1
|
Spodnick MB, McElderry SC, Diaz MR. Opioid receptor signaling throughout ontogeny: Shaping neural and behavioral trajectories. Neurosci Biobehav Rev 2025; 170:106033. [PMID: 39894419 PMCID: PMC11851333 DOI: 10.1016/j.neubiorev.2025.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Due to the recent and ongoing opioid crisis in the United States, exposure to opioid drugs in utero is becoming more common, including during medication-assisted therapy used to treat opioid use disorder. As such, careful consideration of opioidergic signaling in utero and beyond, as well as alterations to this signaling via introduction of exogenous opioids, is warranted. This review explores the ontogeny and function of the Mu, Kappa and Delta opioid receptor systems throughout the lifespan, highlighting their importance in guiding neurobehavioral development. We argue for a paradigm shift in conceptualization of opioids as not only contributors within their own system, but also vital regulators of a multitude of downstream neurodevelopmental processes.
Collapse
Affiliation(s)
- Mary B Spodnick
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| | | | - Marvin R Diaz
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| |
Collapse
|
2
|
Lepreux G, Henricks AM, Wei G, Go BS, Erikson CM, Abella RM, Pham A, Walker BM. Kappa-opioid receptor antagonism in the nucleus accumbens shell distinguishes escalated alcohol consumption and negative affective-like behavior from physiological withdrawal in alcohol-dependence. Pharmacol Biochem Behav 2024; 243:173840. [PMID: 39096973 DOI: 10.1016/j.pbb.2024.173840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disease that is deleterious at individual, familial, and societal levels. Although AUD is one of the highest preventable causes of death in the USA, therapies for the treatment of AUD are not sufficient given the heterogeneity of the disorder and the limited number of approved medications. To provide better pharmacological strategies, it is important to understand the neurological underpinnings of AUD. Evidence implicates the endogenous dynorphin (DYN)/κ-opioid receptor (KOR) system recruitment in dysphoric and negative emotional states in AUD to promote maladaptive behavioral regulation. The nucleus accumbens shell (AcbSh), mediating motivational and emotional processes that is a component of the mesolimbic dopamine system and the extended amygdala, is an important site related to alcohol's reinforcing actions (both positive and negative) and neuroadaptations in the AcbSh DYN/KOR system have been documented to induce maladaptive symptoms in AUD. We have previously shown that in other nodes of the extended amygdala, site-specific KOR antagonism can distinguish different symptoms of alcohol dependence and withdrawal. In the current study, we examined the role of the KOR signaling in the AcbSh of male Wistar rats in operant alcohol self-administration, measures of negative affective-like behavior, and physiological symptoms during acute alcohol withdrawal in alcohol-dependence. To induce alcohol dependence, rats were exposed to chronic intermittent ethanol vapor for 14 h/day for three months, during which stable escalation of alcohol self-administration was achieved and pharmacological AcbSh KOR antagonism ensued. The results showed that AcbSh KOR antagonism significantly reduced escalated alcohol intake and negative affective-like states but did not alter somatic symptoms of withdrawal. Understanding the relative contribution of these different drivers is important to understand and inform therapeutic efficacy approaches in alcohol dependence and further emphasis the importance of the KOR/DYN system as a target for AUD therapeutics.
Collapse
Affiliation(s)
- Gaetan Lepreux
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Angela M Henricks
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Gengze Wei
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Psychology, Washington State University, Pullman, WA, USA
| | - Bok Soon Go
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Chloe M Erikson
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Rachel M Abella
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Amy Pham
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brendan M Walker
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Psychology, Washington State University, Pullman, WA, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Neuroscience Institute, USF Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Pirino BE, Hawks A, Carpenter BA, Candelas PG, Gargiulo AT, Curtis GR, Karkhanis AN, Barson JR. Kappa-opioid receptor stimulation in the nucleus accumbens shell and ethanol drinking: Differential effects by rostro-caudal location and level of drinking. Neuropsychopharmacology 2024; 49:1550-1558. [PMID: 38528134 PMCID: PMC11319348 DOI: 10.1038/s41386-024-01850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Although the kappa-opioid receptor (KOR) and its endogenous ligand, dynorphin, are believed to be involved in ethanol drinking, evidence on the direction of their effects has been mixed. The nucleus accumbens (NAc) shell densely expresses KORs, but previous studies have not found KOR activation to influence ethanol drinking. Using microinjections into the NAc shell of male and female Long-Evans rats that drank under the intermittent-access procedure, we found that the KOR agonist, U50,488, had no effect on ethanol drinking when injected into the middle NAc shell, but that it promoted intake in males and high-drinking females in the caudal NAc shell and high-drinking females in the rostral shell, and decreased intake in males and low-drinking females in the rostral shell. Conversely, injection of the KOR antagonist, nor-binaltorphimine, stimulated ethanol drinking in low-drinking females when injected into the rostral NAc shell and decreased drinking in high-drinking females when injected into the caudal NAc shell. These effects of KOR activity were substance-specific, as U50,488 did not affect sucrose intake. Using quantitative real-time PCR, we found that baseline gene expression of the KOR was higher in the rostral compared to caudal NAc shell, but that this was upregulated in the rostral shell with a history of ethanol drinking. Our findings have important clinical implications, demonstrating that KOR stimulation in the NAc shell can affect ethanol drinking, but that this depends on NAc subregion, subject sex, and ethanol intake level, and suggesting that this may be due to differences in KOR expression.
Collapse
Affiliation(s)
- Breanne E Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Annie Hawks
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Brody A Carpenter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Pelagia G Candelas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Andrew T Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University - SUNY, Binghamton, NY, 13902, USA
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
4
|
Flores-Ramirez FJ, Illenberger JM, Pascasio G, Terenius L, Martin-Fardon R. LY2444296, a κ-opioid receptor antagonist, selectively reduces alcohol drinking in male and female Wistar rats with a history of alcohol dependence. Sci Rep 2024; 14:5804. [PMID: 38461355 PMCID: PMC10925033 DOI: 10.1038/s41598-024-56500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Alcohol use disorder (AUD) remains a major public health concern. The dynorphin (DYN)/κ-opioid receptor (KOP) system is involved in actions of alcohol, particularly its withdrawal-associated negative affective states. This study tested the ability of LY2444296, a selective, short-acting, KOP antagonist, to decrease alcohol self-administration in dependent male and female Wistar rats at 8 h abstinence. Animals were trained to orally self-administer 10% alcohol (30 min/day for 21 sessions) and were made dependent via chronic intermittent alcohol vapor exposure for 6 weeks or exposed to air (nondependent). After 6 weeks, the effect of LY2444296 (0, 3, and 10 mg/kg, p.o.) was tested on alcohol self-administration at 8 h of abstinence. A separate cohort of rats was prepared in parallel, and their somatic withdrawal signs and alcohol self-administration were measured after LY2444296 administration at 8 h, 2 weeks, and 4 weeks abstinence. LY2444296 at 3 and 10 mg/kg significantly reduced physical signs of withdrawal in dependent rats at 8 h abstinence, only. Furthermore, 3 and 10 mg/kg selectively decreased alcohol self-administration in dependent rats at only 8 h abstinence. These results highlight the DYN/KOP system in actions of alcohol during acute abstinence, suggesting KOP antagonism could be beneficial for mitigating acute withdrawal signs and, in turn, significantly reduce excessive alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Francisco J Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | - Jessica M Illenberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Glenn Pascasio
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
5
|
Pirino BE, Kelley AM, Karkhanis AN, Barson JR. A critical review of effects on ethanol intake of the dynorphin/kappa opioid receptor system in the extended amygdala: From inhibition to stimulation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1027-1038. [PMID: 37042026 PMCID: PMC10289127 DOI: 10.1111/acer.15078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023]
Abstract
The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| | - Abigail M. Kelley
- Department of Psychology, Binghamton University – SUNY, Binghamton, N.Y. 13902
| | | | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| |
Collapse
|
6
|
Farahbakhsh ZZ, Song K, Branthwaite HE, Erickson KR, Mukerjee S, Nolan SO, Siciliano CA. Systemic kappa opioid receptor antagonism accelerates reinforcement learning via augmentation of novelty processing in male mice. Neuropsychopharmacology 2023; 48:857-868. [PMID: 36804487 PMCID: PMC10156709 DOI: 10.1038/s41386-023-01547-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Selective inhibition of kappa opioid receptors (KORs) is highly anticipated as a pharmacotherapeutic intervention for substance use disorders and depression. The accepted explanation for KOR antagonist-induced amelioration of aberrant behaviors posits that KORs globally function as a negative valence system; antagonism thereby blunts the behavioral influence of negative internal states such as anhedonia and negative affect. While effects of systemic KOR manipulations have been widely reproduced, explicit evaluation of negative valence as an explanatory construct is lacking. Here, we tested a series of falsifiable hypotheses generated a priori based on the negative valence model by pairing reinforcement learning tasks with systemic pharmacological KOR blockade in male C57BL/6J mice. The negative valence model failed to predict multiple experimental outcomes: KOR blockade accelerated contingency learning during both positive and negative reinforcement without altering innate responses to appetitive or aversive stimuli. We next proposed novelty processing, which influences learning independent of valence, as an alternative explanatory construct. Hypotheses based on novelty processing predicted subsequent observations: KOR blockade increased exploration of a novel, but not habituated, environment and augmented the reinforcing efficacy of novel visual stimuli in a sensory reinforcement task. Together, these results revise and extend long-standing theories of KOR system function.
Collapse
Affiliation(s)
- Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Keaton Song
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hannah E Branthwaite
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kirsty R Erickson
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Snigdha Mukerjee
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suzanne O Nolan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Lepreux G, Shinn GE, Wei G, Suko A, Concepcion G, Sirohi S, Soon Go B, Bruchas MR, Walker BM. Recapitulating phenotypes of alcohol dependence via overexpression of Oprk1 in the ventral tegmental area of non-dependent TH::Cre rats. Neuropharmacology 2023; 228:109457. [PMID: 36764577 PMCID: PMC10034863 DOI: 10.1016/j.neuropharm.2023.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The dynorphin (DYN)/kappa-opioid receptor (KOR) system is involved in dysphoria and negative emotional states. Dysregulation of KOR function promotes maladaptive behavioral regulation during withdrawal associated with alcohol dependence. Mesolimbic dopaminergic (DA) projections from the ventral tegmental area (VTA) innervate the extended amygdala circuitry and presynaptic KORs attenuate DA in these regions leading to an excessive alcohol consumption and negative affective-like behavior, whereas mesocortical KOR-regulated DA projections have been implicated in executive function and decision-making. Thus, the neuroadaptations occurring in DYN/KOR systems are important aspects to consider for the development of personalized therapeutic solutions. Herein, we study the contribution of the VTA DA neuron Oprk1 (KOR gene) in excessive alcohol consumption, negative emotional state, and executive function. To do so, Oprk1 mRNA expression and KOR function were characterized to confirm alcohol dependence-induced dysregulation in the VTA. Then, a transgenic Cre-Lox rat model (male and female TH::Cre rats) was used to allow for conditional and inducible overexpression of Oprk1 in VTA DA neurons. The effect of this overexpression was evaluated on operant alcohol self-administration, negative emotional states, and executive function. We found that VTA Oprk1 overexpression recapitulates some phenotypes of alcohol dependence including escalated alcohol self-administration and depressive-like behavior. However, working memory performance was not impacted following VTA Oprk1 overexpression in TH::Cre rats. This supports the hypothesis that dysregulated KOR signaling within the mesolimbic DA system is an important contributor to symptoms of alcohol dependence and shows that understanding Oprk1-mediated contributions to alcohol use disorder (AUD) should be an important future goal.
Collapse
Affiliation(s)
- Gaetan Lepreux
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Grace E Shinn
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - George Concepcion
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Sunil Sirohi
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Bok Soon Go
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Pharmacology, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA; Department of Molecular Medicine, Tampa, FL, USA; USF Health Neuroscience Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Hashimoto N, Habu H, Takao S, Sakamoto S, Okahisa Y, Matsuo K, Takaki M, Kishi Y, Yamada N. Clinical moderators of response to nalmefene in a randomized-controlled trial for alcohol dependence: An exploratory analysis. Drug Alcohol Depend 2022; 233:109365. [PMID: 35228081 DOI: 10.1016/j.drugalcdep.2022.109365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Nalmefene is the only medication marketed to reduce the consumption of alcohol in patients with alcohol dependence, but it remains unclear which patients could most benefit from it. This study aimed to identify clinical moderators that affect treatment response to nalmefene in patients with alcohol dependence. METHODS In a multicenter, randomized, controlled, double-blind, phase 3 study of nalmefene on Japanese patients with alcohol dependence, the relationship between the reduction of heavy drinking days (HDD) and total alcohol consumption (TAC) at 12 and 24 weeks of treatment and baseline variables of the participants were analyzed in a linear regression and multiple adjusted analysis. RESULTS Age < 65, no family history of problem drinking, age at onset of problem drinking ≥ 25, and not currently smoking were possible positive moderators. Nalmefene showed a significant HDD reduction in patients with age < 65 or no family history of problem drinking, and a significant TAC reduction in patients with age at onset of problem drinking ≥ 25 or who were not currently smoking. After multiple adjusted analyses, age < 65 (p = .028), no family history of problem drinking (p = .047), and age at onset of problem drinking ≥ 25 (p = .030) were statistically significant. Not currently smoking (p = .071) was marginally significant. In combination, these moderators indicated synergistic effects. CONCLUSIONS Alcohol-dependent patients with favorable prognostic factors such as non-smoking status, no family history of problem drinking, and a late-onset of problem drinking selectively benefit from nalmefene. Further research is needed to validate these exploratory results.
Collapse
Affiliation(s)
- Nozomu Hashimoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; Okayama Psychiatric Medical Center, Japan
| | - Hiroshi Habu
- Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Soshi Takao
- Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
10
|
Almeida CAF, Pereira-Junior AA, Rangel JG, Pereira BP, Costa KCM, Bruno V, Silveira GO, Ceron CS, Yonamine M, Camarini R, Garcia RCT, Marcourakis T, Torres LH. Ayahuasca, a psychedelic beverage, modulates neuroplasticity induced by ethanol in mice. Behav Brain Res 2022; 416:113546. [PMID: 34437939 DOI: 10.1016/j.bbr.2021.113546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder needs more effective treatments because relapse rates remain high. Psychedelics, such as ayahuasca, have been used to treat substance use disorders. Our study aimed to evaluate the effects of ayahuasca on ethanol-induced behavioral sensitization (EIBS). Swiss mice received 2.2 g/kg ethanol or saline IP injections every other day across nine days (D1, D3, D5, D7, and D9), and locomotor activity was evaluated 10 min after each injection. Then, animals were treated daily with ayahuasca (corresponding to 1.76 mg/kg of N,N-dimethyltryptamine, DMT) or water by oral gavage for eight consecutive days. On the seventh day, mice were evaluated in the elevated plus maze. Then, mice were challenged with a single dose of ethanol to measure their locomotor activity. Dopamine receptors, serotonin receptors, dynorphin, and prodynorphin levels were quantified in the striatum and hippocampus by blot analysis. Repeated ethanol administration resulted in EIBS. However, those animals treated with ayahuasca had an attenuated EIBS. Moreover, ayahuasca reduced the anxiogenic response to ethanol withdrawal and prevented the ethanol-induced changes on 5-HT1a receptor and prodynorphin levels in the hippocampus and reduced ethanol effects in the dynorphin/prodynorphin ratio levels in the striatum. These results suggest a potential application of ayahuasca to modulate the neuroplastic changes induced by ethanol.
Collapse
Affiliation(s)
- Carolina Aparecida Faria Almeida
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Antonio Alves Pereira-Junior
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Jéssica Gonçalves Rangel
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Bruna Pinheiro Pereira
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Karla Cristinne Mancini Costa
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Vitor Bruno
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Gabriela Oliveira Silveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Carla Speroni Ceron
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Prédio 1, 05508-900, São Paulo, SP, Brazil
| | - Raphael Caio Tamborelli Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, 1° Andar, 09913-030, Diadema, SP, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
11
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
12
|
de Laat B, Nabulsi N, Huang Y, O'Malley SS, Froehlich JC, Morris ED, Krishnan-Sarin S. Occupancy of the kappa opioid receptor by naltrexone predicts reduction in drinking and craving. Mol Psychiatry 2021; 26:5053-5060. [PMID: 32541931 PMCID: PMC11815980 DOI: 10.1038/s41380-020-0811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022]
Abstract
The efficacy of naltrexone to treat alcohol use disorder (AUD) is modest. A better understanding of the neurobiology underlying naltrexone effects could optimize treatments. We evaluated the occupancy of the kappa opioid receptor (KOR) by naltrexone measured with [11C]-LY2795050 positron emission tomography (PET) as a predictor of response to naltrexone. Response to naltrexone was defined as the difference in craving and the difference between the number of drinks consumed during an alcohol drinking paradigm (ADP) before and after 1 week of supervised 100 mg daily oral naltrexone. Forty-four (14 F) nontreatment seeking heavy drinkers meeting criteria for AUD were enrolled. Participants drank 47 ± 16 drinks per week and were balanced in family history of alcoholism (FH, 26 positive). High KOR occupancy (92 ± 1%) was achieved. Occupancy was negatively associated with number of years drinking (YOD) in FH positive, but not FH negative, participants (t3,42 = 4.00, p = 0.0003). Higher KOR occupancy by naltrexone was associated with higher alcohol craving during the ADP (F1,81 = 4.88, p = 0.030). The reduction in drinking after naltrexone was negatively associated with KOR occupancy, with significant effects of FH status (t1,43 = -2.08, p = 0.044). A logistic regression model including KOR occupancy, YOD, and FH variables achieved an 84% prediction accuracy for ≥50% reduction in drinking. These results confirm that naltrexone binds at the KOR site and suggest that KOR occupancy by naltrexone may be related to clinical response. Based on our results, we propose that differential affinities for the mu and KOR could explain why lower doses of naltrexone can have greater clinical efficacy.
Collapse
Affiliation(s)
- Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Invicro LLC, Boston, MA, USA
| | | |
Collapse
|
13
|
Cunningham JI, Todtenkopf MS, Dean RL, Azar MR, Koob GF, Deaver DR, Eyerman DJ. Samidorphan, an opioid receptor antagonist, attenuates drug-induced increases in extracellular dopamine concentrations and drug self-administration in male Wistar rats. Pharmacol Biochem Behav 2021; 204:173157. [PMID: 33647274 DOI: 10.1016/j.pbb.2021.173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/22/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Opioid receptors modulate neurochemical and behavioral responses to drugs of abuse in nonclinical models. Samidorphan (SAM) is a new molecular entity that binds with high affinity to human mu- (μ), kappa- (κ), and delta- (δ) opioid receptors and functions as a μ-opioid receptor antagonist with partial agonist activity at κ- and δ-opioid receptors. Based on its in vitro profile, we hypothesized that SAM would block key neurobiological effects of drugs of abuse. Therefore, we assessed the effects of SAM on ethanol-, oxycodone-, cocaine-, and amphetamine-induced increases in extracellular dopamine (DAext) in the nucleus accumbens shell (NAc-sh), and ethanol and cocaine self-administration behavior in rats. In microdialysis studies, administration of SAM alone did not result in measurable changes in NAc-sh DAext when given across a large range of doses. However, SAM markedly decreased average and maximal increases in NAc-sh DAext produced by each of the drugs of abuse tested. In behavioral studies, SAM attenuated fixed-ratio ethanol self-administration and progressive ratio cocaine self-administration. These results highlight the potential of SAM to counteract the neurobiological and behavioral effects of several drugs of abuse with differing mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
14
|
Tejeda HA, Wang H, Flores RJ, Yarur HE. Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handb Exp Pharmacol 2021; 271:223-253. [PMID: 33580392 DOI: 10.1007/164_2021_440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cortical circuits control a plethora of behaviors, from sensation to cognition. The cortex is enriched with neuropeptides and receptors that play a role in information processing, including opioid peptides and their cognate receptors. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in the processing of sensory and motivationally-charged emotional information and is highly expressed in cortical circuits. This is important as dysregulation of DYN/KOR signaling in limbic and cortical circuits has been implicated in promoting negative affect and cognitive deficits in various neuropsychiatric disorders. However, research investigating the role of this system in controlling cortical circuits and computations therein is limited. Here, we review the (1) basic anatomy of cortical circuits, (2) anatomical architecture of the cortical DYN/KOR system, (3) functional regulation of cortical synaptic transmission and microcircuit function by the DYN/KOR system, (4) regulation of behavior by the cortical DYN/KOR system, (5) implications for the DYN/KOR system for human health and disease, and (6) future directions and unanswered questions for the field. Further work elucidating the role of the DYN/KOR system in controlling cortical information processing and associated behaviors will be of importance to increasing our understanding of principles underlying neuropeptide modulation of cortical circuits, mechanisms underlying sensation and perception, motivated and emotional behavior, and cognition. Increased emphasis in this area of study will also aid in the identification of novel ways to target the DYN/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
16
|
Ohgi Y. [Alcohol dependence and opioid receptor -Pharmacological profile of nalmefene]. Nihon Yakurigaku Zasshi 2020; 155:145-148. [PMID: 32378631 DOI: 10.1254/fpj.19139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alcohol dependence is one of the psychiatric disorders affecting over 1 million people in Japan. Mesolimbic dopamine neuron projecting from ventral tegmental area to nucleus accumbens (Reward system) plays important roles in alcohol dependence including other dependence. Accumulating evidence indicates that the endogenous opioid system regulate this reward system. That is, alcohol stimulates the release of endogenous opioid peptides such as β-endorphin and dynorphin in the brain. β-endorphin activates μ-opioid receptor leading to euphoric mood and positive reinforcement, while dynorphin activates κ-opioid receptor leading to dysphoric mood and negative reinforcement. These euphoric/dysphoric mood and reinforcement effects via endogenous opioid systems are suggested to be implicated in repeated alcohol intake in patients with alcohol dependence. Nalmefene acts as an antagonist at μ- and δ-opioid receptor and a partial agonist at κ-opioid receptor. Preclinical studies have shown that nalmefene reduced the alcohol intake in alcohol preference rats. In clinical trials, as-needed use of nalmefene with psychosocial support reduced the number of heavy-drinking days and total alcohol consumption. These results suggest that nalmefene modulates the alcohol-induced euphoric/dysphoric mood via opioid system and thereby contribute to reduction in alcohol consumption in patients with alcohol dependence. Here, we summarize the implications of opioid system in alcohol dependence and pharmacological profiles of nalmefene in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yuta Ohgi
- Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|
17
|
Haun HL, Griffin WC, Lopez MF, Becker HC. Kappa opioid receptors in the bed nucleus of the stria terminalis regulate binge-like alcohol consumption in male and female mice. Neuropharmacology 2020; 167:107984. [PMID: 32023486 PMCID: PMC7080606 DOI: 10.1016/j.neuropharm.2020.107984] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Binge drinking is the most common pattern of excessive alcohol consumption and is a significant contributor to the development of Alcohol Use Disorder and dependence. Previous studies demonstrated involvement of kappa opioid receptors (KOR) in binge-like drinking in mice using the Drinking-in-the-Dark model. The current studies examined the role of KOR specifically in the bed nucleus of the stria terminals (BNST) in binge-like alcohol consumption in male and female mice. Direct administration of the long lasting KOR antagonist, nor-BNI, into the BNST decreased binge-like alcohol consumption and blood alcohol concentrations in male and female C57BL/6J mice. Similarly, direct nor-BNI administration into the BNST modestly reduced sucrose consumption and the suppression of fluid intake was not related to reduced locomotor activity. To further determine the role of KOR within the BNST on binge-like alcohol consumption, the KOR agonist U50,488 was administered systemically which resulted in a robust increase in alcohol intake. Microinjection of nor-BNI into the BNST blocked the high level of alcohol intake after systemic U50,488 challenge reducing intake and resultant blood alcohol concentrations. Together, these data suggest that KOR activity in the BNST contributes to binge-like alcohol consumption in both male and female mice. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Harold L Haun
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
18
|
Hood LE, Leyrer-Jackson JM, Olive MF. Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opin Pharmacother 2020; 21:823-839. [PMID: 32103695 PMCID: PMC7239727 DOI: 10.1080/14656566.2020.1732349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Opioid use disorder (OUD) and alcohol use disorder (AUD) are two highly prevalent substance-related disorders worldwide. Co-use of the substances is also quite prevalent, yet there are no pharmacological treatment approaches specifically designed to treat co-morbid OUD and AUD. Here, the authors critically summarize OUD, AUD and opioid/alcohol co-use and their current pharmacotherapies for treatment. They also review the mechanisms of action of opioids and alcohol within the brain reward circuitry and discuss potential combined mechanisms of action and resulting neuroadaptations. Pharmacotherapies that aim to treat AUD or OUD that may be beneficial in the treatment of co-use are also highlighted. Preclinical models assessing alcohol and opioid co-use remain sparse. Lasting neuroadaptations in brain reward circuits caused by co-use of alcohol and opioids remains largely understudied. In order to fully understand the neurobiological underpinnings of alcohol and opioid co-use and develop efficacious pharmacotherapies, the preclinical field must expand its current experimental paradigms of 'single drug' use to encompass polysubstance use. Such studies will provide insights on the neural alterations induced by opioid and alcohol co-use, and may help develop novel pharmacotherapies for individuals with co-occurring alcohol and opioid use disorders.
Collapse
Affiliation(s)
- Lauren E. Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | | | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
19
|
Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020; 1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Ream Al-Hasani
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, Department of Anesthesiology Washington University in St. Louis, Center for Clinical Pharmacology, Washington University School of Medicine & St. Louis College of Pharmacy 660 S.Euclid, Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
The selective κ-opioid receptor antagonist JDTic attenuates the alcohol deprivation effect in rats. Eur Neuropsychopharmacol 2019; 29:1386-1396. [PMID: 31679889 DOI: 10.1016/j.euroneuro.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022]
Abstract
The mechanisms behind relapse to ethanol intake in recovering alcoholics are still unclear. The negative reinforcing effects contributing to ethanol addiction, including relapse, are considered to be partly driven by the κ-opioidergic system. As the κ-opioidergic system interacts with the mesolimbic reward pathway, the aim of the study was to clarify the role of nucleus accumbens shell κ-opioidergic mechanisms in relapse to ethanol intake by using the alcohol deprivation effect (ADE) paradigm. The ADE is defined as a transient increase in voluntary ethanol intake after a forced period of abstinence. Male Long-Evans rats were trained to voluntarily consume 10% (v/v) ethanol solution. Ethanol access and deprivation cycles were initiated after stable ethanol intake baselines had been reached and bilateral guide cannulas had been implanted above the nucleus accumbens shell. One cycle consisted of 10 days of 90 min access to ethanol followed by 6 days of ethanol deprivation. The ADE was measured in the beginning of a new cycle. Rats received JDTic, a selective κ-antagonist, either subcutaneously (10 mg/kg) or intra-accumbally (15 µg/site) or, as a reference substance, systemic naltrexone (0.3 mg/kg) before ethanol re-access, and the effects on the ADE were evaluated. Systemic and intra-accumbal JDTic significantly attenuated the ADE on the first day of ethanol re-access, as did systemic naltrexone. Additionally, naltrexone decreased ethanol intake levels. These results suggest that nucleus accumbens shell κ-opioidergic mechanisms may have a role in mediating relapse to ethanol intake. Additionally, κ-antagonism could be a valuable adjunct in ethanol relapse prevention.
Collapse
|
21
|
de Laat B, Goldberg A, Shi J, Tetrault JM, Nabulsi N, Zheng MQ, Najafzadeh S, Gao H, Kapinos M, Ropchan J, O'Malley SS, Huang Y, Morris ED, Krishnan-Sarin S. The Kappa Opioid Receptor Is Associated With Naltrexone-Induced Reduction of Drinking and Craving. Biol Psychiatry 2019; 86:864-871. [PMID: 31399255 DOI: 10.1016/j.biopsych.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Naltrexone is a nonselective opioid receptor antagonist used as a treatment for alcohol use disorder. However, only modest clinical effects have been observed, possibly because of limited knowledge about the biological variables affecting the efficacy of naltrexone. We investigated the potential role of the kappa opioid receptor (KOR) in the therapeutic effect of naltrexone. METHODS A total of 48 non-treatment-seeking heavy drinkers (16 women) who met DSM-IV criteria for alcohol dependence participated in two alcohol drinking paradigms (ADPs) separated by a week of open-label naltrexone (100 mg daily). Craving, assessed with the Alcohol Urge Questionnaire and the Yale Craving Scale, and drinking behavior were recorded in each ADP. Prior to naltrexone initiation, KOR availability was determined in the amygdala, hippocampus, pallidum, striatum, cingulate cortex, and prefrontal cortex using positron emission tomography with [11C]LY2795050. RESULTS Participants reported lower levels of craving (Yale Craving Scale: -11 ± 1, p < .0001; Alcohol Urge Questionnaire: -6 ± 0.6, p < .0001) and consumed fewer drinks (-3.7 ± 4, p < .0001) during the second ADP following naltrexone therapy. The observed reduction in drinking was negatively associated with baseline KOR availability in the striatum (p = .005), pallidum (p = .023), and cingulate cortex (p = .018). Voxelwise analysis identified clusters in the bilateral insula, prefrontal, and cingulate cortex associated with the reduction in drinking (p < .0001). In addition, KOR availability in all evaluated brain regions was associated with craving measured in both ADPs. CONCLUSIONS The KOR is implicated in drinking and craving following naltrexone therapy in alcohol use disorder.
Collapse
Affiliation(s)
- Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.
| | - Alissa Goldberg
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Julia Shi
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Hong Gao
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | |
Collapse
|
22
|
Tobin SJ, Wakefield DL, Terenius L, Vukojević V, Jovanović-Talisman T. Ethanol and Naltrexone Have Distinct Effects on the Lateral Nano-organization of Mu and Kappa Opioid Receptors in the Plasma Membrane. ACS Chem Neurosci 2019; 10:667-676. [PMID: 30418735 DOI: 10.1021/acschemneuro.8b00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex spatiotemporal organization of proteins and lipids in the plasma membrane is an important determinant of receptor function. Certain substances, such as ethanol, can penetrate into the hydrophobic regions of the plasma membrane. By altering protein-lipid and protein-protein interactions, these substances can modify the dynamic lateral organization and the function of plasma membrane receptors. To assess changes in plasma membrane receptor organization, we used photoactivated localization microscopy (PALM). This single molecule localization microscopy technique was employed to quantitatively characterize the effects of pharmacologically relevant concentrations of ethanol and naltrexone (an opioid receptor antagonist and medication used to treat alcohol use disorders) on the lateral nano-organization of mu and kappa opioid receptors (MOR and KOR, respectively). Ethanol affected the lateral organization of MOR and KOR similarly: It reduced the size and occupancy of opioid receptor nanodomains and increased the fraction of opioid receptors residing outside of nanodomains. In contrast, naltrexone affected MOR and KOR lateral organization differently. It significantly increased KOR surface density, nanodomain size, and the occupancy of KOR nanodomains. However, naltrexone marginally affected these parameters for MOR. Pretreatment with naltrexone largely protected against ethanol-induced changes in MOR and KOR lateral organization. Based on these data, we propose a putative mechanism of naltrexone action that operates in addition to its canonical antagonistic effect on MOR- and KOR-mediated signaling.
Collapse
Affiliation(s)
- Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Lars Terenius
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Vladana Vukojević
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
23
|
Hamida SB, Boulos LJ, McNicholas M, Charbogne P, Kieffer BL. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol 2019; 24:28-39. [PMID: 29094432 PMCID: PMC5932272 DOI: 10.1111/adb.12576] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
Abstract
Mu opioid receptors (MORs) are widely distributed throughout brain reward circuits and their role in drug and social reward is well established. Substantial evidence has implicated MOR and the endogenous opioid system in alcohol reward, but circuit mechanisms of MOR-mediated alcohol reward and intake behavior remain elusive, and have not been investigated by genetic approaches. We recently created conditional knockout (KO) mice targeting the Oprm1 gene in GABAergic forebrain neurons. These mice (Dlx-MOR KO) show a major MOR deletion in the striatum, whereas receptors in midbrain (including the Ventral Tegmental Area or VTA) and hindbrain are intact. Here, we compared alcohol-drinking behavior and rewarding effects in total (MOR KO) and conditional KO mice. Concordant with our previous work, MOR KO mice drank less alcohol in continuous and intermittent two-bottle choice protocols. Remarkably, Dlx-MOR KO mice showed reduced drinking similar to MOR KO mice, demonstrating that MOR in the forebrain is responsible for the observed phenotype. Further, alcohol-induced conditioned place preference was detected in control but not MOR KO mice, indicating that MOR is essential for alcohol reward and again, Dlx-MOR KO recapitulated the MOR KO phenotype. Taste preference and blood alcohol levels were otherwise unchanged in mutant lines. Together, our data demonstrate that MOR expressed in forebrain GABAergic neurons is essential for alcohol reward-driven behaviors, including drinking and place conditioning. Challenging the prevailing VTA-centric hypothesis, this study reveals another mechanism of MOR-mediated alcohol reward and consumption, which does not necessarily require local VTA MORs but rather engages striatal MOR-dependent mechanisms.
Collapse
Affiliation(s)
- Sami Ben Hamida
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Laura-Joy Boulos
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Michael McNicholas
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Pauline Charbogne
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Brigitte Lina Kieffer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| |
Collapse
|
24
|
Age as a factor in stress and alcohol interactions: A critical role for the kappa opioid system. Alcohol 2018; 72:9-18. [PMID: 30322483 DOI: 10.1016/j.alcohol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
The endogenous kappa opioid system has primarily been shown to be involved with a state of dysphoria and aversion. Stress and exposure to drugs of abuse, particularly alcohol, can produce similar states of unease and anxiety, implicating the kappa opioid system as a target of stress and alcohol. Numerous behavioral studies have demonstrated reduced sensitivity to manipulations of the kappa opioid system in early life relative to adulthood, and recent reports have shown that the kappa opioid system is functionally different across ontogeny. Given the global rise in early-life stress and alcohol consumption, understanding how the kappa opioid system responds and adapts to stress and/or alcohol exposure differently in early life and adulthood is imperative. Therefore, the objective of this review is to highlight and discuss studies examining the impact of early-life stress and/or alcohol on the kappa opioid system, with focus on the documented neuroadaptations that may contribute to future vulnerability to stress and/or increase the risk of relapse. We first provide a brief summary of the importance of studying the effects of stress and alcohol during early life (prenatal, neonatal/juvenile, and adolescence). We then discuss the literature on the effects of stress or alcohol during early life and adulthood on the kappa opioid system. Finally, we discuss the few studies that have shown interactions between stress and alcohol on the kappa opioid system and provide some discussion about the need for studies investigating the development of the kappa opioid system.
Collapse
|
25
|
Matzeu A, Terenius L, Martin-Fardon R. Exploring Sex Differences in the Attenuation of Ethanol Drinking by Naltrexone in Dependent Rats During Early and Protracted Abstinence. Alcohol Clin Exp Res 2018; 42:2466-2478. [PMID: 30320880 DOI: 10.1111/acer.13898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite considerable efforts, few drugs are available for the treatment of alcohol (ethanol [EtOH]) use disorder (AUD). EtOH directly or indirectly modulates several aspects of the central nervous system, including neurotransmitter/neuromodulator systems. Relapse vulnerability is a challenge for the treatment of EtOH addiction. EtOH withdrawal symptoms create motivational states that lead to compulsive EtOH drinking and relapse even after long periods of abstinence. Among the therapeutics to treat AUD, naltrexone (NTX) is a pharmacological treatment for relapse. The present study evaluated the effect of NTX on EtOH drinking in male and female EtOH-dependent rats during abstinence. METHODS Wistar rats (males and females) were first trained to orally self-administer 10% EtOH. Half of the rats were then made dependent by chronic intermittent EtOH (CIE) vapor exposure, and the other half were exposed to air. Using this model, rats exhibit somatic and motivational signs of withdrawal. At the end of EtOH vapor (or air) exposure, the rats were tested for the effects of NTX (10 mg/kg, oral) on EtOH self-administration at 3 abstinence time points: acute abstinence (A-Abst, 8 hours), late abstinence (L-Abst, 2 weeks), and protracted abstinence (P-Abst, 6 weeks). RESULTS NTX decreased EtOH intake in nondependent rats, regardless of sex and abstinence time point. In postdependent rats, NTX decreased EtOH intake only at a delayed abstinence time point (P-Abst) in males, whereas it similarly reduced EtOH drinking in females at all abstinence time points. CONCLUSIONS The therapeutic efficacy of NTX depends on the time of intervention during abstinence and is different between males and females. The data further suggest that EtOH dependence causes different neuroadaptations in male and female rats, reflected by differential effects of NTX. The results underscore the significance of considering the duration of EtOH abstinence and sex as a biological variable as important factors when developing pharmacotherapies for AUD.
Collapse
Affiliation(s)
| | - Lars Terenius
- Department of Neuroscience, Scripps Research, La Jolla, California.,Clinical Neuroscience, Experimental Addiction Research, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
26
|
Erikson CM, Wei G, Walker BM. Maladaptive behavioral regulation in alcohol dependence: Role of kappa-opioid receptors in the bed nucleus of the stria terminalis. Neuropharmacology 2018; 140:162-173. [PMID: 30075159 DOI: 10.1016/j.neuropharm.2018.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022]
Abstract
There is an important emerging role for the endogenous opioid dynorphin (DYN) and the kappa-opioid receptor (KOR) in the treatment of alcohol dependence. Evidence suggests that the DYN/KOR system in the bed nucleus of the stria terminalis (BNST) contributes to maladaptive behavioral regulation during withdrawal in alcohol dependence. The current experiments were designed to assess dysregulation of the BNST DYN/KOR system by evaluating alcohol dependence-induced changes in DYN/KOR gene expression (Pdyn and Oprk1, respectively), and the sensitivity of alcohol self-administration, negative affective-like behavior and physiological withdrawal to intra-BNST KOR antagonism during acute withdrawal. Wistar rats trained to self-administer alcohol, or not trained, were subjected to an alcohol dependence induction procedure (14 h alcohol vapor/10 h air) or air-exposure. BNST micropunches from air- and vapor-exposed animals were analyzed using RT-qPCR to quantify dependence-induced changes in Pdyn and Oprk1 mRNA expression. In addition, vapor- and air-exposed groups received an intra-BNST infusion of a KOR antagonist or vehicle prior to measurement of alcohol self-administration. A separate cohort of vapor-exposed rats was assessed for physiological withdrawal and negative affective-like behavior signs following intra-BNST KOR antagonism. During acute withdrawal, following alcohol dependence induction, there was an upregulation in Oprk1 mRNA expression in alcohol self-administering animals, but not non-alcohol self-administering animals, that confirmed dysregulation of the KOR/DYN system within the BNST. Furthermore, intra-BNST KOR antagonism attenuated escalated alcohol self-administration and negative affective-like behavior during acute withdrawal without reliably impacting physiological symptoms of withdrawal. The results confirm KOR system dysregulation in the BNST in alcohol dependence, illustrating the therapeutic potential of targeting the KOR to treat alcohol dependence.
Collapse
Affiliation(s)
- Chloe M Erikson
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA.
| |
Collapse
|
27
|
Zhou Y, Kreek MJ. Involvement of Activated Brain Stress Responsive Systems in Excessive and "Relapse" Alcohol Drinking in Rodent Models: Implications for Therapeutics. J Pharmacol Exp Ther 2018; 366:9-20. [PMID: 29669731 PMCID: PMC5988024 DOI: 10.1124/jpet.117.245621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Addictive diseases, including addiction to alcohol, pose massive public health costs. Addiction is a chronic relapsing disease caused by both the direct effects induced by drugs and persistent neuroadaptations at the molecular, cellular, and behavioral levels. These drug-type specific neuroadaptations are brought on largely by the reinforcing effects of drugs on the central nervous system and environmental stressors. Results from animal experiments have demonstrated important interactions between alcohol and stress-responsive systems. Addiction to specific drugs such as alcohol, psychostimulants, and opioids shares some common direct or downstream effects on the brain's stress-responsive systems, including arginine vasopressin and its V1b receptors, dynorphin and the κ-opioid receptors, pro-opiomelanocortin/β-endorphin and the μ-opioid receptors, and the endocannabinoids. Further study of these systems through laboratory-based and translational research could lead to the discovery of novel treatment targets and the early optimization of interventions (for example, combination) for the pharmacologic therapy of alcoholism.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
28
|
Uhari-Väänänen J, Raasmaja A, Bäckström P, Oinio V, Carroll FI, Airavaara M, Kiianmaa K, Piepponen P. The κ-opioid receptor antagonist JDTic decreases ethanol intake in alcohol-preferring AA rats. Psychopharmacology (Berl) 2018; 235:1581-1591. [PMID: 29492614 DOI: 10.1007/s00213-018-4868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
Abstract
RATIONALE Studies suggest that the κ-opioidergic system becomes overactivated as ethanol use disorders develop. Nalmefene, a currently approved treatment for ethanol use disorders, may also elicit some of its main effects via the κ-opioidergic system. However, the exact role of κ-opioid receptors on regulating ethanol intake and contribution to the development of ethanol addiction remains to be elucidated. OBJECTIVES The aim of the present study was to clarify the role of accumbal κ-opioid receptors in controlling ethanol intake in alcohol-preferring Alko Alcohol (AA) rats. METHODS Microinfusions of the long-acting and selective κ-opioid receptor antagonist JDTic (1-15 μg/site) were administered bilaterally into the nucleus accumbens shell of AA rats voluntarily consuming 10% ethanol solution in the intermittent, time-restricted two-bottle choice access paradigm. JDTic (10 mg/kg) was also administered subcutaneously. Both the acute and long-term effects of the treatment on ethanol intake were examined. As a reference, nor-BNI (3 μg/site) was administered intra-accumbally. RESULTS Systemically administered JDTic decreased ethanol intake significantly 2 days and showed a similar trend 4 days after administration. Furthermore, intra-accumbally administered JDTic showed a weak decreasing effect on ethanol intake long-term but had no acute effects. Intra-accumbal administration of nor-BNI tended to decrease ethanol intake. CONCLUSIONS The results provide further evidence that κ-opioid receptors play a role in controlling ethanol intake and that accumbal κ-opioid receptors participate in the modulation of the reinforcing effects of ethanol. Furthermore, the results suggest that κ-opioid receptor antagonists may be a valuable adjunct in the pharmacotherapy of ethanol use disorders.
Collapse
Affiliation(s)
- Johanna Uhari-Väänänen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland. .,Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland.
| | - Atso Raasmaja
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Pia Bäckström
- Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Ville Oinio
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - F Ivy Carroll
- RTI International, P.O. Box 12194, Research Triangle Park, NC, USA
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Kalervo Kiianmaa
- Department of Health, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Petteri Piepponen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
29
|
Zhou Y, Crowley R, Prisinzano T, Kreek MJ. Effects of mesyl salvinorin B alone and in combination with naltrexone on alcohol deprivation effect in male and female mice. Neurosci Lett 2018; 673:19-23. [PMID: 29496608 DOI: 10.1016/j.neulet.2018.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 10/17/2022]
Abstract
Alcohol relapse plays a major role in alcohol dependence and is an important focus for the treatment of alcoholism. The alcohol deprivation effect (ADE) is a widely used paradigm in rodents to model the relapse episodes that occur in human alcoholics. Mesyl Salvinorin B (MSB) is a potent and selective kappa opioid receptor (KOP-r) full agonist, with fewer side effects (e.g., sedation or anhedonia) than classic KOP-r full agonists and a longer duration of action in mice than the structurally similar salvinorin A. We have recently found that MSB prevents cocaine seeking in a rat self-administration model and reduces excessive alcohol drinking in a mouse escalation model via a KOP-r-mediated mechanism. Here, we further investigated whether MSB alone (0.3-3 mg/kg) or in combination with naltrexone (mu-opioid receptor antagonist at 1 mg/kg) altered alcohol "relapse" drinking using a mouse ADE paradigm. Both male and female mice, exposed to 3-week intermittent access alcohol drinking in a two-bottle choice paradigm with 24-h access every other day, developed excessive alcohol intake and then displayed pronounced ADE after 1-week abstinence. Acute administration of MSB prevented the ADE at 3 mg/kg in both male and female mice. Upon investigation of potential synergistic effects between naltrexone and MSB, we found that acute administration of a combination of MSB (0.3 mg/kg) and naltrexone (1 mg/kg) reduced the ADE at doses lower than those individual effective doses, with no sex difference. Our study suggests that the KOP-r full agonist MSB both alone and in combination with naltrexone shows potential in alcohol "relapse" treatment models.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, NY, USA.
| | - Rachel Crowley
- Department of Medicinal Chemistry, University of Kansas School of Pharmacy, Lawrence, KS, USA
| | - Thomas Prisinzano
- Department of Medicinal Chemistry, University of Kansas School of Pharmacy, Lawrence, KS, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, NY, USA
| |
Collapse
|
30
|
Deal AL, Konstantopoulos JK, Weiner JL, Budygin EA. Exploring the consequences of social defeat stress and intermittent ethanol drinking on dopamine dynamics in the rat nucleus accumbens. Sci Rep 2018; 8:332. [PMID: 29321525 PMCID: PMC5762836 DOI: 10.1038/s41598-017-18706-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
The current study aimed to explore how presynaptic dopamine (DA) function is altered following brief stress episodes and chronic ethanol self-administration and whether these neuroadaptations modify the acute effects of ethanol on DA dynamics. We used fast-scan cyclic voltammetry to evaluate changes in DA release and uptake parameters in rat nucleus accumbens brain slices by analyzing DA transients evoked through single pulse electrical stimulation. Adult male rats were divided into four groups: ethanol-naïve or ethanol drinking (six week intermittent two-bottle choice) and stressed (mild social defeat) or nonstressed. Results revealed that the mild stress significantly increased DA release and uptake in ethanol-naïve subjects, compared to nonstressed controls. Chronic ethanol self-administration increased the DA uptake rate and occluded the effects of stress on DA release dynamics. Bath-applied ethanol decreased stimulated DA efflux in a concentration-dependent manner in all groups; however, the magnitude of this effect was blunted by either stress or chronic ethanol, or by a combination of both procedures. Together, these findings suggest that stress and ethanol drinking may promote similar adaptive changes in accumbal presynaptic DA release measures and that these changes may contribute to the escalation in ethanol intake that occurs during the development of alcohol use disorder.
Collapse
Affiliation(s)
- Alex L Deal
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Evgeny A Budygin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
31
|
Siciliano CA, Karkhanis AN, Holleran KM, Melchior JR, Jones SR. Cross-Species Alterations in Synaptic Dopamine Regulation After Chronic Alcohol Exposure. Handb Exp Pharmacol 2018; 248:213-238. [PMID: 29675581 PMCID: PMC6195853 DOI: 10.1007/164_2018_106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
32
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
33
|
Karkhanis A, Holleran KM, Jones SR. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:53-88. [PMID: 29056156 DOI: 10.1016/bs.irn.2017.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic.
Collapse
Affiliation(s)
| | | | - Sara R Jones
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
34
|
Soyka M, Müller CA. Pharmacotherapy of alcoholism – an update on approved and off-label medications. Expert Opin Pharmacother 2017; 18:1187-1199. [DOI: 10.1080/14656566.2017.1349098] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
- Medical Park Chiemseeblick Fachklinik für Psychosomatik, Bernau, Germany
| | - Christian A. Müller
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
35
|
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41:1402-1418. [PMID: 28425121 DOI: 10.1111/acer.13406] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information will be critical for the development of new pharmacological agents targeting KORs as promising novel therapeutics for alcohol use disorders and comorbid affective disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience , Medical University of South Carolina, Charleston, South Carolina.,RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
36
|
Synergistic blockade of alcohol escalation drinking in mice by a combination of novel kappa opioid receptor agonist Mesyl Salvinorin B and naltrexone. Brain Res 2017; 1662:75-86. [PMID: 28263712 DOI: 10.1016/j.brainres.2017.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/29/2022]
Abstract
Mesyl Salvinorin B (MSB) is a potent selective kappa opioid receptor (KOP-r) agonist that has potential for development as an anti-psychostimulant agent with fewer side-effects (e.g., sedation, depression and dysphoria) than classic KOP-r agonists. However, no such study has been done on alcohol. We investigated whether MSB alone or in combination with naltrexone (mu-opioid receptor antagonist) altered voluntary alcohol drinking in both male and female mice. Mice, subjected to 3weeks of chronic escalation drinking (CED) in a two-bottle choice paradigm with 24-h access every other day, developed rapid escalation of alcohol intake and high preference. We found that single, acute administration of MSB dose-dependently reduced alcohol intake and preference in mice after 3-week CED. The effect was specific to alcohol, as shown by the lack of any effect of MSB on sucrose or saccharin intake. We also used the drinking-in-the-dark (DID) model with limited access (4h/day) to evaluate the pharmacological effect of MSB after 3weeks of DID. However, MSB had no effect on alcohol drinking after 3-week DID. Upon investigation of potential synergistic effects between naltrexone and MSB, we found that acute administration of a combination of MSB and naltrexone reduced alcohol intake profoundly after 3-week CED at doses lower than those individual effective doses. Repeated administrations of this combination showed less tolerance development than repeated MSB alone. Our study suggests that the novel KOP-r agonist MSB both alone and in combination with naltrexone shows potential in alcoholism treatment models.
Collapse
|
37
|
Soyka M, Kranzler HR, Hesselbrock V, Kasper S, Mutschler J, Möller HJ. Guidelines for biological treatment of substance use and related disorders, part 1: Alcoholism, first revision. World J Biol Psychiatry 2017; 18:86-119. [PMID: 28006997 DOI: 10.1080/15622975.2016.1246752] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
These practice guidelines for the biological treatment of alcohol use disorders are an update of the first edition, published in 2008, which was developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP). For this 2016 revision, we performed a systematic review (MEDLINE/PUBMED database, Cochrane Library) of all available publications pertaining to the biological treatment of alcoholism and extracted data from national guidelines. The Task Force evaluated the identified literature with respect to the strength of evidence for the efficacy of each medication and subsequently categorised it into six levels of evidence (A-F) and five levels of recommendation (1-5). Thus, the current guidelines provide a clinically and scientifically relevant, evidence-based update of our earlier recommendations. These guidelines are intended for use by clinicians and practitioners who evaluate and treat people with alcohol use disorders and are primarily concerned with the biological treatment of adults with such disorders.
Collapse
Affiliation(s)
- Michael Soyka
- a Psychiatric Hospital Meiringen , Meiringen , Switzerland.,b Department of Psychiatry , Ludwig-Maximilians-University , Munich , Germany.,c Medicalpark Chiemseeblick , Bernau , Germany
| | - Henry R Kranzler
- d Crescenz VAMC , University of Pennsylvania and VISN 4 MIRECC , Philadelphia , PA , USA
| | | | - Siegfried Kasper
- f Department of Psychiatric Medicine , University of Vienna, Vienna , Austria
| | - Jochen Mutschler
- a Psychiatric Hospital Meiringen , Meiringen , Switzerland.,g Psychiatric Hospital University of Zürich, Zürich , Switzerland
| | - Hans-Jürgen Möller
- b Department of Psychiatry , Ludwig-Maximilians-University , Munich , Germany
| | | |
Collapse
|
38
|
Soyka M, Mutschler J. Treatment-refractory substance use disorder: Focus on alcohol, opioids, and cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:148-61. [PMID: 26577297 DOI: 10.1016/j.pnpbp.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Substance use disorders are common, but only a small minority of patients receive adequate treatment. Although psychosocial therapies are effective, relapse is common. This review focusses on novel pharmacological and other treatments for patients with alcohol, opioid, or cocaine use disorders who do not respond to conventional treatments. Disulfiram, acamprosate, and the opioid antagonist naltrexone have been approved for the treatment of alcoholism. A novel, "as needed" approach is the use of the mu-opioid antagonist and partial kappa agonist nalmefene to reduce alcohol consumption. Other novel pharmacological approaches include the GABA-B receptor agonist baclofen, anticonvulsants such as topiramate and gabapentin, the partial nicotine receptor agonist varenicline, and other drugs. For opioid dependence, opioid agonist therapy with methadone or buprenorphine is the first-line treatment option. Other options include oral or depot naltrexone, morphine sulfate, depot or implant formulations, and heroin (diacetylmorphine) in treatment-refractory patients. To date, no pharmacological treatment has been approved for cocaine addiction; however, 3 potential pharmacological treatments are being studied, disulfiram, methylphenidate, and modafinil. Pharmacogenetic approaches may help to optimize treatment response in otherwise treatment-refractory patients and to identify which patients are more likely to respond to treatment, and neuromodulation techniques such as repeated transcranial magnetic stimulation and deep brain stimulation also may play a role in the treatment of substance use disorders. Although no magic bullet is in sight for treatment-refractory patients, some novel medications and brain stimulation techniques have the potential to enrich treatment options at least for some patients.
Collapse
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Nussbaumstrasse 7, 80336 Munich, Germany; Privatklinik Meiringen, Postfach 612, CH-3860 Meiringen, Switzerland.
| | - Jochen Mutschler
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, 8001 Zurich, Switzerland
| |
Collapse
|
39
|
Uhari-Väänänen J, Raasmaja A, Bäckström P, Oinio V, Airavaara M, Piepponen P, Kiianmaa K. Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats. Alcohol Clin Exp Res 2016; 40:2114-2123. [PMID: 27508965 DOI: 10.1111/acer.13176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. METHODS Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. RESULTS CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. CONCLUSIONS The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward.
Collapse
Affiliation(s)
- Johanna Uhari-Väänänen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland. .,Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Atso Raasmaja
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia Bäckström
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Ville Oinio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petteri Piepponen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kalervo Kiianmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
40
|
Karkhanis AN, Rose JH, Weiner JL, Jones SR. Early-Life Social Isolation Stress Increases Kappa Opioid Receptor Responsiveness and Downregulates the Dopamine System. Neuropsychopharmacology 2016; 41:2263-74. [PMID: 26860203 PMCID: PMC4946054 DOI: 10.1038/npp.2016.21] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/15/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA, Tel: +1 336 716 8533, Fax: +1 336 716 8501, E-mail:
| |
Collapse
|
41
|
Karkhanis AN, Huggins KN, Rose JH, Jones SR. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors. Neuropharmacology 2016; 110:190-197. [PMID: 27450094 DOI: 10.1016/j.neuropharm.2016.07.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022]
Abstract
Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of KORs is a promising avenue for developing pharmacotherapies for alcoholism.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kimberly N Huggins
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
42
|
Rose JH, Karkhanis AN, Chen R, Gioia D, Lopez MF, Becker HC, McCool BA, Jones SR. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens. Int J Neuropsychopharmacol 2016; 19:pyv127. [PMID: 26625893 PMCID: PMC4886667 DOI: 10.1093/ijnp/pyv127] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. METHODS Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. RESULTS Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. CONCLUSIONS These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.
Collapse
MESH Headings
- Alcohol Drinking/adverse effects
- Alcohol Drinking/metabolism
- Alcohol Drinking/physiopathology
- Alcohol Drinking/psychology
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Alcohol-Induced Disorders, Nervous System/psychology
- Analgesics, Opioid/pharmacology
- Animals
- Anxiety/metabolism
- Anxiety/physiopathology
- Anxiety/psychology
- Behavior, Animal/drug effects
- Compulsive Behavior
- Disease Models, Animal
- Dopamine/metabolism
- Dopaminergic Neurons/metabolism
- Dose-Response Relationship, Drug
- Ethanol
- In Vitro Techniques
- Male
- Mice, Inbred C57BL
- Narcotic Antagonists/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/physiopathology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Substance Withdrawal Syndrome/psychology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Dominic Gioia
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Marcelo F Lopez
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Howard C Becker
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker).
| |
Collapse
|
43
|
Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay. Anal Chim Acta 2015; 887:192-200. [DOI: 10.1016/j.aca.2015.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 11/21/2022]
|
44
|
Soyka M. Alcohol use disorders in opioid maintenance therapy: prevalence, clinical correlates and treatment. Eur Addict Res 2015; 21:78-87. [PMID: 25413371 DOI: 10.1159/000363232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maintenance therapy with methadone or buprenorphine is an established and first-line treatment for opioid dependence. Clinical studies indicate that about a third of patients in opioid maintenance therapy show increased alcohol consumption and alcohol use disorders. Comorbid alcohol use disorders have been identified as a risk factor for clinical outcome and can cause poor physical and mental health, including liver disorders, noncompliance, social deterioration and increased mortality risk. The effects of opioid maintenance therapy on alcohol consumption are controversial and no clear pattern has emerged. Most studies have not found a change in alcohol use after initiation of maintenance therapy. Methadone and buprenorphine appear to carry little risk of liver toxicity, but further research on this topic is required. Recent data indicate that brief intervention strategies may help reduce alcohol intake, but the existing evidence is still limited. This review discusses further clinical implications of alcohol use disorders in opioid dependence.
Collapse
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany; Private Hospital Meiringen, Willigen, Meiringen, Switzerland
| |
Collapse
|
45
|
Palm S, Nylander I. Alcohol-induced changes in opioid peptide levels in adolescent rats are dependent on housing conditions. Alcohol Clin Exp Res 2014; 38:2978-87. [PMID: 25515651 PMCID: PMC4312983 DOI: 10.1111/acer.12586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/23/2014] [Indexed: 01/02/2023]
Abstract
Background Endogenous opioids are implicated in the mechanism of action of alcohol and alcohol affects opioids in a number of brain areas, although little is known about alcohol's effects on opioids in the adolescent brain. One concern, in particular when studying young animals, is that alcohol intake models often are based on single housing that may result in alcohol effects confounded by the lack of social interactions. The aim of this study was to investigate short- and long-term alcohol effects on opioids and the influence of housing conditions on these effects. Methods In the first part, opioid peptide levels were measured after one 24-hour session of single housing and 2-hour voluntary alcohol intake in adolescent and adult rats. In the second part, a model with a cage divider inserted during 2-hour drinking sessions was tested and the effects on opioids were examined after 6 weeks of adolescent voluntary intake in single-and pair-housed rats, respectively. Results The effects of single housing were age specific and affected Met-enkephalin-Arg6Phe7 (MEAP) in particular. In adolescent rats, it was difficult to distinguish between effects induced by alcohol and single housing, whereas alcohol-specific effects were seen in dynorphin B (DYNB), beta-endorphin (BEND), and MEAP levels in adults. Voluntary drinking affected several brain areas and the majority of alcohol-induced effects were not dependent on housing. However, alcohol effects on DYNB and BEND in the amygdala were dependent on housing. Housing alone affected MEAP in the cingulate cortex. Conclusions Age-specific housing- and alcohol-induced effects on opioids were found. In addition, prolonged voluntary alcohol intake under different housing conditions produced several alcohol-induced effects independent of housing. However, housing-dependent effects were found in areas implicated in stress, emotionality, and alcohol use disorder. Housing condition and age may therefore affect the reasons and underlying mechanisms for drinking and could potentially affect the outcome of a number of end points in research on alcohol intake.
Collapse
Affiliation(s)
- Sara Palm
- Neuropharmacology, Addiction & Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
46
|
Nubukpo P. [Place of the opioid system in biology and treatment of Alcohol Use Disorder]. Encephale 2014; 40:457-67. [PMID: 25454364 DOI: 10.1016/j.encep.2014.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/03/2014] [Indexed: 11/28/2022]
Abstract
While the DSM 5 has formalized the terminology "Alcohol Use Disorders" (AUD) or "disorders of the use of alcohol" (UAW French translation in progress), the term "alcohol dependence" still used in ICD-10, apriority in the future ICD-11 and above in clinical practice. Addiction to alcohol is the cause of mortality and major morbidity. In terms of therapeutic strategies for its management, alongside the maintenance of abstinence after withdrawal (with a high rate of relapse), the reduction of alcohol consumption below certain thresholds of intake is emerging in order to reduce risk, improve health and regain control of consumption even be an intermediate step towards abstinence. The role of the endogenous opioid system in the modulation of the activity of dopaminergic neurons from the circuit of reward and motivation is well established. An unsteadiness of this system has been described in the alcohol dependence. Indeed, a hypofunction of the endorphin pathway and its mu receptor and a hyperactivity of the dynorphin pathway and its kappa receptor participate in the alcohol reinforcing effects (especially positive and negative). The development of active molecules in this system allows better management of alcohol dependence. Besides naltrexone (mu antagonist) allowed in the maintenance of abstinence after withdrawal, another molecule (nalmefene) with modulating properties of μ and κ opioid receptors is the first drug having obtained an MA in reducing consumption in adult patients with alcohol dependence. Its modulating original pharmacological properties by targeting both the positive but also the negative reinforcing effects of alcohol, are responsible for its development in reducing consumption in the alcohol dependence.
Collapse
Affiliation(s)
- P Nubukpo
- Pôle d'addictologie en Limousin, centre hospitalier Esquirol, 15, rue du Dr-Marcland, 87025 Limoges, France; Pôle de psychiatrie adulte 23G01, centre hospitalier La Valette, 23320 Saint-Vaury, France; UMR/Inserm 1094 NET, faculté de médecine, CHU de Limoges, 2, rue du Dr-Marcland, 87025 Limoges, France.
| |
Collapse
|
47
|
Schmidt AC, Dunaway LE, Roberts JG, McCarty GS, Sombers LA. Multiple Scan Rate Voltammetry for Selective Quantification of Real-Time Enkephalin Dynamics. Anal Chem 2014; 86:7806-12. [DOI: 10.1021/ac501725u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas C. Schmidt
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lars E. Dunaway
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James G. Roberts
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
48
|
Zhou Y, Kreek MJ. Alcohol: a stimulant activating brain stress responsive systems with persistent neuroadaptation. Neuropharmacology 2014; 87:51-8. [PMID: 24929109 DOI: 10.1016/j.neuropharm.2014.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Addictive diseases, including addiction to alcohol, opiates or cocaine, pose massive public health costs. Addictions are chronic relapsing brain diseases, caused by drug-induced direct effects and persistent neuroadaptations at the molecular, cellular and behavioral levels. These drug-type specific neuroadapations are mainly contributed by three factors: environment, including stress, the direct reinforcing effects of the drug on the CNS, and genetics. Results from animal models and basic clinical research (including human genetic study) have shown important interactions between the stress responsive systems and alcohol abuse. In this review we will discuss the involvement of the dysregulation of the stress responsive hypothalamic-pituitary-adrenal (HPA) axis in alcohol addiction (Section I). Addictions to specific drugs such as alcohol, psychostimulants and opiates (e.g., heroin) have some common direct or downstream effects on several brain stress-responsive systems, including vasopressin and its receptor system (Section II), POMC and mu opioid receptor system (Section III) and dynorphin and kappa opioid receptor systems (Section IV). Further understanding of these systems, through laboratory-based and translational studies, have the potential to optimize early interventions and to discover new treatment targets for the therapy of alcoholism. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
49
|
Abstract
To date, few pharmacotherapies have been established for the treatment of alcoholism. There is a plethora of research concerning the involvement of the opioid-endorphin system in mediating the reinforcing effects of alcohol. The opioid antagonist naltrexone has been found to be effective in alcohol treatment. In addition, the mu-opioid antagonist and partial kappa agonist nalmefene was recently approved by the European Medicines Agency for the treatment of alcoholism. The relevant studies followed a harm-reduction, 'as needed' approach and showed a reduction in alcohol consumption with nalmefene 20 mg rather than increased abstinence rates, (which was not the primary goal of the relevant studies). The available literature is reviewed and discussed. Nalmefene appears to be a safe and effective treatment for alcohol dependence.
Collapse
|
50
|
Abstract
The role of the brain opioid system in alcohol dependence has been the subject of much research for over 25 years. This review explores the evidence: firstly describing the opioid receptors in terms of their individual subtypes, neuroanatomy, neurophysiology and ligands; secondly, summarising emerging data from specific neurochemical, behavioural and neuroimaging studies, explaining the characteristics of addiction with a focus on alcohol dependence and connecting the opioid system with alcohol dependence; and finally reviewing the known literature regarding opioid antagonists in clinical use for alcohol dependence. Further interrogation of how modulation of the opioid system, via use of MOP (mu), DOP (delta) and KOP (kappa) agents, restores the balance of a dysregulated system in alcohol dependence should increase our insight into this disease process and therefore guide better methods for understanding and treating alcohol dependence in the future.
Collapse
|