1
|
Duttke SH, Montilla-Perez P, Chang MW, Li H, Chen H, Carrette LLG, de Guglielmo G, George O, Palmer AA, Benner C, Telese F. Glucocorticoid Receptor-Regulated Enhancers Play a Central Role in the Gene Regulatory Networks Underlying Drug Addiction. Front Neurosci 2022; 16:858427. [PMID: 35651629 PMCID: PMC9149415 DOI: 10.3389/fnins.2022.858427] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Substance abuse and addiction represent a significant public health problem that impacts multiple dimensions of society, including healthcare, the economy, and the workforce. In 2021, over 100,000 drug overdose deaths were reported in the US, with an alarming increase in fatalities related to opioids and psychostimulants. Understanding the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. To explore how repeated drug exposure alters gene regulatory networks in the brain, we combined capped small (cs)RNA-seq, which accurately captures nascent-like initiating transcripts from total RNA, with Hi-C and single nuclei (sn)ATAC-seq. We profiled initiating transcripts in two addiction-related brain regions, the prefrontal cortex (PFC) and the nucleus accumbens (NAc), from rats that were never exposed to drugs or were subjected to prolonged abstinence after oxycodone or cocaine intravenous self-administration (IVSA). Interrogating over 100,000 active transcription start regions (TSRs) revealed that most TSRs had hallmarks of bonafide enhancers and highlighted the KLF/SP1, RFX, and AP1 transcription factors families as central to establishing brain-specific gene regulatory programs. Analysis of rats with addiction-like behaviors versus controls identified addiction-associated repression of transcription at regulatory enhancers recognized by nuclear receptor subfamily 3 group C (NR3C) factors, including glucocorticoid receptors. Cell-type deconvolution analysis using snATAC-seq uncovered a potential role of glial cells in driving the gene regulatory programs associated with addiction-related phenotypes. These findings highlight the power of advanced transcriptomics methods to provide insight into how addiction perturbs gene regulatory programs in the brain.
Collapse
Affiliation(s)
- Sascha H. Duttke
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | | | - Max W. Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hairi Li
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | | | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Francesca Telese
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Reed B, Kreek MJ. Genetic Vulnerability to Opioid Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039735. [PMID: 32205416 DOI: 10.1101/cshperspect.a039735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opioid addiction, also referred to as opioid use disorder, continues to be a devastating problem throughout the world. Familial relation and twin studies have revealed opioid addiction, like other addictive diseases, to be profoundly influenced by genetics. Genetics studies of opioid addiction have affirmed the importance of genetics contributors in susceptibility to develop opioid addiction, and also have important implications on treatment for opioid addiction. But the complexity of the interactions of multiple genetic variants across diverse genes, as well as substantial differences in allelic frequencies across populations, thus far limits the predictive value of individual genetics variants.
Collapse
Affiliation(s)
- Brian Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
3
|
Borruto AM, Stopponi S, Li H, Weiss F, Roberto M, Ciccocioppo R. Genetically selected alcohol-preferring msP rats to study alcohol use disorder: Anything lost in translation? Neuropharmacology 2021; 186:108446. [PMID: 33476639 DOI: 10.1016/j.neuropharm.2020.108446] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
For several decades, genetically selected alcohol-preferring rats have been successfully used to mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing our understanding of the neurobiology of alcoholism and enabling pharmacological studies to evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To support the translational relevance of the findings that are obtained from msP rats and highlight important similarities to AUD patients, we also discuss the results of recent brain imaging studies. Finally, to demonstrate the importance of studying sex differences in animal models of AUD, we present original data that highlight behavioral differences in the response to alcohol in male and female rats. Female msP rats exhibited higher alcohol consumption compared with males. Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. These findings suggest that male and female msP rats both drink high amounts of alcohol to self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an important additional factor in the motivation to drink alcohol. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
Collapse
Affiliation(s)
- Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Hongwu Li
- College of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
4
|
Mierzejewski P, Zakrzewska A, Kuczyńska J, Wyszogrodzka E, Dominiak M. Intergenerational implications of alcohol intake: metabolic disorders in alcohol-naïve rat offspring. PeerJ 2020; 8:e9886. [PMID: 32974100 PMCID: PMC7489241 DOI: 10.7717/peerj.9886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol drinking may be associated with an increased risk of various metabolic diseases. Rat lines selectively bred for alcohol preference and alcohol avoidance constitute an interesting model to study inherited factors related to alcohol drinking and metabolic disorders. The aim of the present study was to compare the levels of selected laboratory biomarkers of metabolic disorders in blood samples from naïve offspring of Warsaw alcohol high-preferring (WHP), Warsaw alcohol low-preferring (WLP), and wild Wistar rats. Blood samples were collected from 3-month old (300–350 g) alcohol-naïve, male offspring of WHP (n = 8) and WLP rats (n = 8), as well as alcohol-naïve, male, wild Wistar rats. Markers of metabolic, hepatic, and pancreatic disorders were analysed (levels of homocysteine, glucose, total cholesterol, triglycerides and γ-glutamyl transferase (GGT), aspartate (AST), alanine aminotransferase (ALT), and amylase serum activities). Alcohol-naïve offspring of WHP, WLP, and wild Wistar rats differed significantly in the levels of triglycerides, total cholesterol, homocysteine, as well as in the activity of GGT, ALT, AST, and amylase enzymes. Most markers in the alcohol-naïve offspring of WHP rats were altered even thought they were never exposed to alcohol pre- or postnatally. This may suggest that parental alcohol abuse can have a detrimental influence on offspring vulnerability to metabolic disorders.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Alicja Zakrzewska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Julita Kuczyńska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
5
|
Persyn W, Houchi H, Papillon CA, Martinetti M, Antol J, Guillaumont C, Dervaux A, Naassila M. Ethanol (EtOH)-Related Behaviors in α-Synuclein Mutant Mice and Association of SNCA SNPs with Anxiety in EtOH-Dependent Patients. Alcohol Clin Exp Res 2018; 42:2172-2185. [PMID: 30120834 DOI: 10.1111/acer.13875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Data have shown a role of α-synuclein in anxiety and also in addiction, particularly in alcohol use disorders (AUD). Since the comorbidity between AUD and anxiety is very high and because anxiety is an important factor in ethanol (EtOH) relapse, the aim of the present study was to investigate the role of α-synuclein in moderating EtOH intake, the anxiolytic effects of EtOH, and EtOH withdrawal-induced anxiety and convulsions in mice. The study aimed to determine whether SNCA variants moderated anxiety in EtOH-dependent patients. METHODS We analyzed the moderator effect of 3 SNCA Tag-single nucleotide polymorphisms (Tag-SNPs) rs356200, rs356219, and rs2119787 on the anxiety symptoms in 128 EtOH-dependent patients. We used the C57BL/6JOlaHsd Snca mutant mice to assess EtOH intake; sensitivity to the anxiolytic effects of EtOH in a test battery comprising the open field, the light-dark box, and the elevated plus maze; and both anxiety and convulsions induced by EtOH withdrawal. RESULTS Our results demonstrated a reduction in both EtOH intake and preference and also a lack of sensitivity to the anxiolytic effects of EtOH in α-synuclein mutant mice. Results on anxiety-like behavior were mixed, but mutant mice displayed increased anxiety when exposed to a low anxiogenic environment. Mutant mice also displayed an increase in handling-induced convulsion scores during withdrawal after EtOH inhalation, but did not differ in terms of EtOH withdrawal-induced anxiety. In humans, we found a significant association of the rs356219 SNP with a high level of anxiety (Beck Anxiety Inventory score >15) and the rs356200 SNP with a positive familial history of AUD. CONCLUSIONS Our translational study highlights a significant role of α-synuclein in components of AUD.
Collapse
Affiliation(s)
- Wolfgang Persyn
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,Unité d'alcoologie SESAME , Centre hospitalier Psychiatrique Philippe Pinel, Amiens, France
| | - Hakim Houchi
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| | - Charles-Antoine Papillon
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| | - Margaret Martinetti
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,Department of Psychology , The College of New Jersey, Ewing, New Jersey
| | - Johann Antol
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| | - Cyrille Guillaumont
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,Unité d'alcoologie SESAME , Centre hospitalier Psychiatrique Philippe Pinel, Amiens, France
| | - Alain Dervaux
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France.,CHU Sud , Service de consultations de Psychiatrie et Addictologie, Amiens Cedex, France
| | - Mickael Naassila
- Research Group on Alcohol & Pharmacodependences (GRAP), Centre Universitaire de Recherche en Santé (CURS) , INSERM U1247, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
6
|
Kalinin S, González-Prieto M, Scheiblich H, Lisi L, Kusumo H, Heneka MT, Madrigal JLM, Pandey SC, Feinstein DL. Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis. J Neuroinflammation 2018; 15:141. [PMID: 29759078 PMCID: PMC5952855 DOI: 10.1186/s12974-018-1184-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglial activation contributes to the neuropathology associated with chronic alcohol exposure and withdrawal, including the expression of inflammatory and anti-inflammatory genes. In the current study, we examined the transcriptome of primary rat microglial cells following incubation with alcohol alone, or alcohol together with a robust inflammatory stimulus. METHODS Primary microglia were prepared from mixed rat glial cultures. Cells were incubated with 75 mM ethanol alone or with proinflammatory cytokines ("TII": IL1β, IFNγ, and TNFα). Isolated mRNA was used for RNAseq analysis and qPCR. Effects of alcohol on phagocytosis were determined by uptake of oligomeric amyloid beta. RESULTS Alcohol induced nitrite production in control cells and increased nitrite production in cells co-treated with TII. RNAseq analysis of microglia exposed for 24 h to alcohol identified 312 differentially expressed mRNAs ("Alc-DEs"), with changes confirmed by qPCR analysis. Gene ontology analysis identified phagosome as one of the highest-ranking KEGG pathways including transcripts regulating phagocytosis. Alcohol also increased several complement-related mRNAs that have roles in phagocytosis, including C1qa, b, and c; C3; and C3aR1. RNAseq analysis identified over 3000 differentially expressed mRNAs in microglia following overnight incubation with TII; and comparison to the group of Alc-DEs revealed 87 mRNAs modulated by alcohol but not by TII, including C1qa, b, and c. Consistent with observed changes in phagocytosis-related mRNAs, the uptake of amyloid beta1-42, by primary microglia, was reduced by alcohol. CONCLUSIONS Our results define alterations that occur to microglial gene expression following alcohol exposure and suggest that alcohol effects on phagocytosis could contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Marta González-Prieto
- Department of Pharmacology, University Complutense, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, 28040 Spain
| | - Hannah Scheiblich
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University Medical School, 00168 Rome, Italy
| | - Handojo Kusumo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Michael T. Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Jose L. M. Madrigal
- Department of Pharmacology, University Complutense, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, 28040 Spain
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
- Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Douglas L. Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612 USA
- Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
7
|
Colville AM, Iancu OD, Oberbeck DL, Darakjian P, Zheng CL, Walter NAR, Harrington CA, Searles RP, McWeeney S, Hitzemann RJ. Effects of selection for ethanol preference on gene expression in the nucleus accumbens of HS-CC mice. GENES BRAIN AND BEHAVIOR 2017; 16:462-471. [PMID: 28058793 DOI: 10.1111/gbb.12367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
Previous studies on changes in murine brain gene expression associated with the selection for ethanol preference have used F2 intercross or heterogeneous stock (HS) founders, derived from standard laboratory strains. However, these populations represent only a small proportion of the genetic variance available in Mus musculus. To investigate a wider range of genetic diversity, we selected mice for ethanol preference using an HS derived from the eight strains of the collaborative cross. These HS mice were selectively bred (four generations) for high and low ethanol preference. The nucleus accumbens shell of naive S4 mice was interrogated using RNA sequencing (RNA-Seq). Gene networks were constructed using the weighted gene coexpression network analysis assessing both coexpression and cosplicing. Selection targeted one of the network coexpression modules (greenyellow) that was significantly enriched in genes associated with receptor signaling activity including Chrna7, Grin2a, Htr2a and Oprd1. Connectivity in the module as measured by changes in the hub nodes was significantly reduced in the low preference line. Of particular interest was the observation that selection had marked effects on a large number of cell adhesion molecules, including cadherins and protocadherins. In addition, the coexpression data showed that selection had marked effects on long non-coding RNA hub nodes. Analysis of the cosplicing network data showed a significant effect of selection on a large cluster of Ras GTPase-binding genes including Cdkl5, Cyfip1, Ndrg1, Sod1 and Stxbp5. These data in part support the earlier observation that preference is linked to Ras/Mapk pathways.
Collapse
Affiliation(s)
- A M Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - O D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D L Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - P Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - C L Zheng
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - N A R Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - C A Harrington
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - R P Searles
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - S McWeeney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - R J Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,Research Service, Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
8
|
Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice. Alcohol 2017; 58:139-151. [PMID: 28027852 DOI: 10.1016/j.alcohol.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Alcohol abuse is a complex disorder, which is confounded by other factors, including stress. In the present study, we examined gene expression in the hippocampus of BXD recombinant inbred mice after exposure to ethanol (NOE), stress (RSS), and the combination of both (RSE). Mice were given an intraperitoneal (i.p.) injection of 1.8 g/kg ethanol or saline, and subsets of both groups were exposed to acute restraint stress for 15 min or controls. Gene expression in the hippocampus was examined using microarray analysis. Genes that were significantly (p < 0.05, q < 0.1) differentially expressed were further evaluated. Bioinformatic analyses were predominantly performed using tools available at GeneNetwork.org, and included gene ontology, presence of cis-regulation or polymorphisms, phenotype correlations, and principal component analyses. Comparisons of differential gene expression between groups showed little overlap. Gene Ontology demonstrated distinct biological processes in each group with the combined exposure (RSE) being unique from either the ethanol (NOE) or stress (RSS) group, suggesting that the interaction between these variables is mediated through diverse molecular pathways. This supports the hypothesis that exposure to stress alters ethanol-induced gene expression changes and that exposure to alcohol alters stress-induced gene expression changes. Behavior was profiled in all groups following treatment, and many of the differentially expressed genes are correlated with behavioral variation within experimental groups. Interestingly, in each group several genes were correlated with the same phenotype, suggesting that these genes are the potential origins of significant genetic networks. The distinct sets of differentially expressed genes within each group provide the basis for identifying molecular networks that may aid in understanding the complex interactions between stress and ethanol, and potentially provide relevant therapeutic targets. Using Ptp4a1, a candidate gene underlying the quantitative trait locus for several of these phenotypes, and network analyses, we show that a large group of differentially expressed genes in the NOE group are highly interrelated, some of which have previously been linked to alcohol addiction or alcohol-related phenotypes.
Collapse
|
9
|
Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, Lumeng L, Yong W, Liang T. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics 2016; 43:421-30. [PMID: 27461754 PMCID: PMC5055068 DOI: 10.1016/j.jgg.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a 26-bp deletion in the Npy gene. RT-PCR, Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats. Alcohol consumption was increased in Npy(+/-) but not Npy(-/-) rats, while Npy(-/-) rats displayed significantly lower body weight when compared to Npy(+/+) rats. In whole brain tissue, expression levels of Npy-related and other alcohol-associated genes, Npy1r, Npy2r, Npy5r, Agrp, Mc3r, Mc4r, Crh and Crh1r, were significantly greater in Npy(-/-) rats, whereas Pomc and Crhr2 expressions were highest in Npy(+/-) rats. These findings suggest that the NPY-system works in close coordination with the melanocortin (MC) and corticotropin-releasing hormone (CRH) systems to modulate alcohol intake and body weight.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Robert B Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202, USA
| | - Tamara Graves
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawrence Lumeng
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Tiebing Liang
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Stankiewicz AM, Goscik J, Dyr W, Juszczak GR, Ryglewicz D, Swiergiel AH, Wieczorek M, Stefanski R. Novel candidate genes for alcoholism--transcriptomic analysis of prefrontal medial cortex, hippocampus and nucleus accumbens of Warsaw alcohol-preferring and non-preferring rats. Pharmacol Biochem Behav 2015; 139:27-38. [PMID: 26455281 DOI: 10.1016/j.pbb.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain functions, including reward system and addiction. The current study aimed to identify genes that may underlie differential ethanol preference in Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) rats. METHODS Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and medial prefrontal cortex (mPFC) was performed in male WHP and WLP rats bred for differences in ethanol preference. RESULTS Differential and stable between biological repeats expression of 345, 254 and 129 transcripts in NAc, HP and mPFC was detected. Identified genes and processes included known mediators of ethanol response (Mx2, Fam111a, Itpr1, Gabra4, Agtr1a, LTP/LTD, renin-angiotensin signaling pathway), toxicity (Sult1c2a, Ces1, inflammatory response), as well as genes involved in regulation of important addiction-related brain systems such as dopamine, tachykinin or acetylcholine (Gng7, Tac4, Slc5a7). CONCLUSIONS The identified candidate genes may underlie differential ethanol preference in an animal model of alcoholism. COMMENT Names of genes are written in italics, while names of proteins are written in standard font. Names of human genes/proteins are written in all capital letters. Names of rodent genes/proteins are written in capital letter followed by small letters.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wanda Dyr
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Danuta Ryglewicz
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA71130, USA.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Roman Stefanski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
11
|
Geng T, Guan X, Smith EJ. Screening for genes involved in antibody response to sheep red blood cells in the chicken, Gallus gallus. Poult Sci 2015; 94:2099-2107. [PMID: 26217034 DOI: 10.3382/ps/pev224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
Antibody response, an important trait in both agriculture and biomedicine, plays a part in protecting animals from infection. Dissecting molecular basis of antibody response may improve artificial selection for natural disease resistance in livestock and poultry. A number of genetic markers associated with antibody response have been identified in the chicken and mouse by linkage-based association studies, which only define genomic regions by genetic markers but do not pinpoint genes for antibody response. In contrast, global expression profiling has been applied to define the molecular bases of a variety of biological traits through identification of differentially expressed genes (DEGs). Here, we employed Affimetrix GeneChip Chicken Genome Arrays to identify differentially expressed genes for antibody response to sheep red blood cells (SRBC) using chickens challenged with and without SRBC or chickens with high and low anti-SRBC titers. The DEGs include those with known (i.e., MHC class I and IgH genes) or unknown function in antibody response. Classification test of these genes suggested that the response of the chicken to intravenous injection of SRBC involved multiple biological processes, including response to stress or other different stimuli, sugar, carbohydrate or protein binding, and cell or soluble fraction, in addition to antibody response. This preliminary study thus provides an insight into molecular basis of antibody response to SRBC in the chicken.
Collapse
Affiliation(s)
- Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, China College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Xiaojing Guan
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Edward J Smith
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
12
|
Juraeva D, Treutlein J, Scholz H, Frank J, Degenhardt F, Cichon S, Ridinger M, Mattheisen M, Witt SH, Lang M, Sommer WH, Hoffmann P, Herms S, Wodarz N, Soyka M, Zill P, Maier W, Jünger E, Gaebel W, Dahmen N, Scherbaum N, Schmäl C, Steffens M, Lucae S, Ising M, Smolka MN, Zimmermann US, Müller-Myhsok B, Nöthen MM, Mann K, Kiefer F, Spanagel R, Brors B, Rietschel M. XRCC5 as a risk gene for alcohol dependence: evidence from a genome-wide gene-set-based analysis and follow-up studies in Drosophila and humans. Neuropsychopharmacology 2015; 40:361-71. [PMID: 25035082 PMCID: PMC4443948 DOI: 10.1038/npp.2014.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022]
Abstract
Genetic factors have as large role as environmental factors in the etiology of alcohol dependence (AD). Although genome-wide association studies (GWAS) enable systematic searches for loci not hitherto implicated in the etiology of AD, many true findings may be missed owing to correction for multiple testing. The aim of the present study was to circumvent this limitation by searching for biological system-level differences, and then following up these findings in humans and animals. Gene-set-based analysis of GWAS data from 1333 cases and 2168 controls identified 19 significantly associated gene-sets, of which 5 could be replicated in an independent sample. Clustered in these gene-sets were novel and previously identified susceptibility genes. The most frequently present gene, ie in 6 out of 19 gene-sets, was X-ray repair complementing defective repair in Chinese hamster cells 5 (XRCC5). Previous human and animal studies have implicated XRCC5 in alcohol sensitivity. This phenotype is inversely correlated with the development of AD, presumably as more alcohol is required to achieve the desired effects. In the present study, the functional role of XRCC5 in AD was further validated in animals and humans. Drosophila mutants with reduced function of Ku80-the homolog of mammalian XRCC5-due to RNAi silencing showed reduced sensitivity to ethanol. In humans with free access to intravenous ethanol self-administration in the laboratory, the maximum achieved blood alcohol concentration was influenced in an allele-dose-dependent manner by genetic variation in XRCC5. In conclusion, our convergent approach identified new candidates and generated independent evidence for the involvement of XRCC5 in alcohol dependence.
Collapse
Affiliation(s)
- Dilafruz Juraeva
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henrike Scholz
- Department of Animal Physiology, University of Cologne, Cologne, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Monika Ridinger
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | | | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maren Lang
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Per Hoffmann
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Stefan Herms
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Norbert Wodarz
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - Michael Soyka
- Private Hospital Meiringen, Meiringen, Switzerland,Department of Psychiatry, University of Munich, Munich, Germany
| | - Peter Zill
- Department of Psychiatry, University of Munich, Munich, Germany
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Elisabeth Jünger
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, University of Düsseldorf, Düsseldorf, Germany
| | - Norbert Dahmen
- Department of Psychiatry, University of Mainz, Mainz, Germany
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Christine Schmäl
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Steffens
- Division of Research, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Susanne Lucae
- Department of Psychiatric Pharmacogenetics, Max-Planck-Institute of Psychiatry, München, Germany
| | - Marcus Ising
- Department of Molecular Psychology, Max-Planck-Institute of Psychiatry, München, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Ulrich S Zimmermann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Bertram Müller-Myhsok
- Department of Statistical Genetics, Max-Planck-Institute of Psychiatry, München, Germany,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany,Institute of Translational Medicine Liverpool, University of Liverpool, Liverpool, UK
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University Medical Center Mannheim, University of Heidelberg, J5, Mannheim 68159, Germany, Tel: +49 621 1703 6051, Fax: +49 621 1703 6055, E-mail:
| |
Collapse
|
13
|
Morozova TV, Mackay TFC, Anholt RRH. Genetics and genomics of alcohol sensitivity. Mol Genet Genomics 2014; 289:253-69. [PMID: 24395673 PMCID: PMC4037586 DOI: 10.1007/s00438-013-0808-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Alcohol abuse and alcoholism incur a heavy socioeconomic cost in many countries. Both genetic and environmental factors contribute to variation in the inebriating effects of alcohol and alcohol addiction among individuals within and across populations. From a genetics perspective, alcohol sensitivity is a quantitative trait determined by the cumulative effects of multiple segregating genes and their interactions with the environment. This review summarizes insights from model organisms as well as human populations that represent our current understanding of the genetic and genomic underpinnings that govern alcohol metabolism and the sedative and addictive effects of alcohol on the nervous system.
Collapse
Affiliation(s)
- Tatiana V. Morozova
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Trudy F. C. Mackay
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| |
Collapse
|
14
|
Medeiros GFD, Corrêa FJ, Corvino ME, Izídio GDS, Ramos A. The Long Way from Complex Phenotypes to Genes: The Story of Rat Chromosome 4 and Its Behavioral Effects. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Liang T, Edenberg HJ, Lumeng L, Bell RL. Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol 2013; 47:517-29. [PMID: 24157127 DOI: 10.1016/j.alcohol.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
The objectives of this study were to determine innate differences in gene expression in 2 regions of the extended amygdala between 5 different pairs of lines of male rats selectively bred for high or low ethanol consumption: a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats, b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line-pairs 1 and 2), c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats, and d) Sardinian alcohol-preferring (sP) vs. Sardinian alcohol-nonpreferring (sNP) rats, and then to determine if these differences are common across the line-pairs. Microarray analysis revealed up to 1772 unique named genes in the nucleus accumbens shell (AcbSh) and 494 unique named genes in the central nucleus of the amygdala (CeA) that significantly differed [False Discovery Rate (FDR) = 0.10; fold-change at least 1.2] in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 or 4 line-pairs, but not for all 5 line-pairs. However, there were almost no individual genes in common within these categories and networks. ANOVAs of the combined data for the 5 line-pairs indicated 1014 and 731 significant (p < 0.01) differences in expression of named genes in the AcbSh and CeA, respectively. There were 4-6 individual named genes that significantly differed across up to 3 line-pairs in both regions; only 1 gene (Gsta4 in the CeA) differed in as many as 4 line-pairs. Overall, the findings suggest that a) some biological categories or networks (e.g., cell-to-cell signaling, cellular stress response, cellular organization, etc.) may be in common for subsets of line-pairs within either the AcbSh or CeA, and b) regulation of different genes and/or combinations of multiple biological systems may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
|
16
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hauser SR, Edenberg HJ, Bell RL, Rodd ZA. Changes in gene expression within the ventral tegmental area following repeated excessive binge-like alcohol drinking by alcohol-preferring (P) rats. Alcohol 2013; 47:367-80. [PMID: 23714385 DOI: 10.1016/j.alcohol.2013.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
The objective of this study was to detect changes in gene expression in the ventral tegmental area (VTA) following repeated excessive binge-like ('loss-of-control') alcohol drinking by alcohol-preferring (P) rats. Adult female P rats (n = 7) were given concurrent access to 10, 20, and 30% EtOH for 4 1-h sessions daily for 10 weeks followed by 2 cycles of 2 weeks of abstinence and 2 weeks of EtOH access. Rats were sacrificed by decapitation 3 h after the 4th daily EtOH-access session at the end of the second 2-week relapse period. A water-control group of female P rats (n = 8) was also sacrificed. RNA was prepared from micro-punch samples of the VTA from individual rats; analyses were conducted with Affymetrix Rat 230.2 GeneChips. Ethanol intakes were 1.2-1.7 g/kg per session, resulting in blood levels >200 mg% at the end of the 4th session. There were 211 unique named genes that significantly differed (FDR = 0.1) between the water and EtOH groups. Bioinformatics analyses indicated alterations in a) transcription factors that reduced excitation-coupled transcription and promoted excitotoxic neuronal damage involving clusters of genes associated with Nfkbia, Fos, and Srebf1, b) genes that reduced cholesterol and fatty acid synthesis, and increased protein degradation, and c) genes involved in cell-to-cell interactions and regulation of the actin cytoskeleton. Among the named genes, there were 62 genes that showed differences between alcohol-naïve P and non-preferring (NP) rats, with 43 of the genes changing toward NP-like expression levels following excessive binge-like drinking in the P rats. These genes are involved in a pro-inflammatory response, and enhanced response to glucocorticoids and steroid hormones. Overall, the results of this study indicate that the repeated excessive binge-like alcohol drinking can change the expression of genes that may alter neuronal function in several ways, some of which may be deleterious.
Collapse
Affiliation(s)
- William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Spence JP, Lai D, Shekhar A, Carr LG, Foroud T, Liang T. Quantitative trait locus for body weight identified on rat chromosome 4 in inbred alcohol-preferring and -nonpreferring rats: potential implications for neuropeptide Y and corticotrophin releasing hormone 2. Alcohol 2013; 47:63-7. [PMID: 23312492 DOI: 10.1016/j.alcohol.2012.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
The alcohol-preferring (P) and -nonpreferring (NP) rat lines were developed using bidirectional selective breeding for alcohol consumption (g/kg/day) and alcohol preference (water:ethanol ratio). During a preliminary study, we detected a difference in body weight between inbred P (iP) and inbred NP (iNP) rats that appeared to be associated with the transfer of the Chromosome 4 quantitative trait locus (QTL) seen in the P.NP and NP.P congenic strains. After the initial confirmation that iP rats displayed lower body weight when compared to iNP rats (data not shown), body weight and growth rates of each chromosome 4 reciprocal congenic rat strain (P.NP and NP.P) were measured, and their body weight was consistent with their respective donor strain phenotype, confirming that a quantitative trait locus for body weight mapped to the chromosome 4 interval. Utilizing the newly developed interval-specific congenic strains (ISCS-A and ISCS-B), the QTL interval was further narrowed identifying the following candidate genes of interest: neuropeptide Y (Npy), juxtaposed with another zinc finger gene 1 (Jazf1), corticotrophin releasing factor receptor 2 (Crfr2) and LanC lantibiotic synthetase component C-like 2 (Lancl2). These findings indicate that a biologically active variant(s) regulates body weight on rat chromosome 4 in iP and iNP rats. This QTL for body weight was successfully captured in the P.NP and NP.P congenic strains, and interval-specific congenic strains (ISCSs) were subsequently employed to fine-map the QTL interval identifying the following candidate genes of interest: Npy, Jazf1, Crfr2 and Lancl2. Both Npy and Crfr2 have been previously identified as candidate genes of interest underlying the chromosome 4 QTL for alcohol consumption in iP and iNP rats.
Collapse
|
18
|
Abstract
Animal models have been successfully developed to mimic and study alcoholism. These models have the unique feature of allowing the researcher to control for the genetic characteristics of the animal, alcohol exposure and environment. Moreover, these animal models allow pharmacological, neurochemical and behavioral manipulations otherwise impossible. Unquestionably, one of the major contributions to the understanding of the neurobiological basis of alcoholism comes from data that have been obtained from the study of genetically selected alcohol preferring rat lines and from the consequences that alcohol drinking and environmental manipulations, (i.e., protracted alcohol drinking, intoxication, exposure to stress, etc.) have on them. In fact, if on the one hand genetic factors may account for about 50-60% of the risk of developing alcohol dependence, on the other hand protracted alcohol exposure is a necessary precondition to actually develop the disease, while environmental vulnerability factors may be crucial for disease progression. The present article will offer an overview of the different genetically selected alcohol preferring rat lines developed and used to study alcoholism. The predictive, face and construct validity of these animal models and the translational significance of findings achieved through their use will be critically discussed.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Madonna delle Carceri 9, 62032 Camerino, MC, Italy.
| |
Collapse
|
19
|
Zhao Z, Guo AY, van den Oord EJCG, Aliev F, Jia P, Edenberg HJ, Riley BP, Dick DM, Bettinger JC, Davies AG, Grotewiel MS, Schuckit MA, Agrawal A, Kramer J, Nurnberger JI, Kendler KS, Webb BT, Miles MF. Multi-species data integration and gene ranking enrich significant results in an alcoholism genome-wide association study. BMC Genomics 2012; 13 Suppl 8:S16. [PMID: 23282140 PMCID: PMC3535715 DOI: 10.1186/1471-2164-13-s8-s16] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A variety of species and experimental designs have been used to study genetic influences on alcohol dependence, ethanol response, and related traits. Integration of these heterogeneous data can be used to produce a ranked target gene list for additional investigation. RESULTS In this study, we performed a unique multi-species evidence-based data integration using three microarray experiments in mice or humans that generated an initial alcohol dependence (AD) related genes list, human linkage and association results, and gene sets implicated in C. elegans and Drosophila. We then used permutation and false discovery rate (FDR) analyses on the genome-wide association studies (GWAS) dataset from the Collaborative Study on the Genetics of Alcoholism (COGA) to evaluate the ranking results and weighting matrices. We found one weighting score matrix could increase FDR based q-values for a list of 47 genes with a score greater than 2. Our follow up functional enrichment tests revealed these genes were primarily involved in brain responses to ethanol and neural adaptations occurring with alcoholism. CONCLUSIONS These results, along with our experimental validation of specific genes in mice, C. elegans and Drosophila, suggest that a cross-species evidence-based approach is useful to identify candidate genes contributing to alcoholism.
Collapse
Affiliation(s)
- Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Contet C. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain. CURRENT PSYCHOPHARMACOLOGY 2012; 1:301-314. [PMID: 24078902 PMCID: PMC3783024 DOI: 10.2174/2211556011201040301] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics.
Collapse
Affiliation(s)
- Candice Contet
- The Scripps Research Institute, Committee on the Neurobiology of Addictive Disorders, La Jolla, CA, USA
| |
Collapse
|
21
|
Ethanol-induced changes in the expression of proteins related to neurotransmission and metabolism in different regions of the rat brain. Pharmacol Biochem Behav 2011; 99:428-36. [PMID: 21397625 DOI: 10.1016/j.pbb.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 01/06/2023]
Abstract
Despite extensive description of the damaging effects of chronic alcohol exposure on brain structure, mechanistic explanations for the observed changes are just emerging. To investigate regional brain changes in protein expression levels following chronic ethanol treatment, one rat per sibling pair of male Wistar rats was exposed to intermittent (14 h/day) vaporized ethanol, the other to air for 26 weeks. At the end of 24 weeks of vapor exposure, the ethanol group had blood ethanol levels averaging 450 mg%, had not experienced a protracted (> 16 h) withdrawal from ethanol, and revealed only mild evidence of hepatic steatosis. Extracted brains were micro-dissected to isolate the prefrontal cortex (PFC), dorsal striatum (STR), corpus callosum genu (CCg), CC body (CCb), anterior vermis (AV), and anterior dorsal lateral cerebellum (ADLC) for protein analysis with two-dimensional gel electrophoresis. Expression levels for 54 protein spots were significantly different between the ethanol- and air-treated groups. Of these 54 proteins, tandem mass spectroscopy successfully identified 39 unique proteins, the levels of which were modified by ethanol treatment: 13 in the PFC, 7 in the STR, 2 in the CCg, 7 in the CCb, 7 in the AV, and 5 in the ADLC. The functions of the proteins altered by chronic ethanol exposure were predominantly associated with neurotransmitter systems in the PFC and cell metabolism in the STR. Stress response proteins were elevated only in the PFC, AV, and ADLC perhaps supporting a role for frontocerebellar circuitry disruption in alcoholism. Of the remaining proteins, some had functions associated with cytoskeletal physiology (e.g., in the CCb) and others with transcription/translation (e.g., in the ADLC). Considered collectively, all but 4 of the 39 proteins identified in the present study have been previously identified in ethanol gene- and/or protein-expression studies lending support for their role in ethanol-related brain alterations.
Collapse
|
22
|
Verdugo RA, Farber CR, Warden CH, Medrano JF. Serious limitations of the QTL/microarray approach for QTL gene discovery. BMC Biol 2010; 8:96. [PMID: 20624276 PMCID: PMC2919467 DOI: 10.1186/1741-7007-8-96] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/12/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed. RESULTS Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP). CONCLUSIONS The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.
Collapse
Affiliation(s)
- Ricardo A Verdugo
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Charles R Farber
- Departments of Medicine, Biochemistry and Molecular Genetics, and Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig H Warden
- Departments of Pediatrics and Neurobiology, Physiology and Behavior, University of California Davis. Davis, CA 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
| |
Collapse
|
23
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
24
|
Alam I, Carr LG, Liang T, Liu Y, Edenberg HJ, Econs MJ, Turner CH. Identification of genes influencing skeletal phenotypes in congenic P/NP rats. J Bone Miner Res 2010; 25:1314-25. [PMID: 20200994 PMCID: PMC3153136 DOI: 10.1002/jbmr.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/28/2009] [Accepted: 12/15/2010] [Indexed: 01/09/2023]
Abstract
We previously showed that alcohol-preferring (P) rats have higher bone density than alcohol-nonpreferring (NP) rats. Genetic mapping in P and NP rats identified a major quantitative trait locus (QTL) between 4q22 and 4q34 for alcohol preference. At the same location, several QTLs linked to bone density and structure were detected in Fischer 344 (F344) and Lewis (LEW) rats, suggesting that bone mass and strength genes might cosegregate with genes that regulate alcohol preference. The aim of this study was to identify the genes segregating for skeletal phenotypes in congenic P and NP rats. Transfer of the NP chromosome 4 QTL into the P background (P.NP) significantly decreased areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) at several skeletal sites, whereas transfer of the P chromosome 4 QTL into the NP background (NP.P) significantly increased bone mineral content (BMC) and aBMD in the same skeletal sites. Microarray analysis from the femurs using Affymetrix Rat Genome arrays revealed 53 genes that were differentially expressed among the rat strains with a false discovery rate (FDR) of less than 10%. Nine candidate genes were found to be strongly correlated (r(2) > 0.50) with bone mass at multiple skeletal sites. The top three candidate genes, neuropeptide Y (Npy), alpha synuclein (Snca), and sepiapterin reductase (Spr), were confirmed using real-time quantitative PCR (qPCR). Ingenuity pathway analysis revealed relationships among the candidate genes related to bone metabolism involving beta-estradiol, interferon-gamma, and a voltage-gated calcium channel. We identified several candidate genes, including some novel genes on chromosome 4 segregating for skeletal phenotypes in reciprocal congenic P and NP rats.
Collapse
Affiliation(s)
- Imranul Alam
- Departments of Biomedical Engineering, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Lucinda G Carr
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
- Pharmacology, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Tiebing Liang
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Yunlong Liu
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Howard J Edenberg
- Biochemistry and Molecular Biology, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Michael J Econs
- Medicine, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| | - Charles H Turner
- Departments of Biomedical Engineering, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
- Biomechanics and Biomaterials Research Center, Indiana University Purdue University Indianapolis (IUPUI)Indianapolis, IN, USA
| |
Collapse
|
25
|
|
26
|
Abstract
Alcohol intake at levels posing an acute heath risk is common amongst teenagers. Alcohol abuse is the second most common mental disorder worldwide. The incidence of smoking is decreasing in the Western world but increasing in developing countries and is the leading cause of preventable death worldwide. Considering the longstanding history of alcohol and tobacco consumption in human societies, it might be surprising that the molecular mechanisms underlying alcohol and smoking dependence are still incompletely understood. Effective treatments against the risk of relapse are lacking. Drugs of abuse exert their effect manipulating the dopaminergic mesocorticolimbic system. In this brain region, alcohol has many potential targets including membranes and several ion channels, while other drugs, for example nicotine, act via specific receptors or binding proteins. Repeated consumption of drugs of abuse mediates adaptive changes within this region, resulting in addiction. The high incidence of alcohol and nicotine co-abuse complicates analysis of the molecular basis of the disease. Gene expression profiling is a useful approach to explore novel drug targets in the brain. Several groups have utilised this technology to reveal drug-sensitive pathways in the mesocorticolimbic system of animal models and in human subjects. These studies are the focus of the present review.
Collapse
|
27
|
McBride WJ, Kimpel MW, Schultz JA, McClintick JN, Edenberg HJ, Bell RL. Changes in gene expression in regions of the extended amygdala of alcohol-preferring rats after binge-like alcohol drinking. Alcohol 2010; 44:171-83. [PMID: 20116196 DOI: 10.1016/j.alcohol.2009.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/13/2009] [Accepted: 12/14/2009] [Indexed: 01/05/2023]
Abstract
The objective of this study was to determine time-course changes in gene expression within two regions of the extended amygdala after binge-like alcohol drinking by alcohol-preferring (P) rats. Adult male P rats were given 1-h access to 15 and 30% ethanol three times daily for 8 weeks. Rats (n = 10/time point for ethanol and n = 6/time point for water) were killed by decapitation 1, 6, and 24 h after the last drinking episode. RNA was prepared from individual micropunch samples of the nucleus accumbens shell (ACB-shell) and central nucleus of the amygdala (CeA); analyses were conducted with Affymetrix Rat Genome 230.2 GeneChips. Ethanol intakes were 1.5-2 g/kg for each of the three sessions. There were no genes that were statistically different between the ethanol and water control groups at any individual time point. Therefore, an overall effect, comparing the water control and ethanol groups, was determined. In the ACB-shell and CeA, there were 276 and 402 probe sets for named genes, respectively, that differed between the two groups. There were 1.5-3.6-fold more genes with increased expression than with decreased expression in the ethanol-drinking group, with most differences between 1.1- and 1.2-fold. Among the differences between the ethanol and water control groups were several significant biological processes categories that were in common between the two regions (e.g., synaptic transmission, neurite development); however, within these categories, there were few genes in common between the two regions. Overall, the results indicate that binge-like alcohol drinking by P rats produces region-dependent changes in the expression of genes that could alter transcription, synaptic function, and neuronal plasticity in the ACB-shell and CeA; within each region, different mechanisms may underlie these alterations because there were few common ethanol-responsive genes between the ACB-shell and CeA.
Collapse
Affiliation(s)
- William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University-Purdue University at Indianapolis, Indianapolis, 46202-4887, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Liang T, Kimpel MW, McClintick JN, Skillman AR, McCall K, Edenberg HJ, Carr LG. Candidate genes for alcohol preference identified by expression profiling in alcohol-preferring and -nonpreferring reciprocal congenic rats. Genome Biol 2010; 11:R11. [PMID: 20128895 PMCID: PMC2872871 DOI: 10.1186/gb-2010-11-2-r11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats differ greatly in alcohol preference, in part due to a highly significant quantitative trait locus (QTL) on chromosome 4. Alcohol consumption scores of reciprocal chromosome 4 congenic strains NP.P and P.NP correlated with the introgressed interval. The goal of this study was to identify candidate genes that may influence alcohol consumption by comparing gene expression in five brain regions of alcohol-naïve inbred alcohol-preferring and P.NP congenic rats: amygdala, nucleus accumbens, hippocampus, caudate putamen, and frontal cortex. RESULTS Within the QTL region, 104 cis-regulated probe sets were differentially expressed in more than one region, and an additional 53 were differentially expressed in a single region. Fewer trans-regulated probe sets were detected, and most differed in only one region. Analysis of the average expression values across the 5 brain regions yielded 141 differentially expressed cis-regulated probe sets and 206 trans-regulated probe sets. Comparing the present results from inbred alcohol-preferring vs. congenic P.NP rats to earlier results from the reciprocal congenic NP.P vs. inbred alcohol-nonpreferring rats demonstrated that 74 cis-regulated probe sets were differentially expressed in the same direction and with a consistent magnitude of difference in at least one brain region. CONCLUSIONS Cis-regulated candidate genes for alcohol consumption that lie within the chromosome 4 QTL were identified and confirmed by consistent results in two independent experiments with reciprocal congenic rats. These genes are strong candidates for affecting alcohol preference in the inbred alcohol-preferring and inbred alcohol-nonpreferring rats.
Collapse
Affiliation(s)
- Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, IB424G, 975 West Walnut Street, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Psychiatric diseases are very debilitating and some of them highly prevalent (e.g., depression or anxiety). The rat remains one model of choice in this discipline to investigate the neural mechanisms underlying normal and pathological traits. Genomic tools are now applied to identify genes involved in psychiatric illnesses and also to provide new biomarkers for diagnostic and prognosis, new targets for treatment and more generally to better understand the functioning of the brain. In this report, we will review rat models, behavioral approaches used to model psychiatry-related traits and the major studies published in the field including genetic mapping of quantitative trait loci (QTL), transcriptomics, proteomics and transgenic models.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- INRA, UMR 1286 PsyNuGen, CNRS, UMR 5226, Université de Bordeaux 2, Bordeaux, France
| | | |
Collapse
|
30
|
Farris SP, Wolen AR, Miles MF. Using expression genetics to study the neurobiology of ethanol and alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:95-128. [PMID: 20813241 PMCID: PMC3427772 DOI: 10.1016/s0074-7742(10)91004-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
31
|
Spence JP, Liang T, Liu L, Johnson PL, Foroud T, Carr LG, Shekhar A. From QTL to candidate gene: a genetic approach to alcoholism research. ACTA ACUST UNITED AC 2009; 2:127-34. [PMID: 19630743 DOI: 10.2174/1874473710902020127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major focus of research in alcohol-related disorders is to identify the genes and pathways that modulate alcohol-seeking behavior. In light of this, animal models have been established to study various aspects of alcohol dependence. The selectively bred alcohol-preferring (P) and -nonpreferring (NP) lines were developed from Wistar rats to model high and low voluntary alcohol consumption, respectively. Using inbred P and NP strains, a strong QTL (LOD-9.2) for alcohol consumption was identified on rat chromosome 4. To search for candidate genes that underlie this chromosomal region, complementary molecular-based strategies were implemented to identify genetic targets that likely contribute to the linkage signal. In an attempt to validate these genetic targets, corroborative studies have been utilized including pharmacological studies, knock-out/transgenic models as well as human association studies. Thus far, three candidate genes, neuropeptide Y (Npy), alpha-synuclein (Snca), and corticotrophin-releasing factor receptor 2 (Crhr2), have been identified that may account for the linkage signal. With the recent advancements in bioinformatics and molecular biology, QTL analysis combined with molecular-based strategies provides a systematic approach to identify candidate genes that contribute to various aspects of addictive behavior.
Collapse
Affiliation(s)
- John P Spence
- Department of Psychiatry, Indiana University School of Medicine, Institute of Psychiatry, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Morphological correlates of emotional and cognitive behaviour: insights from studies on inbred and outbred rodent strains and their crosses. Behav Pharmacol 2008; 19:403-34. [PMID: 18690101 DOI: 10.1097/fbp.0b013e32830dc0de] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Every study in rodents is also a behavioural genetic study even if only a single strain is used. Outbred strains are genetically heterogeneous populations with a high intrastrain variation, whereas inbred strains are based on the multiplication of a unique individual. The aim of the present review is to summarize findings on brain regions involved in three major components of rodent behaviour, locomotion, anxiety-related behaviour and cognition, by paying particular attention to the genetic context, genetic models used and interstrain comparisons. Recent trends correlating gene expression in inbred strains with behavioural data in databases, morpho-behavioural-haplotype analyses and problems arising from large-scale multivariate analyses are discussed. Morpho-behavioural correlations in multiple strains are presented, including correlations with projection neurons, interneurons and fibre systems in the striatum, midbrain, amygdala, medial septum and hippocampus, by relating them to relevant transmitter systems. In addition, brain areas differentially activated in different strains are described (hippocampus, prefrontal cortex, nucleus accumbens, locus ceruleus). Direct interstrain comparisons indicate that strain differences in behavioural variables and neuronal markers are much more common than usually thought. The choice of the appropriate genetic model can therefore contribute to an interpretation of positive results in a wider context, and help to avoid misleading interpretations of negative results.
Collapse
|
33
|
Crabbe JC. Review. Neurogenetic studies of alcohol addiction. Philos Trans R Soc Lond B Biol Sci 2008; 363:3201-11. [PMID: 18640917 DOI: 10.1098/rstb.2008.0101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurogenetic studies of alcohol dependence have relied substantially on genetic animal models, particularly rodents. Studies of inbred strains, selectively bred lines and mutants bearing genes whose function has been targeted for over or under expression are reviewed. Studies focused on gene expression changes are the most recent contributors to this literature, and some genetic effects may work through epigenetic mechanisms. In a few instances, interesting parallels have been revealed between genetic risk in humans and studies in non-human animal models. Future approaches are likely to be increasingly complex.
Collapse
Affiliation(s)
- John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center R&D 12, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|