1
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
2
|
Rossi RE, Elvevi A, Sciola V, Mandarino FV, Danese S, Invernizzi P, Massironi S. Paradoxical association between dyspepsia and autoimmune chronic atrophic gastritis: Insights into mechanisms, pathophysiology, and treatment options. World J Gastroenterol 2023; 29:3733-3747. [PMID: 37398891 PMCID: PMC10311608 DOI: 10.3748/wjg.v29.i23.3733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/23/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Autoimmune gastritis (AIG) is a progressive, chronic, immune-mediated inflammatory disease characterized by the destruction of gastric parietal cells leading to hypo/anacidity and loss of intrinsic factor. Gastrointestinal symptoms such as dyspepsia and early satiety are very common, being second in terms of frequency only to anemia, which is the most typical feature of AIG. AIM To address both well-established and more innovative information and knowledge about this challenging disorder. METHODS An extensive bibliographical search was performed in PubMed to identify guidelines and primary literature (retrospective and prospective studies, systematic reviews, case series) published in the last 10 years. RESULTS A total of 125 records were reviewed and 80 were defined as fulfilling the criteria. CONCLUSION AIG can cause a range of clinical manifestations, including dyspepsia. The pathophysiology of dyspepsia in AIG is complex and involves changes in acid secretion, gastric motility, hormone signaling, and gut microbiota, among other factors. Managing dyspeptic symptoms of AIG is challenging and there are no specific therapies targeting dyspepsia in AIG. While proton pump inhibitors are commonly used to treat dyspepsia and gastroesophageal reflux disease, they may not be appropriate for AIG. Prokinetic agents, antidepressant drugs, and non-pharmacological treatments may be of help, even if not adequately evidence-based supported. A multidisciplinary approach for the management of dyspepsia in AIG is recommended, and further research is needed to develop and validate more effective therapies for dyspepsia.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Alessandra Elvevi
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy and Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Valentina Sciola
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano 20100, Italy
| | | | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan 20132, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Pietro Invernizzi
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy and Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Sara Massironi
- Gastroenterology Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy and Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
3
|
Maccioni L, Fu Y, Horsmans Y, Leclercq I, Stärkel P, Kunos G, Gao B. Alcohol-associated bowel disease: new insights into pathogenesis. EGASTROENTEROLOGY 2023; 1:e100013. [PMID: 37662449 PMCID: PMC10472976 DOI: 10.1136/egastro-2023-100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 09/05/2023]
Abstract
Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.
Collapse
Affiliation(s)
- Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Tverdal A, Høiseth G, Magnus P, Næss Ø, Selmer R, Knudsen GP, Mørland J. Alcohol Consumption, HDL-Cholesterol and Incidence of Colon and Rectal Cancer: A Prospective Cohort Study Including 250,010 Participants. Alcohol Alcohol 2021; 56:718-725. [PMID: 33604595 PMCID: PMC8557640 DOI: 10.1093/alcalc/agab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
Aims Alcohol consumption has been linked to colorectal cancer (CRC) and also to the high-density lipoprotein cholesterol level (HDL-C). HDL-C has been associated with the incidence of CRC. The aim of this study was to investigate the association between self-reported alcohol consumption, HDL-C and incidence of CRC, separately for the two sites. Methods Altogether, 250,010 participants in Norwegian surveys have been followed-up for an average of 18 years with respect to a first-time outcome of colon or rectal cancer. During follow-up, 3023 and 1439 colon and rectal cancers were registered. Results For men, the HR per 1 drink per day was 1.05 with 95% confidence interval (0.98–1.12) for colon and 1.08 (1.02–1.15) for rectal cancer. The corresponding figures for women were 1.03 (0.97–1.10) and 1.05 (1.00–1.10). There was a positive association between alcohol consumption and HDL-C. HDL-C was inversely associated with colon cancer in men (0.74 (0.62–0.89) per 1 mmol/l) and positively associated with rectal cancer, although not statistically significant (1.15 (0.92–1.44). A robust regression that assigned weights to each observation and exclusion of weights ≤ 0.1 increased the HRs per 1 drink per day and decreased the HR per 1 mmol/l for colon cancer. The associations with rectal cancer remained unchanged. Conclusion Our results support a positive association between alcohol consumption and colon and rectal cancer, most pronounced for rectal cancer. Considering the positive relation between alcohol consumption and HDL-C, the inverse association between HDL-C and colon cancer in men remains unsettled.
Collapse
Affiliation(s)
- Aage Tverdal
- Norwegian Institute of Public Health, Centre for Fertility and Health, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Gudrun Høiseth
- Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway.,Department of Forensic Sciences, Oslo University Hospital, Pb 4950 Nydalen, 0424 Oslo.,Center for Psychopharmacology, Diakonhjemmet Hospital, Forskningsveien 13, 0373 Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Centre for Fertility and Health, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Øyvind Næss
- Institute of Health and Society, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway
| | - Randi Selmer
- Norwegian Institute of Public Health, Division of Chronic Diseases and Aging, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Gun Peggy Knudsen
- Norwegian Institute of Public Health, Division of health data and digitalization, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Jørg Mørland
- Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway.,Norwegian Institute of Public Health, Division of health data and digitalization, Pb 222 Skøyen, 0213 Oslo, Norway
| |
Collapse
|
5
|
Hakura A, Awogi T, Shiragiku T, Ohigashi A, Yamamoto M, Kanasaki K, Oka H, Dewa Y, Ozawa S, Sakamoto K, Kato T, Yamamura E. Bacterial mutagenicity test data: collection by the task force of the Japan pharmaceutical manufacturers association. Genes Environ 2021; 43:41. [PMID: 34593056 PMCID: PMC8482598 DOI: 10.1186/s41021-021-00206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ames test is used worldwide for detecting the bacterial mutagenicity of chemicals. In silico analyses of bacterial mutagenicity have recently gained acceptance by regulatory agencies; however, current in silico models for prediction remain to be improved. The Japan Pharmaceutical Manufacturers Association (JPMA) organized a task force in 2017 in which eight Japanese pharmaceutical companies had participated. The purpose of this task force was to disclose a piece of pharmaceutical companies’ proprietary Ames test data. Results Ames test data for 99 chemicals of various chemical classes were collected for disclosure in this study. These chemicals are related to the manufacturing process of pharmaceutical drugs, including reagents, synthetic intermediates, and drug substances. The structure-activity (mutagenicity) relationships are discussed in relation to structural alerts for each chemical class. In addition, in silico analyses of these chemicals were conducted using a knowledge-based model of Derek Nexus (Derek) and a statistics-based model (GT1_BMUT module) of CASE Ultra. To calculate the effectiveness of these models, 89 chemicals for Derek and 54 chemicals for CASE Ultra were selected; major exclusions were the salt form of four chemicals that were tested both in the salt and free forms for both models, and 35 chemicals called “known” positives or negatives for CASE Ultra. For Derek, the sensitivity, specificity, and accuracy were 65% (15/23), 71% (47/66), and 70% (62/89), respectively. The sensitivity, specificity, and accuracy were 50% (6/12), 60% (25/42), and 57% (31/54) for CASE Ultra, respectively. The ratio of overall disagreement between the CASE Ultra “known” positives/negatives and the actual test results was 11% (4/35). In this study, 19 out of 28 mutagens (68%) were detected with TA100 and/or TA98, and 9 out of 28 mutagens (32%) were detected with either TA1535, TA1537, WP2uvrA, or their combination. Conclusion The Ames test data presented here will help avoid duplicated Ames testing in some cases, support duplicate testing in other cases, improve in silico models, and enhance our understanding of the mechanisms of mutagenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00206-1.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Takumi Awogi
- Manufacturing Process Development Department, Otsuka Pharmaceutical Co., Ltd., 224-18 Hiraishi-Ebisuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0182, Japan
| | - Toshiyuki Shiragiku
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan
| | - Atsushi Ohigashi
- Process Chemistry Labs, Astellas Pharma Inc., 160-2 Akahama, Takahagi, Ibaraki, 318-0001, Japan
| | - Mika Yamamoto
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kayoko Kanasaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Osaka, Toyonaka-shi, 561-0825, Japan
| | - Hiroaki Oka
- Toxicology Laboratory, Taiho pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima, 771-0194, Japan
| | - Yasuaki Dewa
- Toxicology Research Laboratory, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Shunsuke Ozawa
- Toxicology Research Laboratory, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi, 329-0114, Japan
| | - Kouji Sakamoto
- Drug Safety, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, 331-9530, Japan
| | - Tatsuya Kato
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Co., 2-2-50 Kawagishi, Toda-shi, Saitama, 335-8505, Japan
| | - Eiji Yamamura
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Co., 2-2-50 Kawagishi, Toda-shi, Saitama, 335-8505, Japan
| |
Collapse
|
6
|
Qian G, Ho JWK. Challenges and emerging systems biology approaches to discover how the human gut microbiome impact host physiology. Biophys Rev 2020; 12:851-863. [PMID: 32638331 PMCID: PMC7429608 DOI: 10.1007/s12551-020-00724-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Research in the human gut microbiome has bloomed with advances in next generation sequencing (NGS) and other high-throughput molecular profiling technologies. This has enabled the generation of multi-omics datasets which holds promises for big data-enabled knowledge acquisition in the form of understanding the normal physiological and pathological involvement of gut microbiomes. Ample evidence suggests that distinct microbial compositions in the human gut are associated with different diseases. However, the biological mechanisms underlying these associations are often unclear. There is a need to move beyond statistical associations to discover how changes in the gut microbiota mechanistically affect host physiology and disease development. This review summarises state-of-the-art big data and systems biology approaches for mechanism discovery.
Collapse
Affiliation(s)
- Gordon Qian
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
7
|
Offermans NSM, Ketcham SM, van den Brandt PA, Weijenberg MP, Simons CCJM. Alcohol intake, ADH1B and ADH1C genotypes, and the risk of colorectal cancer by sex and subsite in the Netherlands Cohort Study. Carcinogenesis 2018; 39:375-388. [PMID: 29390059 DOI: 10.1093/carcin/bgy011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
The alcohol-colorectal cancer (CRC) association may differ by sex and ADH1B and ADH1C genotypes. ADH enzymes oxidize ethanol to acetaldehyde, both of which are human carcinogens. The Netherlands Cohort Study includes 120 852 participants, aged 55-69 years at baseline (1986), and has 20.3 years follow-up (case-cohort: nsubcohort = 4774; ncases = 4597). The baseline questionnaire included questions on alcohol intake at baseline and 5 years before. Using toenail DNA, available for ~75% of the cohort, we successfully genotyped six ADH1B and six ADH1C SNPs (nsubcohort = 3897; ncases = 3558). Sex- and subsite-specific Cox hazard ratios and 95% confidence intervals for CRC were estimated comparing alcohol categories, genotypes within drinkers and alcohol categories within genotype strata. We used a dominant genetic model and adjusted for multiple testing. Alcohol intake increased CRC risk in both sexes, though in women only in the (proximal) colon when in excess of 30 g/day. In male drinkers, ADH1B rs4147536 increased (distal) colon cancer risk. In female drinkers, ADH1C rs283415 increased proximal colon cancer risk. ADH1B rs3811802 and ADH1C rs4147542 decreased CRC risk in heavy (>30 g/day) and stable drinkers (compared to 5 years before baseline), respectively. Rs3811802 and rs4147542 significantly modified the alcohol-colon cancer association in women (Pfor interaction = 0.004 and 0.02, respectively). A difference in associations between genotype strata was generally clearer in men than women. In conclusion, men showed increased CRC risks across subsites and alcohol intake levels, while only colon cancer risk was increased in women at heavy intake levels. ADH1B rs3811802 and ADH1C rs4147542 significantly modified the alcohol-colon cancer association in women.
Collapse
Affiliation(s)
- Nadine S M Offermans
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Shannon M Ketcham
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Konkit M, Kim K, Kim JH, Kim W. Protective effects of Lactococcus chungangensis CAU 28 on alcohol-metabolizing enzyme activity in rats. J Dairy Sci 2018; 101:5713-5723. [PMID: 29681403 DOI: 10.3168/jds.2017-13992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the beneficial effects of Lactococcus chungangensis CAU 28, a bacterial strain of nondairy origin, on alcohol metabolism in rats treated with ethanol, focusing on alcohol elimination and prevention of damage and comparing the effects with those observed for Lactococcus lactis ssp. lactis ATCC 19435. Male Sprague-Dawley rats were orally administered 20% ethanol and 3 substrates (freeze-dried cells, cream cheese, and yogurt) containing Lc. chungangensis CAU 28 or Lc. lactis ssp. lactis ATCC 19435, which were provided 1 h before or 1 h after ethanol ingestion. Blood samples were collected from the tail veins of the rats at 1, 3, 6, 12, and 24 h after ingestion of ethanol, Lc. chungangensis CAU 28 substrate, or Lc. lactis ssp. lactis ATCC 19435 substrate. Alcohol and acetaldehyde concentrations in the Lc. chungangensis CAU 28 substrate-treated rats were significantly reduced in a time-dependent manner compared with those in the Lc. lactis ssp. lactis ATCC 19435 substrate-treated rats. Among the experimental groups, treatment with cream cheese before ingestion of 20% ethanol was found to be the most effective method for reducing both alcohol and acetaldehyde levels in the blood. Alanine aminotransferase and aspartate aminotransferase activities in the Lc. chungangensis CAU 28 substrate-treated rats were significantly lower than those in the positive controls. Moreover, in the Lc. chungangensis CAU 28 cream cheese-treated group, rats showed a reduction of liver enzymes by up to 60%, with good effectiveness observed for both pre- and post-ethanol ingestion. These results suggested that intake of lactic acid bacteria, particularly in Lc. chungangensis CAU 28-supplemented dairy products, may reduce blood alcohol and acetaldehyde concentrations, thereby mitigating acute alcohol-induced hepatotoxicity by altering alcohol-metabolizing enzyme activities.
Collapse
Affiliation(s)
- Maytiya Konkit
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Kiyoung Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
9
|
Na HK, Lee JY. Molecular Basis of Alcohol-Related Gastric and Colon Cancer. Int J Mol Sci 2017; 18:E1116. [PMID: 28538665 PMCID: PMC5485940 DOI: 10.3390/ijms18061116] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023] Open
Abstract
Many meta-analysis, large cohort studies, and experimental studies suggest that chronic alcohol consumption increases the risk of gastric and colon cancer. Ethanol is metabolized by alcohol dehydrogenases (ADH), catalase or cytochrome P450 2E1 (CYP2E1) to acetaldehyde, which is then further oxidized to acetate by aldehyde dehydrogenase (ALDH). Acetaldehyde has been classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen to humans. The acetaldehyde level in the stomach and colon is locally influenced by gastric colonization by Helicobacter pylori or colonic microbes, as well as polymorphisms in the genes encoding tissue alcohol metabolizing enzymes, especially ALDH2. Alcohol stimulates the uptake of carcinogens and their metabolism and also changes the composition of enteric microbes in a way to enhance the aldehyde level. Alcohol also undergoes chemical coupling to membrane phospholipids and disrupts organization of tight junctions, leading to nuclear translocation of β-catenin and ZONAB, which may contributes to regulation of genes involved in proliferation, invasion and metastasis. Alcohol also generates reactive oxygen species (ROS) by suppressing the expression of antioxidant and cytoprotective enzymes and inducing expression of CYP2E1 which contribute to the metabolic activation of chemical carcinogens. Besides exerting genotoxic effects by directly damaging DNA, ROS can activates signaling molecules involved in inflammation, metastasis and angiogenesis. In addition, alcohol consumption induces folate deficiency, which may result in aberrant DNA methylation profiles, thereby influencing cancer-related gene expression.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Korea.
| | - Ja Young Lee
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Korea.
| |
Collapse
|
10
|
Aoki Y, Wehage SL, Talalay P. Quantification of skin erythema response to topical alcohol in alcohol-intolerant East Asians. Skin Res Technol 2017; 23:593-596. [PMID: 28513003 DOI: 10.1111/srt.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND/PURPOSE Severe alcohol intolerance characterized by flushing, headache, nausea, and tachycardia even after very modest oral alcohol consumption, is common among East Asians (Chinese, Japanese, Koreans) and has been associated with the accumulation of acetaldehyde resulting from genetic polymorphism of aldehyde dehydrogenase (ALDH). These individuals also display erythema of the skin in response to exposure to topical alcohol. We have recently observed that dietary phytochemicals such as sulforaphane can accelerate the disposal of acetaldehyde from cells and animals by inducing ALDH. The goal of this study was to quantify the erythema response of skin to topical alcohol exposure. METHODS The erythema response of the forearm skin of healthy Japanese with unusual alcohol sensitivity evoked by a range of very low doses of alcohol (2, 4, 8, and 16 μmol/cm2 ) was determined by means of a chromometer, which measures a* values (red-green scale). RESULTS The magnitude of the a* response (∆a*) to alcohol was time- and dose-dependent, but differed considerably among individuals. It was much higher in those individuals who claimed to be alcohol intolerant, and ∆a* was unrelated to the initial a* values of the skin prior to alcohol challenge. CONCLUSION The ∆a* index is suitable for the quantitative determination of topical alcohol-induced erythema response, and the evaluation of effectiveness of protective strategies against erythema response.
Collapse
Affiliation(s)
- Y Aoki
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S L Wehage
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Talalay
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Rivera Gutiérrez XJ, Cobos Quevedo ODJ, Remes Troche JM. Los efectos carcinogénicos del acetaldehído. Una visión actual. GACETA MEXICANA DE ONCOLOGÍA 2016. [DOI: 10.1016/j.gamo.2016.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Konkit M, Choi WJ, Kim W. Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism. J Dairy Sci 2016; 99:1755-1761. [DOI: 10.3168/jds.2015-10549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
|
13
|
Tsuruya A, Kuwahara A, Saito Y, Yamaguchi H, Tenma N, Inai M, Takahashi S, Tsutsumi E, Suwa Y, Totsuka Y, Suda W, Oshima K, Hattori M, Mizukami T, Yokoyama A, Shimoyama T, Nakayama T. Major Anaerobic Bacteria Responsible for the Production of Carcinogenic Acetaldehyde from Ethanol in the Colon and Rectum. Alcohol Alcohol 2016; 51:395-401. [DOI: 10.1093/alcalc/agv135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
|
14
|
Bagyánszki M, Bódi N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption. World J Gastrointest Pathophysiol 2015; 6:51-57. [PMID: 26301118 PMCID: PMC4540706 DOI: 10.4291/wjgp.v6.i3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on the brain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nutrients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.
Collapse
|
15
|
Green Tea Extract (Camellia sinensis) Fermented byLactobacillus fermentumAttenuates Alcohol-Induced Liver Damage. Biosci Biotechnol Biochem 2014; 76:2294-300. [DOI: 10.1271/bbb.120598] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Vonlaufen A, Spahr L, Apte MV, Frossard JL. Alcoholic pancreatitis: A tale of spirits and bacteria. World J Gastrointest Pathophysiol 2014; 5:82-90. [PMID: 24891979 PMCID: PMC4025076 DOI: 10.4291/wjgp.v5.i2.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol is a major cause of chronic pancreatitis. About 5% of alcoholics will ever suffer from pancreatitis, suggesting that additional co-factors are required to trigger an overt disease. Experimental work has implicated lipopolysaccharide, from gut-derived bacteria, as a potential co-factor of alcoholic pancreatitis. This review discusses the effects of alcohol on the gut flora, the gut barrier, the liver-and the pancreas and proposes potential interventional strategies. A better understanding of the interaction between the gut, the liver and the pancreas may provide valuable insight into the pathophysiology of alcoholic pancreatitis.
Collapse
|
17
|
Crous-Bou M, Rennert G, Cuadras D, Salazar R, Cordero D, Saltz Rennert H, Lejbkowicz F, Kopelovich L, Monroe Lipkin S, Bernard Gruber S, Moreno V. Polymorphisms in alcohol metabolism genes ADH1B and ALDH2, alcohol consumption and colorectal cancer. PLoS One 2013; 8:e80158. [PMID: 24282520 PMCID: PMC3839967 DOI: 10.1371/journal.pone.0080158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. METHODOLOGY/PRINCIPAL FINDINGS SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. CONCLUSIONS/SIGNIFICANCE Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants.
Collapse
Affiliation(s)
- Marta Crous-Bou
- Cancer Prevention and Control Program, Catalan Institute of Oncology, Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute and Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Gad Rennert
- Clalit Health Services, National Cancer Control Center, Department of Community Medicine and Epidemiology, Technion-Israel Institute of Technology, Haifa, Israel
- B. Rappaport Faculty, Medicine Carmel Medical Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel Cuadras
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute and Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ramon Salazar
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute and Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Medical Oncology Service, Catalan Institute of Oncology, Barcelona, Spain
| | - David Cordero
- Cancer Prevention and Control Program, Catalan Institute of Oncology, Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute and Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Hedy Saltz Rennert
- Clalit Health Services, National Cancer Control Center, Department of Community Medicine and Epidemiology, Technion-Israel Institute of Technology, Haifa, Israel
- B. Rappaport Faculty, Medicine Carmel Medical Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Flavio Lejbkowicz
- Clalit Health Services, National Cancer Control Center, Department of Community Medicine and Epidemiology, Technion-Israel Institute of Technology, Haifa, Israel
- B. Rappaport Faculty, Medicine Carmel Medical Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, United States of America
| | - Steven Monroe Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen Bernard Gruber
- Department of Internal Medicine, Epidemiology and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology, Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute and Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Rao RK. Commentary: acetaldehyde and epithelial-to-mesenchymal transition in colon. Alcohol Clin Exp Res 2013; 38:309-11. [PMID: 24236752 DOI: 10.1111/acer.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Elamin and colleagues in this issue report that acetaldehyde activates Snail, a transcription factor involved in epithelial-to-mesenchymal transition, in an intestinal epithelium. Snail mediates acetaldehyde-induced tight junction disruption and increase in paracellular permeability. Results of this study and other previous studies raise several important questions. This commentary addresses these questions by discussing the acetaldehyde concentration in colon, disruption of epical junctional complexes in the intestinal epithelium by acetaldehyde, and the consequence of long-term exposure to acetaldehyde on colonic epithelial regeneration, carcinogenesis, and metastases. The precise role of acetaldehyde in colonic epithelial modifications and promotion of colorectal cancers still remains to be understood.
Collapse
Affiliation(s)
- Radhakrishna K Rao
- Department of Physiology (RKO), University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption. Alcohol Clin Exp Res 2013; 38:344-53. [PMID: 24033729 DOI: 10.1111/acer.12234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acetaldehyde (AcH) is mutagenic and can reach high concentrations in colonic lumen after ethanol consumption and is associated with intestinal barrier dysfunction and an increased risk of progressive cancers, including colorectal carcinoma. Snail, the transcription factor of epithelial-mesenchymal transition, is known to down-regulate expression of tight junction (TJ) and adherens junction (AJ) proteins, resulting in loss of epithelial integrity, cancer progression, and metastases. As AcH is mutagenic, the role of Snail in the AcH-induced disruption of intestinal epithelial TJs deserves further investigation. Our aim was to investigate the role of oxidative stress and Snail activation in AcH-induced barrier disruption in Caco-2 monolayers. METHODS The monolayers were exposed from the apical side to AcH ± L-cysteine. Reactive oxygen species (ROS) generation and Snail activation were assessed by ELISA and immunofluorescence. Paracellular permeability, localization, and expression of ZO-1, occludin, E-cadherin, and β-catenin were examined using transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4 kDa (FITC-D4), immunofluorescence, and ELISA, respectively. Involvement of Snail was further addressed by inhibiting Snail using small interfering RNA (siRNA). RESULTS Exposure to 25 μM AcH increased ROS generation and ROS-dependently induced Snail phosphorylation. In addition, AcH increased paracellular permeability (decrease in TEER and increase in FITC-D4 permeation) in association with redistribution and decrease of TJ and AJ protein levels, which could be attenuated by L-cysteine. Knockdown of Snail by siRNA attenuated the AcH-induced redistribution and decrease in the TJ and AJ proteins, in association with improvement of the barrier function. CONCLUSIONS Our data demonstrate that oxidative stress-mediated Snail phosphorylation is likely a novel mechanism contributing to the deleterious effects of AcH on the TJ and AJ, and intestinal barrier function.
Collapse
Affiliation(s)
- Elhaseen Elamin
- Top Institute Food and Nutrition (TIFN) , Wageningen, the Netherlands; Division of Gastroenterology and Hepatology , Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism , Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
20
|
Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 2013; 71:483-99. [PMID: 23815146 DOI: 10.1111/nure.12027] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol is widely consumed and is associated with an increasing global health burden. Several reviews have addressed the effects of ethanol and its oxidative metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcinogenic effects or alcoholic liver disease. However, both the oxidative and the nonoxidative metabolites of ethanol can affect the epithelial barrier of the small and large intestines, thereby contributing to GI and liver diseases. This review outlines the possible mechanisms of ethanol metabolism as well as the effects of ethanol and its metabolites on the intestinal barrier. Limited studies in humans and supporting in vitro data have indicated that ethanol as well as mainly acetaldehyde can increase small intestinal permeability. Limited evidence also points to increased colon permeability following exposure to ethanol or acetaldehyde. In vitro studies have provided several mechanisms for disruption of the epithelial barrier, including activation of different cell-signaling pathways, oxidative stress, and remodeling of the cytoskeleton. Modulation via intestinal microbiota, however, should also be considered. In conclusion, ethanol and its metabolites may act additively or even synergistically in vivo. Therefore, in vivo studies investigating the effects of ethanol and its byproducts on permeability of the small and large intestines are warranted.
Collapse
Affiliation(s)
- Elhaseen E Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Marttila E, Bowyer P, Sanglard D, Uittamo J, Kaihovaara P, Salaspuro M, Richardson M, Rautemaa R. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Mol Oral Microbiol 2013; 28:281-91. [PMID: 23445445 DOI: 10.1111/omi.12024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-Coenzyme A (CoA) during fermentation. THE AIMS OF OUR STUDY WERE (i) to determine the levels of acetaldehyde produced by Candida albicans in the presence of glucose in low oxygen tension in vitro; (ii) to analyse the expression levels of genes involved in the pyruvate-bypass and acetaldehyde production; and (iii) to analyse whether any correlations exist between acetaldehyde levels, alcohol dehydrogenase enzyme activity or expression of the genes involved in the pyruvate-bypass. Candida albicans strains were isolated from patients with oral squamous cell carcinoma (n = 5), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients with chronic oral candidosis (n = 5), and control patients (n = 5). The acetaldehyde and ethanol production by these isolates grown under low oxygen tension in the presence of glucose was determined, and the expression of alcohol dehydrogenase (ADH1 and ADH2), pyruvate decarboxylase (PDC11), aldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (ACS1 and ACS2) and Adh enzyme activity were analysed. The C. albicans isolates produced high levels of acetaldehyde from glucose under low oxygen tension. The acetaldehyde levels did not correlate with the expression of ADH1, ADH2 or PDC11 but correlated with the expression of down-stream genes ALD6 and ACS1. Significant differences in the gene expressions were measured between strains isolated from different patient groups. Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.
Collapse
Affiliation(s)
- E Marttila
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferrari P, McKay JD, Jenab M, Brennan P, Canzian F, Vogel U, Tjønneland A, Overvad K, Tolstrup JS, Boutron-Ruault MC, Clavel-Chapelon F, Morois S, Kaaks R, Boeing H, Bergmann M, Trichopoulou A, Katsoulis M, Trichopoulos D, Krogh V, Panico S, Sacerdote C, Palli D, Tumino R, Peeters PH, van Gils CH, Bueno-de-Mesquita B, Vrieling A, Lund E, Hjartåker A, Agudo A, Suarez LR, Arriola L, Chirlaque MD, Ardanaz E, Sánchez MJ, Manjer J, Lindkvist B, Hallmans G, Palmqvist R, Allen N, Key T, Khaw KT, Slimani N, Rinaldi S, Romieu I, Boffetta P, Romaguera D, Norat T, Riboli E. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study. Eur J Clin Nutr 2012; 66:1303-8. [PMID: 23149980 DOI: 10.1038/ejcn.2012.173] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND/OBJECTIVES Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populations. SUBJECTS/METHODS A nested case-control study (1269 cases matched to 2107 controls by sex, age, study centre and date of blood collection) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate the impact of rs1229984 (ADH1B), rs1573496 (ADH7) and rs441 (ALDH2) polymorphisms on CRC risk. Using the wild-type variant of each polymorphism as reference category, CRC risk estimates were calculated using conditional logistic regression, with adjustment for matching factors. RESULTS Individuals carrying one copy of the rs1229984(A) (ADH1B) allele (fast metabolizers) showed an average daily alcohol intake of 4.3 g per day lower than subjects with two copies of the rs1229984(G) allele (slow metabolizers) (P(diff)<0.01). None of the polymorphisms was associated with risk of CRC or cancers of the colon or rectum. Heavy alcohol intake was more strongly associated with CRC risk among carriers of the rs1573496(C) allele, with odds ratio equal to 2.13 (95% confidence interval: 1.26-3.59) compared with wild-type subjects with low alcohol consumption (P(interaction)=0.07). CONCLUSIONS The rs1229984(A) (ADH1B) allele was associated with a reduction in alcohol consumption. The rs1229984 (ADH1B), rs1573496 (ADH7) and rs441 (ALDH2) polymorphisms were not associated with CRC risk overall in Western-European populations. However, the relationship between alcohol and CRC risk might be modulated by the rs1573496 (ADH7) polymorphism.
Collapse
Affiliation(s)
- P Ferrari
- International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alcohol consumption, alcohol dehydrogenase 1C (ADH1C) genotype, and risk of colorectal cancer in the Netherlands Cohort Study on diet and cancer. Alcohol 2011; 45:217-25. [PMID: 21163612 DOI: 10.1016/j.alcohol.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/25/2023]
Abstract
Within the Netherlands Cohort Study (1986), we examined associations between alcohol consumption, the alcohol dehydrogenase 1C (ADH1C) genotype, and risk of colorectal cancer (CRC). After a follow-up period of 7.3 years, 594 CRC cases with information on genotype and baseline alcohol intake were available for analyses. Adjusted incidence rate ratios (RRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. In subjects who reported to have consumed equal amounts of total alcohol both 5 years before baseline and at baseline, drinkers of ≥30g of alcohol per day with the ADH1C*2/*2 genotype were associated-although not statistically significant-with an increased risk of CRC relative to abstainers with the ADH1C*1/*1 genotype (RR: 1.91, 95% CI: 0.68, 5.34). The risk estimate in this exposure group increased slightly when compared with light drinkers of ≥0.5-<5g/day with the ADH1C*1/*1 genotype (RR: 2.32, 95% CI: 0.80, 6.72). The interaction term however, was not statistically significant (P>.05). In subjects who reported to have consumed equal amounts of total alcohol both 5 years before baseline and at baseline, drinkers of ≥30g of alcohol per day were associated-although not statistically significant-with an increased risk of CRC relative to abstainers (RR: 1.38, 95% CI: 0.80, 2.38). This risk estimate for high-level drinkers became stronger when compared with light drinkers (RR: 1.74, 95% CI: 1.01, 2.99). As main effect of genotype, we observed that the ADH1C*2/*2 genotype was associated with a 42% increase in risk of CRC when compared with the ADH1C*1/*1 genotype. In conclusion, both genotype and alcohol consumption were associated with an increased risk of CRC. Owing to limited statistical power, we found no apparent evidence for the ADH1C genotype as effect modifier of the relationship between alcohol intake and CRC. Nevertheless, the interaction deserves further investigation in larger genetic epidemiologic studies.
Collapse
|
24
|
Lachenmeier DW, Monakhova YB. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:3. [PMID: 21211027 PMCID: PMC3022748 DOI: 10.1186/1756-9966-30-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/06/2011] [Indexed: 01/13/2023]
Abstract
Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with high acetaldehyde concentrations in certain beverages.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany.
| | | |
Collapse
|
25
|
Linderborg K, Marvola T, Marvola M, Salaspuro M, Färkkilä M, Väkeväinen S. Reducing carcinogenic acetaldehyde exposure in the achlorhydric stomach with cysteine. Alcohol Clin Exp Res 2010; 35:516-22. [PMID: 21143248 DOI: 10.1111/j.1530-0277.2010.01368.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acetaldehyde, associated with alcohol consumption, has recently been classified as a group 1 carcinogen in humans. Achlorhydric atrophic gastritis is a well-known risk factor for gastric cancer. Achlorhydria leads to microbial colonization of the stomach. Several of these microbes are able to produce significant amounts of acetaldehyde by oxidation from alcohol. Acetaldehyde can be eliminated from saliva after alcohol intake and during smoking with a semi-essential amino acid, L-cysteine. The aim of this study was to determine whether cysteine can be used to bind acetaldehyde in the achlorhydric stomach after ethanol ingestion. METHODS Seven volunteers with achlorhydric atrophic gastritis were given either slow-release L-cysteine or placebo capsules in a double-blinded randomized trial. Volunteers served as their own controls. A naso-gastric tube was inserted to each volunteer. The volunteers ingested placebo or 200 mg of L-cysteine capsules, and ethanol 0.3 g/kg body weight (15 vol%) was infused intragastrically through a naso-gastric tube. Five-milliliter samples of gastric contents were aspirated at 5-minute intervals. RESULTS During the follow-up period, the mean acetaldehyde level of gastric juice was 2.6 times higher with placebo than with L-cysteine (13 vs. 4.7 μM, p < 0.05, n = 7). CONCLUSIONS L-cysteine can be used to decrease acetaldehyde concentration in the achlorhydric stomach during alcohol exposure. Intervention studies with L-cysteine are needed on reducing acetaldehyde exposure in this important risk group for gastric cancer.
Collapse
Affiliation(s)
- Klas Linderborg
- Research Unit on Acetaldehyde and Cancer, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Pisa P, Loots Du T, Nienaber C. Alcohol metabolism and health hazards associated with alcohol abuse in a South African context: a review. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2010. [DOI: 10.1080/16070658.2010.11734295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. GENES AND NUTRITION 2009; 5:121-8. [PMID: 19847467 DOI: 10.1007/s12263-009-0154-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/23/2009] [Indexed: 02/08/2023]
Abstract
Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.
Collapse
|
28
|
Yang H, Zhou Y, Zhou Z, Liu J, Yuan X, Matsuo K, Takezaki T, Tajima K, Cao J. A novel polymorphism rs1329149 of CYP2E1 and a known polymorphism rs671 of ALDH2 of alcohol metabolizing enzymes are associated with colorectal cancer in a southwestern Chinese population. Cancer Epidemiol Biomarkers Prev 2009; 18:2522-7. [PMID: 19706845 DOI: 10.1158/1055-9965.epi-09-0398] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To screen for tagging single nucleotide polymorphisms (tagSNP) in the major alcohol metabolizing enzymes: ADH1B, ALDH2, and CYP2E1, and to evaluate the association between these tagSNPs and colorectal cancer (CRC) in a southwestern Chinese population. METHODS A hospital-based case-control study of 440 CRC patients and 800 cancer-free controls was conducted. Personal information was collected by a Semi-Quantitative Food Frequency Questionnaire. The tagSNPs were screened in the HapMap with Haploview by setting the minor allele frequency at 0.03 with the highest score of r(2) form each block. Genotypes were identified by using the SNPLex System. Both crude and adjusted odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the risk of each SNP. RESULTS Sixteen tagSNPs were selected, and 13 were successfully genotyped. A novel CYP2E1 locus rs1329149 and a known ALDH2 locus rs671 were found to be significantly associated with CRC risk. The adjusted OR was 1.86 (95% CI, 1.12-3.09) for the rs671 A/A genotype and 4.04 for the rs1329149 T/T genotype (95% CI, 2.44-6.70), compared with their common homozygous genotypes. Interaction was found between alcohol consumption and gene polymorphisms on CRC, the adjusted OR was 7.17 (95% CI, 2.01-25.53) for drinking habits combined with rs671 A/A or rs1329149 T/T genotype. CONCLUSION The results of this study suggest that rs671 A/A and the first reported locus rs1329149 T/T genotypes increase the susceptibility to CRC, and gene-environmental interaction between the two loci and alcohol use existed for CRC in Southwestern Chinese. Larger studies are warranted to verify our findings.
Collapse
Affiliation(s)
- Huan Yang
- Department of Hygienic Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lachenmeier DW, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism. Addiction 2009; 104:533-50. [PMID: 19335652 DOI: 10.1111/j.1360-0443.2009.02516.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS In addition to being produced in ethanol metabolism, acetaldehyde occurs naturally in alcoholic beverages. Limited epidemiological evidence points to acetaldehyde as an independent risk factor for cancer during alcohol consumption, in addition to the effects of ethanol. This study aims to estimate human exposure to acetaldehyde from alcoholic beverages and provide a quantitative risk assessment. METHODS The human dietary intake of acetaldehyde via alcoholic beverages was estimated based on World Health Organization (WHO) consumption data and literature on the acetaldehyde contents of different beverage groups (beer, wine, spirits and unrecorded alcohol). The risk assessment was conducted using the European Food Safety Authority's margin of exposure (MOE) approach with benchmark doses obtained from dose-response modelling of animal experiments. Life-time cancer risk was calculated using the T25 dose descriptor. RESULTS The average exposure to acetaldehyde from alcoholic beverages was estimated at 0.112 mg/kg body weight/day. The MOE was calculated to be 498, and the life-time cancer risk at 7.6 in 10,000. Higher risk may exist for people exposed to high acetaldehyde contaminations, as we have found in certain unrecorded alcohol beverages in Guatemala and Russia, for which we have demonstrated possible exposure scenarios, with risks in the range of 1 in 1000. CONCLUSIONS The life-time cancer risks for acetaldehyde from alcoholic beverages greatly exceed the usual limits for cancer risks from the environment set between 1 : 10,000 and 1 : 1,000,000. Alcohol consumption has thus been identified as a direct source of acetaldehyde exposure, which in conjunction with other sources (food flavourings, tobacco) results in a magnitude of risk requiring intervention. An initial public health measure could be to reduce the acetaldehyde content in alcoholic beverages as low as technologically possible, and to restrict its use as a food flavour additive.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, Germany.
| | | | | |
Collapse
|
30
|
Lachenmeier DW, Sohnius EM. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Toxicol 2008; 46:2903-11. [PMID: 18577414 DOI: 10.1016/j.fct.2008.05.034] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 04/07/2008] [Accepted: 05/29/2008] [Indexed: 12/20/2022]
Abstract
Acetaldehyde is a volatile compound naturally found in alcoholic beverages, and it is regarded as possibly being carcinogenic to humans (IARC Group 2B). Acetaldehyde formed during ethanol metabolism is generally considered as a source of carcinogenicity in alcoholic beverages. However, no systematic data is available about its occurrence in alcoholic beverages and the carcinogenic potential of human exposure to this directly ingested form of acetaldehyde outside ethanol metabolism. In this study, we have analysed and evaluated a large sample collective of different alcoholic beverages (n=1,555). Beer (9+/-7 mg/l, range 0-63 mg/l) had significantly lower acetaldehyde contents than wine (34+/-34 mg/l, range 0-211 mg/l), or spirits (66+/-101 mg/l, range 0-1,159 mg/l). The highest acetaldehyde concentrations were generally found in fortified wines (118+/-120 mg/l, range 12-800 mg/l). Assuming an equal distribution between the beverage and saliva, the residual acetaldehyde concentrations in the saliva after swallowing could be on average 195 microM for beer, 734 microM for wine, 1,387 microM for spirits, or 2,417 microM for fortified wine, which are above levels previously regarded as potentially carcinogenic. Further research is needed to confirm the carcinogenic potential of directly ingested acetaldehyde. Until then, some possible preliminary interventions include the reduction of acetaldehyde in the beverages by improvement in production technology or the use of acetaldehyde binding additives. A re-evaluation of the 'generally recognized as safe' status of acetaldehyde is also required, which does not appear to be in agreement with its toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Str. 3, D-76187 Karlsruhe, Germany.
| | | |
Collapse
|
31
|
Yin G, Kono S, Toyomura K, Moore MA, Nagano J, Mizoue T, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, Maekawa T, Takenaka K, Ichimiya H, Imaizumi N. Alcohol dehydrogenase and aldehyde dehydrogenase polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci 2007; 98:1248-53. [PMID: 17517051 PMCID: PMC11159727 DOI: 10.1111/j.1349-7006.2007.00519.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alcohol dehydrogenase and aldehyde dehydrogenase are key enzymes in alcohol metabolism and therefore may be of importance to colorectal cancer development. The present case-control study was conducted to determine the influence of ADH2, ADH3 and ALDH2 polymorphisms in Fukuoka, Japan, with 685 incident cases of histologically confirmed colorectal adenocarcinomas and 778 community controls selected randomly from the study area. Alcohol use was ascertained by in-person interview. Statistical adjustment was made for sex, age class, area, and alcohol use. Individuals with the allele 47Arg of the ADH2 polymorphism (slow metabolizers) had a statistically significant increase in risk, with an adjusted OR of 1.32 (95% CI = 1.07-1.63), compared with those having the ADH2*47His/His genotype. This association was not affected by the level of alcohol consumption. The ADH3 polymorphism showed no measurable association with the risk of colorectal cancer on either overall analysis or stratified analysis with alcohol use. The heterozygous ALDH2*487Glu/Lys genotype was not associated with an increase in the risk of colorectal cancer (adjusted OR 0.89, 95% CI = 0.71-1.13) compared with the ALDH2*487Glu/Glu genotype. Rather unexpectedly, the homozygous ALDH2*487Lys/Lys genotype was related to a statistically significantly decreased risk of colorectal cancer (adjusted OR 0.55, 95% CI = 0.33-0.93). It is unlikely that acetaldehyde metabolism determined by ALDH2 polymorphism contributes to the risk of colorectal cancer, whereas the role of ADH2 polymorphism deserves further investigation.
Collapse
Affiliation(s)
- Guang Yin
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Approximately 3.6% of cancers worldwide derive from chronic alcohol drinking, including those of the upper aerodigestive tract, the liver, the colorectum and the breast. Although the mechanisms for alcohol-associated carcinogenesis are not completely understood, most recent research has focused on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and comorbidities, and depends on genetic susceptibility.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine and Laboratory of Alcohol Research, Liver Disease and Nutrition, Salem Medical Centre, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
33
|
Kurkivuori J, Salaspuro V, Kaihovaara P, Kari K, Rautemaa R, Grönroos L, Meurman JH, Salaspuro M. Acetaldehyde production from ethanol by oral streptococci. Oral Oncol 2007; 43:181-6. [PMID: 16859955 DOI: 10.1016/j.oraloncology.2006.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 12/25/2022]
Abstract
Alcohol is a well documented risk factor for upper digestive tract cancers. It has been shown that acetaldehyde, the first metabolite of ethanol is carcinogenic. The role of microbes in the production of acetaldehyde to the oral cavity has previously been described in several studies. In the present study, the aim was to investigate the capability of viridans group streptococci of normal oral flora to produce acetaldehyde in vitro during ethanol incubation. Furthermore, the aim was to measure the alcohol dehydrogenase (ADH) activity of the bacteria. Eight clinical strains and eight American Type Culture Collection (ATCC) strains of viridans group streptococci were selected for the study. Bacterial suspensions were incubated in two different ethanol concentrations, 11 mM and 1100 mM and the acetaldehyde was measured by gas chromatography. ADH-activity was measured by using a sensitive spectroscopy. The results show significant differences between the bacterial strains regarding acetaldehyde production capability and the detected ADH-activity. In particular, clinical strain of Streptococcus salivarius, both clinical and culture collection strains of Streptococcus intermedius and culture collection strain of Streptococcus mitis produced high amounts of acetaldehyde in 11 mM and 1100 mM ethanol incubation. All these four bacterial strains also showed significant ADH-enzyme activity. Twelve other strains were found to be low acetaldehyde producers. Consequently, our study shows that viridans group streptococci may play a role in metabolizing ethanol to carcinogenic acetaldehyde in the mouth. The observation supports the concept of a novel mechanism in the pathogenesis of oral cancer.
Collapse
Affiliation(s)
- Johanna Kurkivuori
- Research Unit of Substance Abuse Medicine, University Central Hospital of Helsinki, Biomedicum Helsinki, PL 700, 00029 HUS Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tranah GJ, Bugni J, Giovannucci E, Ma J, Fuchs C, Hines L, Samson L, Hunter DJ. O6-Methylguanine-DNA Methyltransferase Leu84Phe and Ile143Val Polymorphisms and Risk of Colorectal Cancer in the Nurses’ Health Study and Physicians’ Health Study (United States). Cancer Causes Control 2006; 17:721-31. [PMID: 16633920 DOI: 10.1007/s10552-006-0005-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE O6-methylguanine-DNA methyltransferase (MGMT) removes mutagenic adducts from the O6-position of guanine in DNA. Unrepaired O6-methylguanines result in G:C to A:T transitions in mutated K-ras and p53 in colorectal tumors. Two non-synonymous MGMT coding region variants, Leu84Phe and Ile143Val, lie in close proximity to the reactive 145Cys residue and to a conserved estrogen receptor interacting helix. METHODS We assessed the association between the MGMT Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in two nested case-control studies: one each in the Nurses' Health Study (NHS) and the Physicians' Health Study (PHS) cohorts. RESULTS Among 197 female cases and 2,500 controls from the NHS, the variant 143Val allele was significantly associated with reduced risk of colorectal cancer [odds ratio (OR) = 0.52, 95% confidence interval (CI) 0.33-0.80]. In women, statistically significant gene-environment interactions were found between the Leu84Phe polymorphism and alcohol intake (P = 0.03), BMI (P = 0.04) and postmenopausal hormone use (P = 0.03). The Leu84Phe and Ile143Val polymorphisms were not significantly associated with risk of colorectal cancer among 271 male cases and 451 controls from the PHS. CONCLUSIONS Our results suggest that the common Leu84Phe and Ile143Val polymorphisms in MGMT influence risk of colorectal cancer in women possibly through modulating estrogen receptor-dependent transcriptional activation, which has previously been shown to occur in response to DNA alkylation damage.
Collapse
Affiliation(s)
- Gregory J Tranah
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ferrier L, Bérard F, Debrauwer L, Chabo C, Langella P, Buéno L, Fioramonti J. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1148-54. [PMID: 16565490 PMCID: PMC1606551 DOI: 10.2353/ajpath.2006.050617] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alcohol hepatic toxicity in heavy drinkers is associated with high endotoxin blood levels and increased intestinal permeability. Because endotoxins can cross damaged mucosa, we investigated the mechanisms through which ethanol impairs the colonic epithelium of rats submitted to acute alcohol intake. Colonic permeability to (51)Cr-ethylenediamintetraacetic acid was increased 24 hours after 3.0 g/kg ethanol intake (3.2 +/- 0.2% versus 2.2 +/- 0.2%) and was associated with significant endotoxemia. Antibiotics and doxantrazole (a mast cell membrane stabilizer) significantly inhibited the effect of ethanol. Two hours after intake, plasma concentrations of ethanol were twofold higher in antibiotic-treated rats than in controls (155.8 +/- 9.3 mg/dl versus 75.7 +/- 7.6 mg/dl, P < 0.001). Lumenal concentrations of acetaldehyde were markedly increased after ethanol intake (132.6 +/- 31.6 micromol/L versus 20.8 +/- 1.4 micromol/L, P < 0.05) and antibiotics diminished this increase (86.2 +/- 10.9 micromol/L). In colonic samples mounted in Ussing chambers, acetaldehyde but not ethanol increased dextran flux across the mucosa by 54%. Doxantrazole inhibited the effect of acetaldehyde. This study demonstrates that an acute and moderate ethanol intake alters the epithelial barrier through ethanol oxidation into acetaldehyde by the colonic microflora and downstream mast cell activation. Such alterations that remain for longer periods could result in excessive endotoxin passage, which could explain the subsequent endotoxemia frequently observed in patients with alcoholic liver disease.
Collapse
Affiliation(s)
- Laurent Ferrier
- Unité de Neuro-Gastroentérologie et Nutrition, Institut National de la Recherche Agronomique, 180 Chemin de Tournefeuille, B.P. 3, 31931 Toulouse Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Chronic consumption of alcoholic beverages is an accepted social custom worldwide. In the upper aerodigestive tract, local morphologic, metabolic and functional alterations are present due to alcohol consumption. A clinical link between the chronic consumption of alcohol and head and neck cancer has been observed for decades. While alcohol was described initially as a risk enhancer only in smokers, a number of epidemiological studies have now provided sufficient evidence that chronic alcohol consumption increases the risk of head and neck cancer independent of exposure to tobacco smoke. The systemic effects of alcohol interact with local changes in the morphology and function of the salivary glands. In addition, alcohol leads to accumulation of pathologic microbes within the mucosa, leading to chronic infection. Susceptibility to carcinogens and cell proliferation in the mucosa are increased, resulting in genetic changes with the development of dysplasia, leukoplacia and carcinoma. Chronic alcohol consumption is correlated with an increased risk of cancer and an increased mortality in a dose-effect relationship. A number of biologically plausible mechanisms exist by which alcohol may cause cancer. These mechanisms are discussed in this article.
Collapse
Affiliation(s)
- Frank Riedel
- Department of Otolaryngology, Head and Neck, University Hospital Mannheim, Mannheim, Germany.
| | | | | |
Collapse
|
37
|
Abstract
Chronic consumption of alcohol is an accepted social custom worldwide. In the upper aerodigestive tract, local morphologic, metabolic and functional alterations can be present due such consumption. Gastroesophageal reflux or alterations in sleep structure are typical examples of functional disorders. While alcohol was initially described as a risk enhancer only in smokers, a number of epidemiological studies have now shown that chronic alcohol consumption increases the risk of head and neck cancer independently of exposure to tobacco smoke. In addition, alcohol leads to an accumulation of pathologic microbes within the mucosa, leading to chronic infection. Susceptibility to carcinogens and cell proliferation in the mucosa are increased, resulting in genetic changes with the development of dysplasia, leucoplakia and carcinoma. Chronic alcohol consumption is correlated with an increased risk of cancer and increased mortality in a dose-dependent relationship. A number of biologically plausible mechanisms exist by which alcohol may cause cancer.
Collapse
Affiliation(s)
- F Riedel
- Universitäts-HNO-Klinik Mannheim.
| | | |
Collapse
|
38
|
Sheth P, Seth A, Thangavel M, Basuroy S, Rao RK. Epidermal growth factor prevents acetaldehyde-induced paracellular permeability in Caco-2 cell monolayer. Alcohol Clin Exp Res 2004; 28:797-804. [PMID: 15166657 DOI: 10.1097/01.alc.0000125358.92335.90] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Intestinal permeability and endotoxemia play a crucial role in the pathogenesis of alcoholic liver disease. Previous studies showed that acetaldehyde disrupts intestinal epithelial barrier function and increases paracellular permeability by a tyrosine kinase-dependent mechanism. In the present study, the role of epidermal growth factor (EGF) in protection of epithelial barrier function from acetaldehyde was evaluated in Caco-2 intestinal epithelial cell monolayer. METHODS Caco-2 cells on Transwell inserts were exposed to acetaldehyde in the absence or presence of EGF, and the paracellular permeability was evaluated by measuring transepithelial electrical resistance and unidirectional flux of inulin. Integrity of epithelial tight junctions and adherens junctions was analyzed by confocal immunofluorescence microscopy and immunoblot analysis of occludin, zonula occludens (ZO)-1, E-cadherin, and beta-catenin in the actin cytoskeleton. Reorganization of actin cytoskeletal architecture was examined by confocal microscopy. RESULTS Acetaldehyde increased paracellular permeability to inulin and lipopolysaccharide, and EGF significantly reduced these effects of acetaldehyde in a time- and dose-dependent manner. EGF prevented acetaldehyde-induced reorganization of occludin, ZO-1, E-cadherin, and beta-catenin from the cellular junctions to the intracellular compartments. Acetaldehyde treatment induced a reorganization of actin cytoskeletal network and reduced the levels of occludin, ZO-1, E-cadherin, and beta-catenin associated with the actin cytoskeleton. EGF effectively prevented acetaldehyde-induced reorganization of actin cytoskeleton and the interaction of occludin, ZO-1, E-cadherin, and beta-catenin with the actin cytoskeleton. CONCLUSION These results indicate that EGF attenuates acetaldehyde-induced disruption of tight junctions and adherens junctions and prevents acetaldehyde-induced reorganization of actin cytoskeleton and its interaction with occludin, ZO-1, E-cadherin, and beta-catenin.
Collapse
Affiliation(s)
- P Sheth
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Chronic consumption of alcoholic beverages is an accepted social custom worldwide. In the upper aerodigestive tract, local morphological, metabolic and functional alterations can be present as a result of alcohol consumption. A clinical link between the chronic consumption of alcohol and head and neck cancer has been observed for decades. While alcohol was described initially as a risk enhancer only in smokers, a number of epidemiological studies have now provided sufficient evidence that chronic alcohol consumption increases the risk of head and neck cancer independent of exposure to tobacco smoke. Systemic effects of alcohol interact with local changes in the morphology and function of the salivary glands. In addition, alcohol leads to the accumulation of pathological microbes within the mucosa, leading to chronic infection. Susceptibility to carcinogens and cell proliferation in the mucosa are increased, resulting in genetic changes with the development of dysplasia, leucoplakia and carcinoma. Chronic alcohol consumption has been correlated with an increased risk of cancer and increased mortality in a dose-effect relationship. A number of biologically plausible mechanisms exist by which alcohol may cause cancer. These mechanisms are discussed in this chapter.
Collapse
Affiliation(s)
- Frank Riedel
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Mannheim, Theodor-Kutzer-Ufer, D-68135, Mannheim, Germany.
| | | | | |
Collapse
|
40
|
Abstract
Excessive alcohol consumption and heavy smoking are the main risk factors of upper digestive tract cancer in industrialized countries. The association between heavy drinking and cancer appears to he particularly prominent in Asian individuals who have an inherited deficient ability to detoxify the first metabolite of ethanol oxidation, acetaldehyde. Alcohol itself is not carcinogenic. However, according to cell culture and animal experiments acetaldehyde is highly toxic, mutagenic, and carcinogenic. In addition to somatic cells, microbes representing normal human gut flora are also able to produce acetaldehyde from ethanol. After the ingestion of alcoholic beverages, this results in high local acetaldehyde concentrations in the saliva, gastric juice, and the contents of the large intestine. In addition, microbes may produce acetaldehyde endogenously without alcohol administration. This review summarizes the epidemiological, genetic, and biochemical evidence supporting the role of locally produced acetaldehyde in the pathogenesis of digestive tract cancer. Special emphasis is given to those factors that regulate local acetaldehyde concentration in the contents of the gastrointestinal tract. The new evidence presented in this review may open a microbiological approach to the pathogenesis of digestive tract cancer and may have an influence on future preventive strategies.
Collapse
Affiliation(s)
- Mikko P Salaspuro
- Research Unit of Substance Abuse Medicine, University Central Hospital of Helsinki, Biomedicum Helsinki, PL 700, 00029 HUS, Helsinki, Finland.
| |
Collapse
|
41
|
Homann N. Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict Biol 2001; 6:309-323. [PMID: 11900609 DOI: 10.1080/13556210020077028] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol is, together with tobacco smoke, the main cause for upper GI tract cancer in industrialized countries. However, the tumour-promoting effects of alcohol intake are poorly understood and alcohol itself is not carcinogenic in the animal model. There is increasing evidence that alcohol metabolism, rather than the alcohol itself, generates carcinogenic and cell-toxic compounds. Acetaldehyde, first metabolite of ethanol, is highly toxic, mutagenic and carcinogenic. Polymorphisms in the genes coding for enzymes responsible for acetaldehyde accumulation and detoxification have been associated with an increased cancer risk. Acetaldehyde can also be produced in the mucosa and by the physiological microflora. This review summarizes the scientific evidence that alcohol intake leads to a local production of acetaldehyde. It describes the role of the oral microflora, the mucosa and the salivary glands in this process and shows that local acetaldehyde production from ethanol may contribute to the carcinogenesis of alcohol intake in the upper GI tract.
Collapse
Affiliation(s)
- Nils Homann
- Department of Gastroenterology, Medical University of Luebeck, Germany
| |
Collapse
|
42
|
Vakevainen S, Tillonen J, Salaspuro M. 4-Methylpyrazole Decreases Salivary Acetaldehyde Levels in ALDH2-Deficient Subjects but Not in Subjects With Normal ALDH2. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02286.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
4-Methylpyrazole Decreases Salivary Acetaldehyde Levels in ALDH2-Deficient Subjects but Not in Subjects With Normal ALDH2. Alcohol Clin Exp Res 2001. [DOI: 10.1097/00000374-200106000-00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Väkeväinen S, Tillonen J, Salaspuro M, Jousimies-Somer H, Nuutinen H, Färkkilä M. Hypochlorhydria induced by a proton pump inhibitor leads to intragastric microbial production of acetaldehyde from ethanol. Aliment Pharmacol Ther 2000; 14:1511-8. [PMID: 11069323 DOI: 10.1046/j.1365-2036.2000.00858.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND Acetaldehyde, produced locally in the digestive tract, has recently been shown to be carcinogenic in humans. AIM To examine the effect of iatrogenic hypochlorhydria on intragastric acetaldehyde production from ethanol after a moderate dose of alcohol, and to relate the findings to the changes in gastric flora. METHODS Eight male volunteers ingested ethanol 0.6 g/kg b.w. The pH, acetaldehyde level and microbial counts of the gastric juice were then determined. The experiment was repeated after 7 days of lansoprazole 30 mg b.d. RESULTS The mean (+/- S.E.M.) pH of the gastric juice was 1.3 +/- 0.06 and 6.1 +/- 0.5 (P < 0.001) before and after lansoprazole, respectively. This was associated with a marked overgrowth of gastric aerobic and anaerobic bacteria (P < 0. 001), by a 2.5-fold (P=0.003) increase in gastric juice acetaldehyde level after ethanol ingestion, and with a positive correlation (r=0. 90, P < 0.001) between gastric juice acetaldehyde concentration and the count of aerobic bacteria. CONCLUSIONS Treatment with proton pump inhibitors leads to hypochlorhydria, which associates with intragastric overgrowth of aerobic bacteria and microbially-mediated acetaldehyde production from ethanol. Since acetaldehyde is a local carcinogen in the concentrations found in this study, long-term use of gastric acid secretory inhibitors is a potential risk-factor for gastric and cardiac cancers.
Collapse
Affiliation(s)
- S Väkeväinen
- Research Unit of Alcohol Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Mak KM, Lieber CS. Blood group antigen expression in the rat colon II. Modulation by dietary ethanol consumption. THE ANATOMICAL RECORD 2000; 259:405-12. [PMID: 10903532 DOI: 10.1002/1097-0185(20000801)259:4<405::aid-ar40>3.0.co;2-k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the accompanying article, we established that in the rat distal colon expression of H, B, and Le(b) blood group antigens by goblet cells is phenotypically fetal in nature. Because of the cocarcinogenic property of ethanol, the present study examined the effects of dietary ethanol consumption, fasting, and withdrawal on the expression of these antigens in the adult rat colon. To that effect, male adult Sprague-Dawley rats were pair-fed ethanol-containing or control Lieber-DeCarli liquid diets for 3 weeks. The effects of ethanol withdrawal were studied in rats fed the ethanol-containing diet for 3 weeks followed by the control diet for 1, 3, and 6 days. In rats fed the control diet, no antigen expression in the distal colon was observed, as expected. Ethanol feeding for 3 weeks resulted in a striking reappearance of H, B, and Le(b) antigens in goblet cells of the distal colon. In colonic crypts, a lower-to-upper crypt gradient of increasing numbers of positive goblet cells was present, suggesting that the induction of antigen expression paralleled the differentiation of goblet cells. After an overnight fast, the number of positive cells was significantly decreased. Withdrawal of ethanol for 1 day further decreased the number of positive goblet cells. The decrease was reflected by a downward shift in the number of positive cells per crypt column, which was more striking in the lower and mid-crypt segments than in the upper segment, suggesting that antigen expression was more labile in immature differentiating goblet cells than in mature ones. No antigen staining of goblet cells was detected after 3 and 6 days of ethanol withdrawal. Hence, expression of H, B, and Le(b) antigens by goblet cells of the distal colon can be modulated by ethanol consumption. Expression in the distal colon of A and Le(a) antigens, which did not exhibit a fetal phenotype, was not affected by ethanol feeding. In conclusion, because of the oncofetal phenotype of H, B, and Le(b) antigens, their reappearance in the distal colon may serve as a cytochemical marker for early recognition of epithelial changes of the colon in ethanol-related cocarcinogenesis before more overt manifestations of neoplasia.
Collapse
Affiliation(s)
- K M Mak
- Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center, Bronx, New York 10468, USA
| | | |
Collapse
|
46
|
Tillonen J, Väkeväinen S, Salaspuro V, Zhang Y, Rautio M, Jousimies-Somer H, Lindros K, Salaspuro M. Metronidazole increases intracolonic but not peripheral blood acetaldehyde in chronic ethanol-treated rats. Alcohol Clin Exp Res 2000. [PMID: 10798595 DOI: 10.1111/j.1530-0277.2000.tb02026.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Metronidazole leads to the overgrowth of aerobic flora in the large intestine by reducing the number of anaerobes. According to our previous studies, this shift may increase intracolonic bacterial acetaldehyde formation if ethanol is present. Metronidazole is also reported to cause disulfiram-like effects after alcohol intake, although the mechanism behind this is obscure. Therefore, the aim was to study the effect of long-term metronidazole and alcohol treatment on intracolonic acetaldehyde levels and to explore the possible role of intestinal bacteria in the metronidazole related disulfiram-like reaction. METHODS A total of 32 rats were divided into four groups: controls (n = 6), controls receiving metronidazole (n = 6), ethanol group (n = 10), and ethanol and metronidazole group (n = 10). All rats were pair-fed with the liquid diet for 6-weeks, whereafter blood and intracolonic acetaldehyde levels and liver and colonic mucosal alcohol (ADH) and aldehyde dehydrogenase (ALDH) activities were analyzed. RESULTS The rats receiving ethanol and metronidazole had five times higher intracolonic acetaldehyde levels than the rats receiving only ethanol (431.4 +/- 163.5 microM vs. 84.7 +/- 14.4 microM,p = 0.0035). In contrast, blood acetaldehyde levels were equal. Cecal cultures showed the increased growth of Enterobacteriaceae in the metronidazole groups. Metronidazole had no inhibitory effect on hepatic or colonic mucosal ADH and ALDH activities. CONCLUSIONS The increase in intracolonic acetaldehyde after metronidazole treatment is probably due to the replacement of intestinal anaerobes by ADH-containing aerobes. Unlike disulfiram, metronidazole neither inhibits liver ALDH nor increases blood acetaldehyde. Thus, our findings suggested that the mechanism behind metronidazole related disulfiram-like reaction might be located in the gut flora instead of the liver.
Collapse
Affiliation(s)
- J Tillonen
- Research Unit of Alcohol Diseases, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Homann N, Tillonen J, Meurman JH, Rintamäki H, Lindqvist C, Rautio M, Jousimies-Somer H, Salaspuro M. Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer. Carcinogenesis 2000; 21:663-8. [PMID: 10753201 DOI: 10.1093/carcin/21.4.663] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pathogenetic mechanisms behind alcohol-associated carcinogenesis in the upper digestive tract remain unclear, as alcohol is not carcinogenic. However, there is increasing evidence that a major part of the tumour-promoting action of alcohol might be mediated via its first, toxic and carcinogenic metabolite acetaldehyde. Acetaldehyde is produced from ethanol in the epithelia by mucosal alcohol dehydrogenases, but much higher levels derive from microbial oxidation of ethanol by the oral microflora. In this study we investigated factors that might alter the composition and quantities of the oral microflora and, consequently, influence microbial acetaldehyde production. Information about dental health, smoking habits, alcohol consumption and other factors was obtained by a questionnaire from 326 volunteers with varying social backgrounds and health status, e.g. oral cavity malignancy. Paraffin-induced saliva was collected and the microbial production of acetaldehyde from ethanol was measured. Smoking and heavy drinking were the strongest factors increasing microbial acetaldehyde production. Whether poor dental status may alter local acetaldehyde production from ethanol remained unanswered. Bacterial analysis revealed that mainly gram-positive aerobic bacteria and yeasts were associated with higher acetaldehyde production. Increased local microbial salivary acetaldehyde production due to ethanol among smokers and heavy drinkers could be a biological explanation for the observed synergistic carcinogenic action of alcohol and smoking on upper gastrointestinal tract cancer. It offers a new microbiological approach to ethanol-associated carcinogenesis at these anatomic sites.
Collapse
Affiliation(s)
- N Homann
- Research Unit of Alcohol Diseases, Helsinki University Central Hospital, PL 345, Tukholmankatu 8F, 00029 HYKS, Finland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Muto M, Hitomi Y, Ohtsu A, Shimada H, Kashiwase Y, Sasaki H, Yoshida S, Esumi H. Acetaldehyde production by non-pathogenicNeisseria in human oral microflora: Implications for carcinogenesis in upper aerodigestive tract. Int J Cancer 2000. [DOI: 10.1002/1097-0215(20001101)88:3<342::aid-ijc4>3.0.co;2-i] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Salaspuro M. Role of Yeasts in the Salivary Acetaldehyde Production From Ethanol Among Risk Groups for Ethanol-Associated Oral Cavity Cancer. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04364.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Shafqat J, Höög JO, Hjelmqvist L, Oppermann UC, Ibáñez C, Jörnvall H. An ethanol-inducible MDR ethanol dehydrogenase/acetaldehyde reductase in Escherichia coli: structural and enzymatic relationships to the eukaryotic protein forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:305-11. [PMID: 10406936 DOI: 10.1046/j.1432-1327.1999.00323.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An ethanol-active medium-chain dehydrogenase/reductase (MDR) alcohol dehydrogenase was isolated and characterized from Escherichia coli. It is distinct from the fermentative alcohol dehydrogenase and the class III MDR alcohol dehydrogenase, both already known in E. coli. Instead, it is reminiscent of the MDR liver enzyme forms found in vertebrates and has a K(m) for ethanol of 0.7 mM, similar to that of the class I enzyme in humans, however, it has a very high k(cat), 4050 min(-1). It is also inhibited by pyrazole (K(i) = 0.2 microM) and 4-methylpyrazole (K(i)= 44 microM), but in a ratio that is the inverse of the inhibition of the human enzyme. The enzyme is even more efficient in the reverse direction of acetaldehyde reduction (K(m) = 30 microM and k(cat) = 9800 min(-1)), suggesting a physiological function like that seen for the fermentative non-MDR alcohol dehydrogenase. Growth parameters in complex media with and without ethanol show no difference. The structure corresponds to one of 12 new alcohol dehydrogenase homologs present as ORFs in the E. coli genome. Together with the previously known E. coli MDR forms (class III alcohol dehydrogenase, threonine dehydrogenase, zeta-crystallin, galactitol-1-phosphate dehydrogenase, sensor protein rspB) there is now known to be a minimum of 17 MDR enzymes coded for by the E. coli genome. The presence of this bacterial MDR ethanol dehydrogenase, with a structure compatible with an origin separate from that of yeast, plant and animal ethanol-active MDR forms, supports the view of repeated duplicatory origins of alcohol dehydrogenases and of functional convergence to ethanol/acetaldehyde activity. Furthermore, this enzyme is ethanol inducible in at least one E. coli strain, K12 TG1, with apparently maximal induction at an enthanol concentration of approximately 17 mM. Although present in several strains under different conditions, inducibility may constitute an explanation for the fairly late characterization of this E. coli gene product.
Collapse
Affiliation(s)
- J Shafqat
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|