138 ± 1.941; VEGF: 119.210 ± 31.681). Both the levels of S-100 calcium binding protein B (S-100B; 1st day: 0.738 ± 0.391) and C-reactive protein (CRP; 1st day: 11.128 ± 12.066) were elevated at 1st day of CSE (S-100B: 0.387 ± 0.040; CRP: 3.915 ± 2.064). For glial fibrillary acidic protein (GFAP), it was remarkably upregulated at 4th day of CSE (3.998 ± 1.211). NSE (P = 0.000), S-100B (P = 0.000), CRP (P = 0.011), and VEGF (P = 0.000) at 1st day of CSE, and NSE (P = 0.000), VEGF (P = 0.005), and GFAP (P = 0.000) at 4th day of CSE were significantly associated with the occurrence of CSE. Besides, NSE (P = 0.002), S-100B (P = 0.001), and VEGF (P = 0.002) at 4th day of CSE were significantly associated with VEN. CONCLUSIONS The levels of serum NSE, S-100B, CRP, VEGF, and GFAP are associated with CSE.
Collapse
Affiliation(s)
- Manli Wang
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Jian Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Xiao Xiao
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Bingbing Zhang
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China
| | - Jihong Tang
- Department of Neurology, Children's Hospital of Soochow University, No.92, Zhongnanjie Road, Suzhou, 215025, Jiangsu, China.
| |
Collapse
|
5
|
Pinto LF, Oliveira JPSD, Midon AM. Status epilepticus: review on diagnosis, monitoring and treatment. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:193-203. [PMID: 35976303 PMCID: PMC9491413 DOI: 10.1590/0004-282x-anp-2022-s113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Status epilepticus (SE) is a frequent neurological emergency associated with high morbidity and mortality. According to the new ILAE 2015 definition, SE results either from the failure of the mechanisms responsible for seizure termination or initiation, leading to abnormally prolonged seizures. The definition has different time points for convulsive, focal and absence SE. Time is brain. There are changes in synaptic receptors leading to a more proconvulsant state and increased risk of brain lesion and sequelae with long duration. Management of SE must include three pillars: stop seizures, stabilize patients to avoid secondary lesions and treat underlying causes. Convulsive SE is defined after 5 minutes and is a major emergency. Benzodiazepines are the initial treatment, and should be given fast and an adequate dose. Phenytoin/fosphenytoin, levetiracetam and valproic acid are evidence choices for second line treatment. If SE persists, anesthetic drugs are probably the best option for third line treatment, despite lack of evidence. Midazolam is usually the best initial choice and barbiturates should be considered for refractory cases. Nonconvulsive status epilepticus has a similar initial approach, with benzodiazepines and second line intravenous (IV) agents, but after that, aggressiveness should be balanced considering risk of lesion due to seizures and medical complications caused by aggressive treatment. Usually, the best approach is the use of sequential IV antiepileptic drugs (oral/tube are options if IV options are not available). EEG monitoring is crucial for diagnosis of nonconvulsive SE, after initial control of convulsive SE and treatment control. Institutional protocols are advised to improve care.
Collapse
Affiliation(s)
- Lecio Figueira Pinto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Epilepsia, São Paulo SP, Brazil
| | | | - Aston Marques Midon
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| |
Collapse
|
6
|
Husari KS, Cervenka MC. Ketogenic Diet Therapy for the Treatment of Post-encephalitic and Autoimmune-Associated Epilepsies. Front Neurol 2021; 12:624202. [PMID: 34220664 PMCID: PMC8242936 DOI: 10.3389/fneur.2021.624202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Acute Encephalitis is associated with a high risk of acute symptomatic seizures, status epilepticus, and remote symptomatic epilepsy. Ketogenic diet therapies (KDT) have been established as a feasible and safe adjunctive management of refractory- and super-refractory status epilepticus. However, the role of KDT in the chronic management of Post-encephalitic epilepsy (PE) and autoimmune-associated epilepsy (AE) is unknown. This study aims to investigate the use of KDT in patients with PE and AE. Methods: A retrospective single-center case series examining adult patients with PE and AE treated with the modified Atkins diet (MAD), a KDT commonly used by adults with drug-resistant epilepsy. Results: Ten patients with PE and AE who were treated with adjunctive MAD were included. Four patients had either confirmed or presumed viral encephalitis, five patients had seronegative AE, and one patient had GAD65 AE. The median latency between starting MAD and onset of encephalitis was 6 years (IQR: 1–10). The median duration of MAD was 10 months (IQR: 3.75–36). Three patients (30%) became seizure-free, one patient (10%) achieved 90% seizure freedom, and three patients (30%) achieved a 50–75% reduction in their baseline seizure frequency, while three patients (30%) had no significant benefit. Overall, seven patients (70%) achieved ≥50% seizure reduction. Conclusion: In addition to its established role in the treatment of RSE, KDT may be a safe and feasible option for the treatment of chronic PE and AE, particularly in those with prior history of SE. Prospective studies are warranted to explore the efficacy of KDT in management of patients with PE and AE.
Collapse
Affiliation(s)
- Khalil S Husari
- Department of Neurology, Johns Hopkins Comprehensive Epilepsy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins Comprehensive Epilepsy Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Breu M, Häfele C, Glatter S, Trimmel-Schwahofer P, Golej J, Male C, Feucht M, Dressler A. Ketogenic Diet in the Treatment of Super-Refractory Status Epilepticus at a Pediatric Intensive Care Unit: A Single-Center Experience. Front Neurol 2021; 12:669296. [PMID: 34149600 PMCID: PMC8209375 DOI: 10.3389/fneur.2021.669296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background: To evaluate the use of the ketogenic diet (KD) for treatment of super-refractory status epilepticus (SRSE) at a pediatric intensive care unit (PICU). Design: A retrospective analysis of all pediatric patients treated for SRSE with the KD at our center was performed using patient data from our prospective longitudinal KD database. Setting: SRSE is defined as refractory SE that continues or recurs 24 h or more after initiation of anesthetic drugs. We describe the clinical and electroencephalographic (EEG) findings of all children treated with KD at our PICU. The KD was administered as add-on after failure of standard treatment. Response was defined as EEG seizure resolution (absence of seizures and suppression–burst ratio ≥50%). Patients: Eight consecutive SRSE patients (four females) treated with KD were included. Median age at onset of SRSE was 13.6 months (IQR 0.9–105), and median age at KD initiation was 13.7 months (IQR 1.9 months to 8.9 years). Etiology was known in 6/8 (75%): genetic in 4 (50%), structural in 1 (12.5%), and autoimmune/inflammatory in 1 (12.5%). Main Results: Time from onset of SRSE to initiation of KD was median 6 days (IQR 1.3–9). Time until clinically relevant ketosis (beta-hydroxybutyrate (BHB) >2 mmol/L in serum) was median 68.0 h (IQR 27.3–220.5). Higher ketosis was achieved when a higher proportion of enteral feeds was possible. Four (50%) patients responded to KD treatment within 7 days. During follow-up (median 4.2 months, IQR 1.6–12.3), 5/8 patients—three of them responders—died within 3–12 months after SRSE. Conclusions: In eight patients with SRSE due to severe etiologies including Alpers syndrome, we report an initial 50% response to KD. KD was used early in SRSE and sufficient levels of ketosis were reached early in most patients. Higher ketosis was achieved with combined enteral and parenteral feedings.
Collapse
Affiliation(s)
- Markus Breu
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Chiara Häfele
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Sarah Glatter
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | | | - Johann Golej
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Christoph Male
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Anastasia Dressler
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
8
|
Schoeler NE, Simpson Z, Zhou R, Pujar S, Eltze C, Cross JH. Dietary Management of Children With Super-Refractory Status Epilepticus: A Systematic Review and Experience in a Single UK Tertiary Centre. Front Neurol 2021; 12:643105. [PMID: 33776895 PMCID: PMC7994594 DOI: 10.3389/fneur.2021.643105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Ketogenic diet therapies (KDT) are high-fat, low carbohydrate diets used as an effective treatment option for drug-resistant epilepsy. There is limited research on the efficacy of KDT for super-refractory status epilepticus (SRSE). We systematically review evidence for use of KDT in children with SRSE and present a single UK tertiary centre's experience. Thirty one articles were included, of which 24 were “medium” or “low” quality. One hundred and forty seven children with SRSE started KDT, of which 141 (96%) achieved ketosis. KDT was started mean 5.3 days (range 1–420) after status epilepticus (SE) started. SRSE resolved in 85/141 (60%) children after mean 6.3 days (range 0–19) post SE onset, but it is unclear whether further treatments were initiated post-KDT. 13/141 (9%) children died. Response to KDT was more likely when initiated earlier (p = 0.03) and in females (p = 0.01). Adverse side effects were reported in 48/141 (34%), mostly gastrointestinal; potentially serious adverse effects occurred in ≤4%. Eight children with SRSE, all diagnosed with febrile infection-related epilepsy syndrome, were treated with KDT at Great Ormond Street Hospital for Children. KDT was initiated enterally at mean day 13.6+/− 5.1 of admission. Seven of 8 (88%) children reported adverse side effects, which were potentially serious in 4/8 (50%), including metabolic acidosis, hypoglycaemia and raised amylase. SE ceased in 6/8 (75%) children after mean 25+/− 9.4 days post onset, but other treatments were often started concomitantly and all children started other treatments post-KDT. Two of 8 (25%) children died during admission and another died post-admission. Four of the remaining 5 children continue to have drug-resistant seizures, one of whom remains on KDT; seizure burden was unknown for one child. Our findings indicate that KDT is possible and safe in children with SRSE. Cessation of SRSE may occur in almost two-thirds of children initiated with KDT, but a causal effect is difficult to determine due to concomitant treatments, treatments started post-KDT and the variable length of time post-KDT onset when SRSE cessation occurs. Given that serious adverse side effects seem rare and response rates are (cautiously) favorable, KDT should be considered as an early treatment option in this group.
Collapse
Affiliation(s)
- Natasha E Schoeler
- Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Zoe Simpson
- Department of Dietetics, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Runming Zhou
- Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Suresh Pujar
- Department of Paediatric and Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Christin Eltze
- Department of Paediatric and Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - J H Cross
- Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Paediatric and Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.,Young Epilepsy, Lingfield, United Kingdom
| |
Collapse
|
9
|
Ochoa JG, Dougherty M, Papanastassiou A, Gidal B, Mohamed I, Vossler DG. Treatment of Super-Refractory Status Epilepticus: A Review. Epilepsy Curr 2021; 21:1535759721999670. [PMID: 33719651 PMCID: PMC8652329 DOI: 10.1177/1535759721999670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Super-refractory status epilepticus (SRSE) presents management challenges due to the absence of randomized controlled trials and a plethora of potential medical therapies. The literature on treatment options for SRSE reports variable success and quality of evidence. This review is a sequel to the 2020 American Epilepsy Society (AES) comprehensive review of the treatment of convulsive refractory status epilepticus (RSE). METHODS We sought to determine the effectiveness of treatment options for SRSE. We performed a structured literature search (MEDLINE, Embase, CENTRAL, CINAHL) for studies on reported treatments of SRSE. We excluded antiseizure medications (ASMs) covered in the 2016 AES guideline on the treatment of established SE and the convulsive RSE comprehensive review of the 2020 AES. Literature was reviewed on the effectiveness of vagus nerve stimulation, ketogenic diet (KD), lidocaine, inhalation anesthetics, brain surgery, therapeutic hypothermia, perampanel, pregabalin (PGB), and topiramate in the treatment of SRSE. Two authors reviewed each therapeutic intervention. We graded the level of the evidence according to the 2017 classification scheme of the American Academy of Neurology. RESULTS For SRSE (level U; 39 class IV studies total), insufficient evidence exists to support that perampanel, PGB, lidocaine, or acute vagus nerve stimulation (VNS) is effective. For children and adults with SRSE, insufficient evidence exists to support that the KD is effective (level U; 5 class IV studies). For adults with SRSE, insufficient evidence exists that brain surgery is effective (level U, 7 class IV studies). For adults with SRSE insufficient, evidence exists that therapeutic hypothermia is effective (level C, 1 class II and 4 class IV studies). For neonates with hypoxic-ischemic encephalopathy, insufficient evidence exists that therapeutic hypothermia reduces seizure burden (level U; 1 class IV study). For adults with SRSE, insufficient evidence exists that inhalation anesthetics are effective (level U, 1 class IV study) and that there is a potential risk of neurotoxicity. CONCLUSION For patients with SRSE insufficient, evidence exists that any of the ASMs reviewed, inhalational anesthetics, ketogenic diet, acute VNS, brain surgery, and therapeutic hypothermia are effective treatments. Data supporting the use of these treatments for SRSE are scarce and limited mainly to small case series and case reports and are confounded by differences in patients' population, and comedications, among other factors.
Collapse
Affiliation(s)
| | | | | | | | - Ismail Mohamed
- Department of Pediatrics, University of Alabama, Birmingham, USA
| | - David G. Vossler
- University of Washington, Seattle, WA, USA
- Treatments Committee, American Epilepsy Society, Chicago, IL, USA
| |
Collapse
|
10
|
Anand S, Vibhute AS, Das A, Pandey S, Paliwal VK. Ketogenic Diet for Super-refractory Status Epilepticus: A Case Series and Review of Literature. Ann Indian Acad Neurol 2021; 24:111-115. [PMID: 33911401 PMCID: PMC8061522 DOI: 10.4103/aian.aian_170_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Sucharita Anand
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Amar S Vibhute
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ananya Das
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shilpi Pandey
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vimal Kumar Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Seizures in steroid-responsive encephalopathy. Neurol Sci 2020; 42:521-530. [PMID: 33219869 DOI: 10.1007/s10072-020-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Steroid-responsive encephalopathy is a general term for diseases that are characterized by diffuse brain injury and respond well to corticosteroids or immunosuppressive agents, including Hashimoto's encephalopathy (HE), limbic encephalitis (LE), systemic lupus erythematosus encephalopathy (SLEE), antineutrophil cytoplasmic antibodies (ANCA)-associated systemic vasculitis encephalopathy (AASV), viral encephalitis (VE), and primary central nervous system lymphoma (PCNSL). Epilepsy and status epilepticus are the main manifestations of steroid-responsive encephalopathy. The spectrum of "autoimmune epilepsy" diseases, which has been approved by the epilepsy diagnostic recommendations of the International Antiepileptic League, is characterized by a high prevalence of epilepsy in central nervous system (CNS) autoimmune diseases and a variety of neuron-specific autoantibodies. Steroid-responsive encephalopathy with different causes may have different pathogeneses and has been suggested to be associated with some internal commonality producing seizure as the main symptom. Determining the regularity of seizures caused by steroid-responsive encephalopathy and implementing appropriate measures will help us improve the prognosis of patients. This paper summarizes the epidemiology, seizure onset, seizure type, and other characteristics of seizures in steroid-responsive encephalopathy (including HE, LE, SLEE, ANCA-associated systemic vasculitis encephalopathy, VE, and PCNSL) and then discusses the use of antiepileptic drugs to treat steroid-responsive encephalopathy.
Collapse
|
12
|
McDonald TJW, Cervenka MC. Ketogenic Diet Therapies for Seizures and Status Epilepticus. Semin Neurol 2020; 40:719-729. [PMID: 33155184 DOI: 10.1055/s-0040-1719077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ketogenic diet therapies are high-fat, low-carbohydrate diets designed to mimic a fasting state. Although initially developed nearly one century ago for seizure management, most clinical trials for the management of drug-resistant epilepsy in children as well as adults have been conducted over the last 3 decades. Moreover, ketogenic diets offer promising new adjunctive strategies in the critical care setting for the resolution of acute status epilepticus when traditional antiseizure drugs and anesthetic agents fail. Here, we review the history of ketogenic diet development, the clinical evidence supporting its use for the treatment of drug-resistant epilepsy in children and adults, and the early evidence supporting ketogenic diet feasibility, safety, and potential efficacy in the management of status epilepticus.
Collapse
|
13
|
Willems LM, Bauer S, Jahnke K, Voss M, Rosenow F, Strzelczyk A. Therapeutic Options for Patients with Refractory Status Epilepticus in Palliative Settings or with a Limitation of Life-Sustaining Therapies: A Systematic Review. CNS Drugs 2020; 34:801-826. [PMID: 32705422 PMCID: PMC8316215 DOI: 10.1007/s40263-020-00747-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Refractory status epilepticus (RSE) represents a serious medical condition requiring early and targeted therapy. Given the increasing number of elderly or multimorbid patients with a limitation of life-sustaining therapy (LOT) or within a palliative care setting (PCS), guidelines-oriented therapy escalation options for RSE have to be omitted frequently. OBJECTIVES This systematic review sought to summarize the evidence for fourth-line antiseizure drugs (ASDs) and other minimally or non-invasive therapeutic options beyond guideline recommendations in patients with RSE to elaborate on possible treatment options for patients undergoing LOT or in a PCS. METHODS A systematic review of the literature in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, focusing on fourth-line ASDs or other minimally or non-invasive therapeutic options was performed in February and June 2020 using the MEDLINE, EMBASE and Cochrane databases. The search terminology was constructed using the name of the specific ASD or therapy option and the term 'status epilepticus' with the use of Boolean operators, e.g. "(brivaracetam) AND (status epilepticus)". The respective Medical Subject Headings (MeSH) and Emtree terms were used, if available. RESULTS There is currently no level 1, grade A evidence for the use of ASDs in RSE. The best evidence was found for the use of lacosamide and topiramate (level 3, grade C), followed by brivaracetam, perampanel (each level 4, grade D) and stiripentol, oxcarbazepine and zonisamide (each level 5, grade D). Regarding non-medicinal options, there is little evidence for the use of the ketogenic diet (level 4, grade D) and magnesium sulfate (level 5, grade D) in RSE. The broad use of immunomodulatory or immunosuppressive treatment options in the absence of a presumed autoimmune etiology cannot be recommended; however, if an autoimmune etiology is assumed, steroid pulse, intravenous immunoglobulins and plasma exchange/plasmapheresis should be considered (level 4, grade D). Even if several studies suggested that the use of neurosteroids (level 5, grade D) is beneficial in RSE, the current data situation indicates that there is formal evidence against it. CONCLUSIONS RSE in patients undergoing LOT or in a PCS represents a challenge for modern clinicians and epileptologists. The evidence for the use of ASDs in RSE beyond that in current guidelines is low, but several effective and well-tolerated options are available that should be considered in this patient population. More so than in any other population, advance care planning, advance directives, and medical ethical aspects have to be considered carefully before and during therapy.
Collapse
Affiliation(s)
- Laurent M Willems
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kolja Jahnke
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Voss
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neuro-Oncology, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg (Lahn), Germany
| |
Collapse
|
14
|
Worden LT, Abend NS, Bergqvist AGC. Ketogenic diet treatment of children in the intensive care unit: Safety, tolerability, and effectiveness. Seizure 2020; 80:242-248. [PMID: 32674044 DOI: 10.1016/j.seizure.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The ketogenic diet (KD) is initiated emergently in the intensive care unit (ICU) for patients with super refractory status epilepticus (SRSE) and epileptic encephalopathies (EE). However, few data are available regarding safety, effectiveness, and long-term outcomes. METHODS We performed a retrospective cohort study of consecutive patients with KD initiated in the ICU from 2010 to 2018 for SRSE and EE. We characterized time to ketosis, adverse effects, and seizure outcomes. Responders were defined as having ≥50 % reduction in seizure frequency compared to prior to KD initiation. RESULTS We identified 29 patients. KD was initiated for SRSE in 12 patients, EE in 8 patients, and EE with SRSE in 9 patients. KD was initiated after a median of 9 days. Ketosis was achieved 2 days faster in fasted patients (p < 0.0001). All patients had at least 1 KD-related adverse effect, most often hypoglycemia, constipation, or acidosis. There was ≥50 % reduction in seizure frequency compared to prior to KD initiation by 1 week in 17/28 patients, seizure-freedom by 2 weeks in 7/28 patients, and weaned off anesthetics in 11/17 patients. All KD-responders at 1 month had continued response at 6 months. Mortality at 1 year was 24 %. There was no difference in KD response or mortality between KD indication groups. CONCLUSION Emergent KD initiation in the ICU is feasible, safe, and often effective for SRSE and EE. Expected adverse effects were common but treatable. Morbidity and mortality in this group was high. A ≥ 50 % reduction in seizure is achieved in most responders by 1-2 weeks.
Collapse
Affiliation(s)
- Lila T Worden
- Division of Neurology, Children's Hospital of Philadelphia, USA
| | - Nicholas S Abend
- Division of Neurology, Children's Hospital of Philadelphia, USA; Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Departments of Anesthesia and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - A G Christina Bergqvist
- Division of Neurology, Children's Hospital of Philadelphia, USA; Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Lin KL, Lin JJ, Wang HS. Application of ketogenic diets for pediatric neurocritical care. Biomed J 2020; 43:218-225. [PMID: 32641260 PMCID: PMC7424092 DOI: 10.1016/j.bj.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, we summarize the general mechanisms of the ketogenic diet, and the application of a ketogenic diet in pediatric intensive care units for the neurological disorders of children and young infants. A ketogenic diet is a high-fat, low-carbohydrate, adequate-protein diet. It can alter the primary cerebral energy metabolism from glucose to ketone bodies, which involves multiple mechanisms of antiepileptic action, antiepileptogenic properties, neuro-protection, antioxidant and anti-inflammatory effects, and it is potentially a disease-modifying intervention. Although a ketogenic diet is typically used for the chronic stage of pharmacoresistant of epilepsy, recent studies have shown its efficacy in patients with the acute stage of refractory/super-refractory status epilepticus. The application of a ketogenic diet in pediatric intensive care units is a challenge because of the critical status of the patients, who are often in a coma or have a nothing by mouth order. Moreover, a ketogenic diet needs to be started early and sometimes through parenteral administration in patients with critical conditions such as refractory status epilepticus or febrile infection-related epilepsy syndrome. Animal models and some case reports have shown that the neuro-protective effects of a ketogenic diet can be extended to other emergent neurological diseases, such as traumatic brain injury and ischemic stroke.
Collapse
Affiliation(s)
- Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jann-Jim Lin
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Arora N, Mehta TR. Role of the ketogenic diet in acute neurological diseases. Clin Neurol Neurosurg 2020; 192:105727. [DOI: 10.1016/j.clineuro.2020.105727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
|
17
|
Enkhtuy B, Kwon HE, Kim HD. Advances in Ketogenic Diet Therapies in Pediatric Epilepsy. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
18
|
Prasoppokakorn T, Jirasakuldej S, Lakananurak N. Medium-chain triglyceride ketogenic diet is effective for treatment of an adult with super-refractory status epilepticus: a case report and literature review. Eur J Clin Nutr 2019; 73:1594-1597. [PMID: 31316173 DOI: 10.1038/s41430-019-0471-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The ketogenic diet (KD) has been shown to be effective in controlling super-refractory status epilepticus (SRSE) in adult. To the best of our knowledge, there has been no previous report of the MCT KD in adult with SRSE. CASE REPORT A 19-year-old female was hospitalized due to SRSE from autoimmune encephalitis despite pulsed methylprednisolone, intravenous immunoglobulin, and eight antiepileptic drug treatments. The MCT KD treatment was initiated and rapid seizure control was observed within 6 days despite negative ketosis. CONCLUSION We report the first successful treatment with MCT KD in a female adult with SRSE who was refractory to classic KD with severe hypertriglyceridemia, and reviewed all SE adults with KD treatment. Dramatic seizure control without positive ketosis might lead to a new focus on fatty acids instead, paving the way for further prospective study regarding the effects of the MCT KD in this fatal condition.
Collapse
Affiliation(s)
| | - Suda Jirasakuldej
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Pediatric Neurology, Department of Pediatric, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narisorn Lakananurak
- Division of Clinical Nutrition, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Park EG, Lee J, Lee J. The ketogenic diet for super-refractory status epilepticus patients in intensive care units. Brain Dev 2019; 41:420-427. [PMID: 30638692 DOI: 10.1016/j.braindev.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/21/2018] [Accepted: 12/25/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Super-refractory status epilepticus (SRSE) is one of the most challenging issues in intensive care units (ICUs) in that it is associated with high morbidity and mortality. Although the ketogenic diet (KD) has been reported to be effective in treating of SRSE, the use of the diet as therapy can be complicated by concomitant medical problems specific to critically ill patients. In this study, we aimed to describe our experience of the KD for SRSE patients in ICUs. METHODS We retrospectively reviewed the medical records of 16 patients (10 males, 6 females) with SRSE who were treated with the KD in the ICUs at Samsung Medical Center from July 2005 to July 2017. RESULTS The median age of seizure onset was 8 years (interquartile range 5-13.5). Prior to diet initiation, the patients were in convulsive or non-convulsive SRSE for a median of 23 days (range, 3-420). The median time to achieve ketosis was 3 days (range, 2-6). The KD was continued for a median of 2.1 months (range, 0.1-15.8). Of the 16 patients, nine (56.3%) achieved seizure freedom, six (37.5%) reported >50% seizure reduction, and one (6.2%) had <50% seizure improvement after the KD. There was no significant change in the number of antiepileptic drugs. The most commonly encountered complication during the KD was gastrointestinal disturbance. CONCLUSIONS Our experience indicates that the KD is an effective alternative therapeutic strategy for SRSE patients in ICUs with adequate efficacy and safety in reducing seizure frequency and weaning from prolonged mechanical ventilation, although functional outcome was not favorable for most patients. Close monitoring and preventive management of potential adverse effects are critical elements for success with the KD in patients with SRSE.
Collapse
Affiliation(s)
- Eu Gene Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Liu A, Rong P, Gong L, Song L, Wang X, Li L, Wang Y. Efficacy and Safety of Treatment with Transcutaneous Vagus Nerve Stimulation in 17 Patients with Refractory Epilepsy Evaluated by Electroencephalogram, Seizure Frequency, and Quality of Life. Med Sci Monit 2018; 24:8439-8448. [PMID: 30467307 PMCID: PMC6266629 DOI: 10.12659/msm.910689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background This study aimed to investigate the efficacy and safety of treatment with transcutaneous vagus nerve stimulation (tVNS) for patients with refractory epilepsy by evaluation of the frequency of seizures, electroencephalogram (EEG) changes, and quality of life on follow-up at three months and six months. Material/Methods EEG evaluation followed baseline evaluation with EEG at three months and six months following tVNS treatment. The frequency of seizures was recorded during the six-month study period. Before and after tVNS treatment, patients completed the Self-Rating Anxiety Scale (SAS), the Self-Rating Depression Scale (SDS), the Liverpool Seizure Severity Scale (LSSS), the Quality of Life in Epilepsy Inventory (QOLIE-31), and the Pittsburg Sleep Quality Index (PSQI). Results Seventeen patients completed six months of tVNS treatment. Following three months of tVNS therapy, the frequency of epileptic seizures decreased in 13/17 subjects, with an average reduced seizure rate of 31.3%. Following six months of tVNS treatment, the frequency of epileptic seizures decreased in 16/17 subjects, with an average reduced seizure rate of 64.4%. There were 14/17 cases with abnormal EEG at baseline; 2/17 patients had improved EEGs by three months, and 10/17 patients had improved EEGs by six months. During the study period, there were no adverse events associated with tVNS treatment, but the effects on sleep were inconclusive. Conclusions This preliminary study showed that tVNS was an effective and safe adjuvant treatment for refractory epilepsy that reduced seizure frequency and reduced abnormal EEG changes following clinical improvement.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Li Gong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Lu Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University,, Beijing, China (mainland)
| | - Xian Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Liping Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
21
|
Fessas P, Duret A. Question 1: Is there a role for the ketogenic diet in refractory status epilepticus? Arch Dis Child 2018; 103:994-997. [PMID: 30104393 DOI: 10.1136/archdischild-2018-315755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Petros Fessas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Abstract
The current review highlights the evidence supporting the use of ketogenic diet therapies in the management of a growing number of neurological disorders in adults. An overview of the scientific literature supporting posited mechanisms of therapeutic efficacy is presented including effects on neurotransmission, oxidative stress, and neuro-inflammation. The clinical evidence supporting ketogenic diet use in the management of adult epilepsy, malignant glioma, Alzheimer's disease, migraine headache, motor neuron disease, and other neurologic disorders is highlighted and reviewed. Lastly, common adverse effects of ketogenic therapy in adults, including gastrointestinal symptoms, weight loss, and transient dyslipidemia are discussed.
Collapse
Affiliation(s)
- Tanya J W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, Maryland, 21287, USA
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, Maryland, 21287, USA.
| |
Collapse
|
23
|
Abstract
Status epilepticus (SE) is a medical emergency and presents with either a continuous prolonged seizure or multiple seizures without full recovery of consciousness in between them. The goals of treatment are prompt recognition, early seizure termination, and simultaneous evaluation for any potentially treatable cause. Improved understanding of the pathophysiology has led to a more practical definition. New data have emerged regarding the safety and efficacy of alternative agents, which are increasingly used in the management of these patients. Continuous electroencephalogram monitoring is more widely used and has revealed a higher incidence of subclinical seizures than was previously thought.
Collapse
Affiliation(s)
- Sudhir Datar
- Section of Neurocritical Care, Departments of Neurology and Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
24
|
McDonald TJW, Cervenka MC. The Expanding Role of Ketogenic Diets in Adult Neurological Disorders. Brain Sci 2018; 8:E148. [PMID: 30096755 PMCID: PMC6119973 DOI: 10.3390/brainsci8080148] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The current review highlights the evidence supporting the use of ketogenic diet therapies in the management of adult epilepsy, adult malignant glioma and Alzheimer's disease. An overview of the scientific literature, both preclinical and clinical, in each area is presented and management strategies for addressing adverse effects and compliance are discussed.
Collapse
Affiliation(s)
- Tanya J W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD 21287, USA.
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
Blunck JR, Newman JW, Fields RK, Croom JE. Therapeutic augmentation of ketogenic diet with a sodium-glucose cotransporter 2 inhibitor in a super-refractory status epilepticus patient. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 10:61-64. [PMID: 30073144 PMCID: PMC6068319 DOI: 10.1016/j.ebcr.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023]
Abstract
Background A ketogenic diet (KD) may have a role in treating patients in super-refractory status epilepticus (SRSE). Sodium-glucose cotransporter 2 (SGLT2) inhibitors have a risk of ketoacidosis that could facilitate induction of KD. Case summary A 42-year-old with a history of drug resistant epilepsy developed SRSE requiring several pharmacological interventions during her hospital course including the initiation of KD that failed. SGLT2 inhibitor therapy was initiated in a successful attempt to augment ketone production. Conclusion SGLT2 inhibitors may have a therapeutic value in SRSE patients who cannot achieve ketosis with KD alone. Super-refractory status epilepticus (SRSE) carries a high risk of morbidity and mortality despite both pharmacologic and non-pharmacologic interventions. The ketogenic diet can play an important role as an adjunct treatment for these patients, but delaying ketosis could negate those benefits. Sodium-glucose cotransporter 2 inhibitors can carry an increased risk of ketoacidosis that may benefit patients in SRSE who do not achieve ketosis on the ketogenic diet alone.
Collapse
Affiliation(s)
- Joseph R Blunck
- Saint Luke's Hospital, 4401 Wornall Rd., 64111 Kansas City, MO, United States of America
| | - Joseph W Newman
- Saint Luke's Hospital, 4401 Wornall Rd., 64111 Kansas City, MO, United States of America
| | - Ronald K Fields
- Saint Luke's Hospital, 4401 Wornall Rd., 64111 Kansas City, MO, United States of America
| | - John E Croom
- Saint Luke's Hospital, 4401 Wornall Rd., 64111 Kansas City, MO, United States of America
| |
Collapse
|
26
|
Marawar R, Basha M, Mahulikar A, Desai A, Suchdev K, Shah A. Updates in Refractory Status Epilepticus. Crit Care Res Pract 2018; 2018:9768949. [PMID: 29854452 PMCID: PMC5964484 DOI: 10.1155/2018/9768949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Refractory status epilepticus is defined as persistent seizures despite appropriate use of two intravenous medications, one of which is a benzodiazepine. It can be seen in up to 40% of cases of status epilepticus with an acute symptomatic etiology as the most likely cause. New-onset refractory status epilepticus (NORSE) is a recently coined term for refractory status epilepticus where no apparent cause is found after initial testing. A large proportion of NORSE cases are eventually found to have an autoimmune etiology needing immunomodulatory treatment. Management of refractory status epilepticus involves treatment of an underlying etiology in addition to intravenous anesthetics and antiepileptic drugs. Alternative treatment options including diet therapies, electroconvulsive therapy, and surgical resection in case of a focal lesion should be considered. Short-term and long-term outcomes tend to be poor with significant morbidity and mortality with only one-third of patients reaching baseline neurological status.
Collapse
Affiliation(s)
- Rohit Marawar
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Maysaa Basha
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Advait Mahulikar
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Aaron Desai
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Kushak Suchdev
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Aashit Shah
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
27
|
Arya R, Peariso K, Gaínza-Lein M, Harvey J, Bergin A, Brenton JN, Burrows BT, Glauser T, Goodkin HP, Lai YC, Mikati MA, Fernández IS, Tchapyjnikov D, Wilfong AA, Williams K, Loddenkemper T. Efficacy and safety of ketogenic diet for treatment of pediatric convulsive refractory status epilepticus. Epilepsy Res 2018; 144:1-6. [PMID: 29727818 DOI: 10.1016/j.eplepsyres.2018.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To describe the efficacy and safety of ketogenic diet (KD) for convulsive refractory status epilepticus (RSE). METHODS RSE patients treated with KD at the 6/11 participating institutions of the pediatric Status Epilepticus Research Group from January-2011 to December-2016 were included. Patients receiving KD prior to the index RSE episode were excluded. RSE was defined as failure of ≥2 anti-seizure medications, including at least one non-benzodiazepine drug. Ketosis was defined as serum beta-hydroxybutyrate levels >20 mg/dl (1.9 mmol/l). Outcomes included proportion of patients with electrographic (EEG) seizure resolution within 7 days of starting KD, defined as absence of seizures and ≥50% suppression below 10 μV on longitudinal bipolar montage (suppression-burst ratio ≥50%); time to start KD after onset of RSE; time to achieve ketosis after starting KD; and the proportion of patients weaned off continuous infusions 2 weeks after KD initiation. Treatment-emergent adverse effects (TEAEs) were also recorded. RESULTS Fourteen patients received KD for treatment of RSE (median age 4.7 years, interquartile range [IQR] 5.6). KD was started via enteral route in 11/14 (78.6%) patients. KD was initiated a median of 13 days (IQR 12.5) after the onset of RSE, at 4:1 ratio in 8/14 (57.1%) patients. Ketosis was achieved within a median of 2 days (IQR 2.0) after starting KD. EEG seizure resolution was achieved within 7 days of starting KD in 10/14 (71.4%) patients. Also, 11/14 (78.6%) patients were weaned off their continuous infusions within 2 weeks of starting KD. TEAEs, potentially attributable to KD, occurred in 3/14 (21.4%) patients, including gastro-intestinal paresis and hypertriglyceridemia. Three month outcomes were available for 12/14 (85.7%) patients, with 4 patients being seizure-free, and 3 others with decreased seizure frequency compared to pre-RSE baseline. CONCLUSIONS This series suggests efficacy and safety of KD for treatment of pediatric RSE.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Katrina Peariso
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marina Gaínza-Lein
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Jessica Harvey
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ann Bergin
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Brian T Burrows
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tracy Glauser
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Yi-Chen Lai
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Angus A Wilfong
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Korwyn Williams
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Abstract
The current review highlights the evidence supporting the use of ketogenic diets in the management of drug-resistant epilepsy and status epilepticus in adults. Ketogenic diet variants are compared and advantages and potential side effects of diet therapy are discussed.
Collapse
|
29
|
Abstract
Status epilepticus (SE) is a medical emergency and presents with either a continuous prolonged seizure or multiple seizures without full recovery of consciousness in between them. The goals of treatment are prompt recognition, early seizure termination, and simultaneous evaluation for any potentially treatable cause. Improved understanding of the pathophysiology has led to a more practical definition. New data have emerged regarding the safety and efficacy of alternative agents, which are increasingly used in the management of these patients. Continuous electroencephalogram monitoring is more widely used and has revealed a higher incidence of subclinical seizures than was previously thought.
Collapse
Affiliation(s)
- Sudhir Datar
- Section of Neurocritical Care, Departments of Neurology and Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
30
|
Williams TJ, Cervenka MC. The role for ketogenic diets in epilepsy and status epilepticus in adults. Clin Neurophysiol Pract 2017; 2:154-160. [PMID: 30214989 PMCID: PMC6123874 DOI: 10.1016/j.cnp.2017.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diets offer adjunctive therapy for chronic epilepsy and refractory status epilepticus. Studies support feasibility and efficacy of the classic ketogenic diet and its variants in adults. Potential complications and side effects of diet therapy are often preventable and manageable. Strategies are needed to improve diet adherence.
Ketogenic diet (KD) therapies are high fat, low carbohydrate diets designed to mimic a fasting state. Although studies demonstrate KD’s success in reducing seizures stretching back nearly a century, the last 25 years have seen a resurgence in diet therapy for the management of drug-resistant epilepsy in children as well as adults. With ≥50% seizure reduction efficacy rates in adults of 22–55% for the classic KD and 12–67% for the modified Atkins diet, diet therapy may be in many instances comparable to a trial of an additional anti-epileptic medication and potentially with fewer side effects and other health benefits. Moreover, ketogenic diets offer promising new adjunctive strategies for the treatment of acute status epilepticus in the intensive care setting. Here, we review the efficacy and utility of ketogenic diets for the management of chronic epilepsy and refractory status epilepticus in adults and offer practical guidelines for diet implementation and maintenance.
Collapse
Affiliation(s)
- Tanya J Williams
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD, USA
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD, USA
| |
Collapse
|
31
|
Heo G, Kim SH, Chang MJ. Effect of ketogenic diet and other dietary therapies on anti-epileptic drug concentrations in patients with epilepsy. J Clin Pharm Ther 2017. [PMID: 28626875 DOI: 10.1111/jcpt.12578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE The ketogenic diet (KD) is an effective high-fat, adequate-protein, low-carbohydrate diet for patients with refractory epilepsy. The aim of this study was to investigate the potential effects of the KD and other dietary therapies on the concentrations of anticonvulsants in patients with epilepsy. METHODS Patients with epilepsy who were treated with the KD and other dietary therapies for more than 30 days with at least one measurement performed both before and during the diet were evaluated. The mean serum concentrations and the mean serum concentrations per weight per daily dose per bioavailability (F) of anti-epileptic drugs (AEDs) before and during the treatment were assessed. We also compared the rates of events out of reference ranges of the AEDs between before and during the KD and other dietary therapies. We compared the serum albumin, alanine transaminase and aspartate transaminase data of patients with valproic acid before and during the KD. RESULTS AND DISCUSSION One-hundred thirty-nine patients including 81 male patients were enrolled. The median age of the patients was 2.91 (0.15-15.46) years. The median duration of the dietary therapies was 153 (35-2307) days. After the dietary therapies, the serum concentrations of carbamazepine, lamotrigine, levetiracetam, topiramate and valproic acid decreased, whereas that of phenobarbital slightly increased. However, statistical significance was found only with valproic acid (67.07±25.89 μg/mL vs 51.00±20.19 μg/mL, P<.05). The serum concentrations per weight per daily dose per drug F significantly decreased for valproic acid (1.38±1.39×10-2 vs 0.82±0.82×10-2 μg d mL-1 F-1 ) and phenobarbital (6.66±7.20×10-2 vs 4.75±4.07×10-2 μg d mL-1 F-1 , P<.05). The rate of occurrence of events out of reference ranges significantly increased with valproic acid (36.08% vs 57.23%, P<.05). WHAT IS NEW AND CONCLUSIONS Most anti-epileptic drug serum concentrations remained stable during the KD and other related dietary therapies except those of valproic acid. Therefore, serum concentrations of valproic acid should be monitored when the KD and other dietary therapies are concomitantly administered.
Collapse
Affiliation(s)
- G Heo
- Department of Pharmaceutical Medicine and Regulatory Science, College of Medicine and Pharmacy, Yonsei University, Incheon, Korea
| | - S H Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - M J Chang
- Department of Pharmaceutical Medicine and Regulatory Science, College of Medicine and Pharmacy, Yonsei University, Incheon, Korea.,Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| |
Collapse
|
32
|
Luan G, Wang X. Nondrug Treatment for Refractory Status Epilepticus. REFRACTORY STATUS EPILEPTICUS 2017:247-273. [DOI: 10.1007/978-981-10-5125-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Chiusolo F, Diamanti A, Bianchi R, Fusco L, Elia M, Capriati T, Vigevano F, Picardo S. From intravenous to enteral ketogenic diet in PICU: A potential treatment strategy for refractory status epilepticus. Eur J Paediatr Neurol 2016; 20:843-847. [PMID: 27594068 DOI: 10.1016/j.ejpn.2016.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ketogenic diet (KD) has been used to treat refractory status epilepticus (RSE). KD is a high-fat, restricted-carbohydrate regimen that may be administered with different fat to protein and carbohydrate ratios (3:1 and 4:1 fat to protein and carbohydrate ratios). Other ketogenic regimens have a lower fat and higher protein and carbohydrate ratio to improve taste and thus compliance to treatment. We describe a case of RSE treated with intravenous KD in the Pediatric Intensive Care Unit (PICU). CASE REPORT An 8-year-old boy was referred to the PICU because of continuous tonic-clonic and myoclonic generalized seizures despite several antiepileptic treatments. After admission he was intubated and treated with intravenous thiopental followed by ketamine. Seizures continued with frequent myoclonic jerks localized on the face and upper arms. EEG showed seizure activity with spikes on rhythmic continuous waves. Thus we decided to begin KD. The concomitant ileus contraindicated KD by the enteral route and we therefore began IV KD. The ketogenic regimen consisted of conventional intravenous fat emulsion, plus dextrose and amino-acid hyperalimentation in a 2:1 then 3:1 fat to protein and carbohydrate ratio. Exclusive IV ketogenic treatment, well tolerated, was maintained for 3 days; peristalsis then reappeared so KD was continued by the enteral route at 3:1 ratio. Finally, after 8 days and no seizure improvement, KD was deemed unsuccessful and was discontinued. CONCLUSIONS Our experience indicates that IV KD may be considered as a temporary "bridge" towards enteral KD in patients with partial or total intestinal failure who need to start KD. It allows a prompt initiation of KD, when indicated for the treatment of severe diseases such as RSE.
Collapse
Affiliation(s)
- F Chiusolo
- Department of Anesthesia and Critical Care, ARCO Rome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - A Diamanti
- Artificial Nutrition Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - R Bianchi
- Department of Anesthesia and Critical Care, ARCO Rome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - L Fusco
- Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Elia
- Department of Anesthesia and Critical Care, ARCO Rome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - T Capriati
- Department of Anesthesia and Critical Care, ARCO Rome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Vigevano
- Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Picardo
- Department of Anesthesia and Critical Care, ARCO Rome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Smith DM, McGinnis EL, Walleigh DJ, Abend NS. Management of Status Epilepticus in Children. J Clin Med 2016; 5:jcm5040047. [PMID: 27089373 PMCID: PMC4850470 DOI: 10.3390/jcm5040047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 01/04/2023] Open
Abstract
Status epilepticus is a common pediatric neurological emergency. Management includes prompt administration of appropriately selected anti-seizure medications, identification and treatment of seizure precipitant(s), as well as identification and management of associated systemic complications. This review discusses the definitions, classification, epidemiology and management of status epilepticus and refractory status epilepticus in children.
Collapse
Affiliation(s)
- Douglas M Smith
- Departments of Neurology and Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Emily L McGinnis
- Departments of Neurology and Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Diana J Walleigh
- Departments of Neurology and Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Fung ELW, Chang SKY, Yam KKM, Yau PYP. Ketogenic Diet as a Therapeutic Option in Super-refractory Status Epilepticus. Pediatr Neonatol 2015; 56:429-31. [PMID: 26051033 DOI: 10.1016/j.pedneo.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 01/13/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Eva Lai-Wah Fung
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | |
Collapse
|
36
|
Alford EL, Wheless JW, Phelps SJ. Treatment of Generalized Convulsive Status Epilepticus in Pediatric Patients. J Pediatr Pharmacol Ther 2015; 20:260-89. [PMID: 26380568 PMCID: PMC4557718 DOI: 10.5863/1551-6776-20.4.260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Generalized convulsive status epilepticus (GCSE) is one of the most common neurologic emergencies and can be associated with significant morbidity and mortality if not treated promptly and aggressively. Management of GCSE is staged and generally involves the use of life support measures, identification and management of underlying causes, and rapid initiation of anticonvulsants. The purpose of this article is to review and evaluate published reports regarding the treatment of impending, established, refractory, and super-refractory GCSE in pediatric patients.
Collapse
Affiliation(s)
- Elizabeth L. Alford
- Department of Clinical Pharmacy, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee
- Center for Pediatric Pharmacokinetics and Therapeutics, Memphis, Tennessee
| | - James W. Wheless
- Departments of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Pediatric Neurology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Le Bonheur Neuroscience Center and Comprehensive Epilepsy Program, Memphis, Tennessee
| | - Stephanie J. Phelps
- Department of Clinical Pharmacy, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee
- Center for Pediatric Pharmacokinetics and Therapeutics, Memphis, Tennessee
- Departments of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
37
|
Wang X, Jin J, Chen R. Combination drug therapy for the treatment of status epilepticus. Expert Rev Neurother 2015; 15:639-54. [DOI: 10.1586/14737175.2015.1045881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Cobo NH, Sankar R, Murata KK, Sewak SL, Kezele MA, Matsumoto JH. The ketogenic diet as broad-spectrum treatment for super-refractory pediatric status epilepticus: challenges in implementation in the pediatric and neonatal intensive care units. J Child Neurol 2015; 30:259-66. [PMID: 24464515 DOI: 10.1177/0883073813516192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Refractory status epilepticus carries significant morbidity and mortality. Recent reports have promoted the use of the ketogenic diet as an effective treatment for refractory status epilepticus. We describe our recent experience with instituting the ketogenic diet for 4 critically ill children in refractory status epilepticus, ranging in age from 9 weeks to 13.5 years after failure of traditional treatment. The ketogenic diet allowed these patients to be weaned off continuous infusions of anesthetics without recurrence of status epilepticus, though delayed ketosis and persistently elevated glucose measurements posed special challenges to effective initiation, and none experienced complete seizure cessation. The ease of sustaining myocardial function with fatty acid energy substrates compares favorably over the myocardial toxicity posed by anesthetic doses of barbiturates and contributes to the safety profile of the ketogenic diet. The ketogenic diet can be implemented successfully and safely for the treatment of refractory status epilepticus in pediatric patients.
Collapse
Affiliation(s)
- Nicole H Cobo
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles and Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles and Mattel Children's Hospital at UCLA, Los Angeles, CA, USA Department of Neurology, David Geffen School of Medicine, University of California Los Angeles and Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | - Kristina K Murata
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles and Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | - Sarika L Sewak
- Department of Nutrition, Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | - Michele A Kezele
- Department of Nutrition, Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | - Joyce H Matsumoto
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles and Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| |
Collapse
|
39
|
Sánchez Fernández I, Loddenkemper T. Therapeutic choices in convulsive status epilepticus. Expert Opin Pharmacother 2015; 16:487-500. [PMID: 25626010 DOI: 10.1517/14656566.2015.997212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Convulsive status epilepticus (SE) is one of the most frequent and severe neurological emergencies in both adults and children. A timely administration of appropriate antiepileptic drugs (AEDs) can stop seizures early and markedly improve outcome. AREAS COVERED The main treatment strategies for SE are reviewed with an emphasis on initial treatments. The established first-line treatment consists of benzodiazepines, most frequently intravenous lorazepam. Benzodiazepines that do not require intravenous administration like intranasal midazolam or intramuscular midazolam are becoming more popular because of easier administration in the field. Other benzodiazepines may also be effective. After treatment with benzodiazepines, treatment with fosphenytoin and phenobarbital is usually recommended. Other intravenously available AEDs, such as valproate and levetiracetam, may be as effective and safe as fosphenytoin and phenobarbital, have a faster infusion time and better pharmacokinetic profile. The rationale behind the need for an early treatment of SE is discussed. The real-time delays of AED administration in clinical practice are described. EXPERT OPINION There is limited evidence to support what the best initial benzodiazepine or the best non-benzodiazepine AED is. Recent and developing multicenter trials are evaluating the best treatment options and will likely modify the recommended treatment choices in SE in the near future. Additionally, more research is needed to understand how different treatment options modify prognosis in SE. Timely implementation of care protocols to minimize treatment delays is crucial.
Collapse
Affiliation(s)
- Iván Sánchez Fernández
- Boston Children's Hospital, Harvard Medical School, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Fegan 9 , 300 Longwood Avenue, Boston, MA 02115 , USA
| | | |
Collapse
|
40
|
Continuous infusion, general anesthesia and other intensive care treatment for uncontrolled status epilepticus. Curr Opin Pediatr 2014; 26:682-9. [PMID: 25313975 DOI: 10.1097/mop.0000000000000149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To discuss the use of continuous infusions, general anesthesia, hypothermia, and ketogenic diet as treatment for uncontrolled status epilepticus in pediatric patients. RECENT FINDINGS Recent studies demonstrate that clinical practitioners have a hierarchy in approach in controlling refractory status epilepticus (RSE) and super-refractory status epilepticus in children. In the acute setting of RSE, midazolam achieves clinical seizure control at a mean of 41 min after starting an infusion. When midazolam has failed to control RSE, the evidence points to barbiturate anesthesia as the next frequently used option. When both midazolam and barbiturates have failed, use of isoflurane or ketamine anesthesia has been tried at a mean of 10 days after RSE onset, although the studies are largely anecdotal. Increasingly, the use of therapeutic hypothermia or ketogenic diet is described as a strategy for super-refractory status epilepticus, and better evidence for their use may become available from ongoing randomized studies. SUMMARY Uncontrolled episodes of status epilepticus require intensive care treatment and the literature describes a common pathway of care used by many. However, cases of truly refractory and super-refractory status epilepticus are seen infrequently at any given institution. One strategy to improve the quality of evidence is to develop prospective, national and multinational case registries to determine the range of presentations and causes, efficacy of treatments, and clinical outcomes.
Collapse
|
41
|
Ketogenic diet in pediatric patients with refractory focal status epilepticus. Epilepsy Res 2014; 108:1912-6. [DOI: 10.1016/j.eplepsyres.2014.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/20/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
|
42
|
Li H, Jauregui JL, Fenton C, Chee CM, Bergqvist AGC. Epilepsy Treatment Simplified through Mobile Ketogenic Diet Planning. ACTA ACUST UNITED AC 2014; 3:11-15. [PMID: 28794808 DOI: 10.7309/jmtm.3.2.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Ketogenic Diet (KD) is an effective, alternative treatment for refractory epilepsy. This high fat, low protein and carbohydrate diet mimics the metabolic and hormonal changes that are associated with fasting. AIMS To maximize the effectiveness of the KD, each meal is precisely planned, calculated, and weighed to within 0.1 gram for the average three-year duration of treatment. Managing the KD is time-consuming and may deter caretakers and patients from pursuing or continuing this treatment. Thus, we investigated methods of planning KD faster and making the process more portable through mobile applications. METHODS Nutritional data was gathered from the United States Department of Agriculture (USDA) Nutrient Database. User selected foods are converted into linear equations with n variables and three constraints: prescribed fat content, prescribed protein content, and prescribed carbohydrate content. Techniques are applied to derive the solutions to the underdetermined system depending on the number of foods chosen. RESULTS The method was implemented on an iOS device and tested with varieties of foods and different number of foods selected. With each case, the application's constructed meal plan was within 95% precision of the KD requirements. CONCLUSION In this study, we attempt to reduce the time needed to calculate a meal by automating the computation of the KD via a linear algebra model. We improve upon previous KD calculators by offering optimal suggestions and incorporating the USDA database. We believe this mobile application will help make the KD and other dietary treatment preparations less time consuming and more convenient.
Collapse
Affiliation(s)
- Hanzhou Li
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Biology University of Pennsylvania, Philadelphia, PA 19104
| | | | - Cagla Fenton
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Clinical Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Claire M Chee
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - A G Christina Bergqvist
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
43
|
Prins ML, Matsumoto JH. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res 2014; 55:2450-7. [PMID: 24721741 DOI: 10.1194/jlr.r046706] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, Brain Injury Research Center University of California, Los Angeles, Los Angeles, CA
| | - Joyce H Matsumoto
- Department of Pediatrics, Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
44
|
Thakur KT, Probasco JC, Hocker SE, Roehl K, Henry B, Kossoff EH, Kaplan PW, Geocadin RG, Hartman AL, Venkatesan A, Cervenka MC. Ketogenic diet for adults in super-refractory status epilepticus. Neurology 2014; 82:665-70. [PMID: 24453083 DOI: 10.1212/wnl.0000000000000151] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To describe a case series of adult patients in the intensive care unit in super-refractory status epilepticus (SRSE; refractory status lasting 24 hours or more despite appropriate anesthetic treatment) who received treatment with the ketogenic diet (KD). METHODS We performed a retrospective case review at 4 medical centers of adult patients with SRSE treated with the KD. Data collected included demographic features, clinical presentation, diagnosis, EEG data, anticonvulsant treatment, and timing and duration of the KD. Primary outcome measures were resolution of status epilepticus (SE) after initiation of KD and ability to wean from anesthetic agents. RESULTS Ten adult patients at 4 medical centers were started on the KD for SRSE. The median age was 33 years (interquartile range [IQR] 21), 4 patients (40%) were male, and 7 (70%) had encephalitis. The median duration of SE before initiation of KD was 21.5 days (IQR 28) and the median number of antiepileptic medications used before initiation of KD was 7 (IQR 7). Ninety percent of patients achieved ketosis, and SE ceased in all patients achieving ketosis in a median of 3 days (IQR 8). Three patients had minor complications of the KD including transient acidosis and hypertriglyceridemia and 2 patients ultimately died of causes unrelated to the KD. CONCLUSION We describe treatment of critically ill adult patients with SRSE with the KD, with 90% of patients achieving resolution of SE. Prospective trials are warranted to examine the efficacy of the KD in adults with refractory SE. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that for intensive care unit patients with refractory SE, a KD leads to resolution of the SE.
Collapse
Affiliation(s)
- Kiran T Thakur
- From the Departments of Neurology (K.T.T., J.C.P., E.H.K., R.G.G., A.L.H., A.V., M.C.C.) and Pediatrics (E.H.K., A.L.H.), Johns Hopkins Hospital, Baltimore, MD; Department of Neurology (S.E.H.), Mayo Clinic, Rochester, MN; Department of Food and Nutrition Services (K.R.), Rush University Medical Center, Chicago, IL; Institute for Clinical and Translational Research (B.H.), Johns Hopkins University, Baltimore; Department of Neurology (P.W.K.), Johns Hopkins Bayview Medical Center, Baltimore; and Departments of Anesthesiology-Critical Care Medicine, Neurosurgery, and Medicine (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
O'Connor SE, Ream MA, Richardson C, Mikati MA, Trescher WH, Byler DL, Sather JD, Michael EH, Urbanik KB, Richards JL, Davis R, Zupanc ML, Zupec-Kania B. The ketogenic diet for the treatment of pediatric status epilepticus. Pediatr Neurol 2014; 50:101-3. [PMID: 24287234 DOI: 10.1016/j.pediatrneurol.2013.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Refractory status epilepticus carries a high risk of morbidity and mortality for children. Traditional treatment of status epilepticus consists of multiple anticonvulsant drugs and, if needed, induction of a medical coma. The ketogenic diet has been used for intractable epilepsy for many years. The purpose of this article is to report a case series of five patients with refractory status epilepticus successfully managed with the ketogenic diet. METHODS A summary of pediatric patients with refractory status epilepticus treated with diet was performed. CONCLUSIONS Ketogenic diet therapy should be considered as a treatment option in pediatric patients with refractory status epilepticus.
Collapse
Affiliation(s)
- Sunila E O'Connor
- Department of Pediatrics, Section of Epilepsy, Lurie Children's Hospital, Chicago, Illinois.
| | | | - Candy Richardson
- The Children's Health Center, Duke University Hospital, Durham, North Carolina
| | | | - Willam H Trescher
- Pennsylvania State Hershey Children's Hospital, Hershey, Pennsylvania
| | - Debra L Byler
- Pennsylvania State Hershey Children's Hospital, Hershey, Pennsylvania
| | - Joan D Sather
- Pennsylvania State Hershey Children's Hospital, Hershey, Pennsylvania
| | | | | | | | - Ronald Davis
- Arnold Palmer Hospital for Children, Orlando, Florida
| | - Mary L Zupanc
- Children's Hospital of Orange County, Orange, California
| | | |
Collapse
|
46
|
Sort R, Born AP, Pedersen KN, Fonsmark L, Uldall P. Ketogenic diet in 3 cases of childhood refractory status epilepticus. Eur J Paediatr Neurol 2013; 17:531-6. [PMID: 23751291 DOI: 10.1016/j.ejpn.2013.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Refractory status epilepticus (RSE) in children is associated with a significant risk of death or neurological morbidity. Recently attention has been drawn to the ketogenic diet (KD) as an acute treatment, as it has shown promise in controlling seizures in otherwise refractory status epilepticus in several cases. We have listed these and reviewed all cases of KD used in RSE at our centre. KD was given as 4:1 fat:carbohydrate-protein solution. RESULTS A 3-year-old girl with RSE due to Hemiconvulsion-Hemiplegia Epilepsy syndrome. KD was instigated on day 6. Seizures stopped with ketosis on day 7. A 10-year-old boy rapidly developing RSE. After months a mitochondrial disorder was discovered. KD was tried twice with severe side-effects but no seizure control. 11-year-old healthy boy with RSE as FIRES. On KD seizures stopped for 24 h one day after reaching ketosis. He improved over 3-4 weeks. DISCUSSION KD was efficient in two of three cases of RSE. The non-responder had severe side-effects and proved to have a mitochondrial disorder which is arguably a contraindication for KD. More studies are needed to prove efficacy of KD in RSE, to define optimal timing of KD and possible contraindications for KD in RSE.
Collapse
Affiliation(s)
- Rune Sort
- Department of Paediatrics, Hillerød Hospital, 3400 Hillerød, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Abstract
One of the newest and yet fastest growing indications for dietary therapy is the emergency treatment of refractory status epilepticus. Ten retrospective publications since 2008 have reported benefits in 32 children and adults, of whom 25 (78%) became seizure-free. Most of the patients who responded did so within 7 to 10 days of the initiation of nasogastrically administered ketogenic formulas. Encephalitis and febrile-illness related epilepsy syndrome causing status epilepticus highly refractory to antiepileptic drugs may be particularly amenable to dietary treatment. Prospective, multicenter studies are under way to help clarify who best will respond, how quickly, and the optimal diet duration after success.
Collapse
Affiliation(s)
- Eric H Kossoff
- John M. Freeman Pediatric Epilepsy Center, Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | |
Collapse
|
48
|
Abstract
The ketogenic diet is not a new treatment for the treatment of epilepsy, but the degree of literature now available seems to have given it a new lease of life. Over the past 12 years, there has been more scientific data on both benefits and effect of the ketogenic diet. Data demonstrate a clear benefit in efficacy. We also have a clearer idea in utilization, type of diet to use, and in whom. Questions however remain and further work is required, not least in recognizing likely candidates and in simplifying administration.
Collapse
Affiliation(s)
- J Helen Cross
- UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London, & Young Epilepsy, Lingfield, UK.
| |
Collapse
|
49
|
Dionisio S, Brown H, Boyle R, Blum S. Managing the generalised tonic-clonic seizure and preventing progress to status epilepticus: a stepwise approach. Intern Med J 2013; 43:739-46. [DOI: 10.1111/imj.12168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Affiliation(s)
- S. Dionisio
- Department of Neurology; Princess Alexandra Hospital
| | - H. Brown
- Department of Neurology; Princess Alexandra Hospital
| | - R. Boyle
- Department of Neurology; Princess Alexandra Hospital
| | | |
Collapse
|
50
|
Abstract
About one third of patients with epilepsy are pharmacoresistent. For a subgroup of this population, the ketogenic diet can be highly efficacious and should be considered early. This review discusses the different types of ketogenic diet, proposed mechanism of actions and its evidence for use in children and adults with both generalized and focal epilepsies where surgery is not feasible. In addition we discuss a practical approach to diet initiation, maintenance and monitoring for side effects. We also summarize the emerging evidence for the use of ketogenic diet in a broad range of neurological disorders.
Collapse
|