1
|
Berro LF, Rowlett JK, Platt DM. GABAergic compounds for the treatment of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:383-399. [PMID: 39523061 DOI: 10.1016/bs.irn.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Decades of research have implicated the gamma-aminobutyric acid (GABA)ergic system as one of the main mediators of the behavioral effects of alcohol. Of importance, the addiction-related effects of alcohol also have been shown to be mediated in part by GABAergic systems, raising the possibility that pharmacotherapies targeting GABAergic receptors may be promising candidates for the treatment of alcohol use disorder (AUD). Alcohol modulates the activity of GABAA and GABAB receptors, and studies show that compounds targeting some of those receptors may decrease the addiction-related behavioral effects of alcohol. Specifically, drugs that share similar pharmacological properties with alcohol, such as positive allosteric modulators (PAMs) of GABAA and GABAB receptors, have been proposed as substitution therapies for AUD. Available evidence also suggests that negative allosteric modulators (NAMs) of GABAergic receptors may be potential therapeutics for AUD, although this effect is selective for specific receptor subtypes. Therefore, this Chapter reviews the available evidence on the use of GABAergic compounds for the treatment of AUD. Several GABAA and GABAB ligands show promising results, with a particularly positive therapeutic profile demonstrated for α5GABAA receptor NAMs, α4/6δGABAA receptor modulators (both positive and negative, including neurosteroids), and GABAB receptor PAMs. As newer and better GABAergic compounds become available, future research should focus on understanding how these ligands can modulate different clinical symptoms of AUD, with potential new areas of research encompassing alcohol withdrawal syndrome and AUD-related insomnia.
Collapse
Affiliation(s)
- Laís F Berro
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States.
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
2
|
Allen DC, Ford MM, Grant KA. Cross-Species Translational Findings in the Discriminative Stimulus Effects of Ethanol. Curr Top Behav Neurosci 2019; 39:95-111. [PMID: 28341943 PMCID: PMC5612861 DOI: 10.1007/7854_2017_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The progress on understanding the pharmacological basis of ethanol's discriminative stimulus effects has been substantial, but appears to have plateaued in the past decade. Further, the cross-species translational efforts are clear in laboratory animals, but have been minimal in human subject studies. Research findings clearly demonstrate that ethanol produces a compound stimulus with primary activity through GABA and glutamate receptor systems, particularly ionotropic receptors, with additional contribution from serotonergic mechanisms. Further progress should capitalize on chemogenetic and optogenetic techniques in laboratory animals to identify the neural circuitry involved in mediating the discriminative stimulus effects of ethanol. These infrahuman studies can be guided by in vivo imaging of human brain circuitry mediating ethanol's subjective effects. Ultimately, identifying receptors systems, as well as where they are located within brain circuitry, will transform the use of drug discrimination procedures to help identify possible treatment or prevention strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Daicia C Allen
- Department of Behavioral Neurosciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Matthew M Ford
- Department of Behavioral Neurosciences, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Kathleen A Grant
- Department of Behavioral Neurosciences, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
3
|
Chandler CM, Overton JS, Rüedi-Bettschen D, Platt DM. GABA A Receptor Subtype Mechanisms and the Abuse-Related Effects of Ethanol: Genetic and Pharmacological Evidence. Handb Exp Pharmacol 2018; 248:3-27. [PMID: 29204713 DOI: 10.1007/164_2017_80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ethanol's reinforcing and subjective effects, as well as its ability to induce relapse, are powerful factors contributing to its widespread use and abuse. A significant mediator of these behavioral effects is the GABAA receptor system. GABAA receptors are the target for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, transmembrane chloride ion channels comprised of subunits from at least eight different families of distinct proteins. The contribution of different GABAA subunits to ethanol's diverse abuse-related effects is not clear and remains an area of research focus. This chapter details the clinical and preclinical findings supporting roles for different α, β, γ, and δ subunit-containing GABAA receptors in ethanol's reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The reinforcing properties of ethanol have been studied the most systematically, and convergent preclinical evidence suggests a key role for the α5 subunit in those effects. Regarding ethanol's subjective/discriminative stimulus effects, clinical and genetic findings support a primary role for the α2 subunit, whereas preclinical evidence implicates the α5 subunit. At present, too few studies investigating ethanol relapse exist to make any solid conclusions regarding the role of specific GABAA subunits in this abuse-related effect.
Collapse
Affiliation(s)
- Cassie M Chandler
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - John S Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
4
|
Ovarian hormones and the heterogeneous receptor mechanisms mediating the discriminative stimulus effects of ethanol in female rats. Behav Pharmacol 2013; 24:95-104. [PMID: 23399883 DOI: 10.1097/fbp.0b013e32835efc5f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Past studies have suggested that progesterone-derived ovarian hormones contribute to the discriminative stimulus effects of ethanol, particularly via progesterone metabolites that act at γ-aminobutyric acid type A (GABA(A)) receptors. It is unknown whether loss of ovarian hormones in women, for example, after menopause, may be associated with altered receptor mediation of the effects of ethanol. The current study measured the substitution of allopregnanolone, pregnanolone, pentobarbital, midazolam, dizocilpine, TFMPP, and RU 24969 in female sham and ovariectomized rats trained to discriminate 1.0 g/kg ethanol from water. The groups did not differ in the substitution of GABA(A)-positive modulators (barbiturates, benzodiazepines, neuroactive steroids) or the N-methyl-D-aspartate receptor antagonist dizocilpine. Similarly, blood-ethanol concentration did not differ between the groups, and plasma adrenocorticotropic hormone, progesterone, pregnenolone, and deoxycorticosterone were unchanged 30 min after administration of 1.0 g/kg ethanol or water. However, substitution of neuroactive steroids and RU 24969, a 5-hydroxytryptamine (5-HT)(1A/1B) receptor agonist, was lower than observed in previous studies of male rats, and TFMPP substitution was decreased in ovariectomized rats. Ovarian hormones appear to contribute to 5-HT receptor mediation of the discriminative stimulus effects of ethanol in rats.
Collapse
|
5
|
Helms CM, Rossi DJ, Grant KA. Neurosteroid influences on sensitivity to ethanol. Front Endocrinol (Lausanne) 2012; 3:10. [PMID: 22654852 PMCID: PMC3356014 DOI: 10.3389/fendo.2012.00010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/11/2012] [Indexed: 12/23/2022] Open
Abstract
This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including physiological states associated with activity of the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, and the effects of chronic exposure to ethanol, in addition to behavioral implications. To date, γ-aminobutyric acid (GABA(A)) receptor mechanisms are a major focus of the modulation of ethanol effects by neuroactive steroids. While NMDA receptor mechanisms are gaining prominence in the literature, these complex data would be best discussed separately. Accordingly, GABA(A) receptor mechanisms are emphasized in this review with brief mention of some NMDA receptor mechanisms to point out contrasting neuroactive steroid pharmacology. Overall, the data suggest that neurosteroids are virtually ubiquitous modulators of inhibitory neurotransmission. Neurosteroids appear to affect sensitivity to ethanol in specific brain regions and, consequently, specific behavioral tests, possibly related to the efficacy and potency of ethanol to potentiate the release of GABA and increase neurosteroid concentrations. Although direct interaction of ethanol and neuroactive steroids at common receptor binding sites has been suggested in some studies, this proposition is still controversial. It is currently difficult to assign a specific mechanism by which neuroactive steroids could modulate the effects of ethanol in particular behavioral tasks.
Collapse
Affiliation(s)
- Christa M. Helms
- Division of Neuroscience, Oregon National Primate Research CenterBeaverton, OR, USA
- *Correspondence: Christa M. Helms, Division of Neuroscience, Oregon National Primate Research Center, L-584, 505 North-West 185th Avenue, Beaverton, OR 97006, USA. e-mail:
| | - David J. Rossi
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research CenterBeaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
6
|
Abstract
Drug discrimination has been an important technique in behavioural pharmacology for at least 40 years. The characteristics of drug-produced discriminative stimuli are influenced by behavioural and pharmacological variables, including the doses used to establish discriminations. This review covers studies on the effects of varying the training dose of a drug in a search for general principles that are applicable across different drug classes and methodological approaches. With respect to quantitative changes, relationships between training dose and the rate of acquisition or magnitude of stimulus control were found for most drug classes. Acquisition accelerated with dose up to a point beyond which drug-induced impairments of performance had a deleterious impact. Sensitivity to the training drug as measured by ED(50) values typically increased when the training dose was reduced. Qualitative changes were more complex and appeared to fall into three categories: (a) changes in profiles of generalization between partial and full agonists; (b) reduced specificity of some discriminations at small training doses; and (c) changes in the relative salience of actions mediated through different neurotransmitter systems or from central and peripheral sites. Three-lever discrimination procedures incorporating 'drug versus drug' or 'dose versus dose' contingencies enabled detection of more subtle differences than the simple 'drug versus no drug' approach when applied to the opioid, hallucinogen and barbiturate classes of drugs. These conclusions have implications for the interpretation of data from studies that use either within-subject or between-subject designs for studying the discriminative stimulus effects of drugs.
Collapse
|
7
|
Helms CM, Grant KA. The effect of age on the discriminative stimulus effects of ethanol and its GABA(A) receptor mediation in cynomolgus monkeys. Psychopharmacology (Berl) 2011; 216:333-43. [PMID: 21340471 PMCID: PMC3134136 DOI: 10.1007/s00213-011-2219-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/05/2011] [Indexed: 02/07/2023]
Abstract
RATIONALE Excessive alcohol consumption is less common among aged compared to young adults, with aged adults showing greater sensitivity to many behavioral effects of ethanol. OBJECTIVES This study compared the discriminative stimulus effects of ethanol in young and middle-aged adult cynomolgus monkeys (Macaca fascicularis) and its γ-aminobutyric acid (GABA)(A) receptor mediation. METHODS Two male and two female monkeys trained to discriminate ethanol (1.0 g/kg, i.g.; 60-min pre-treatment interval) from water at 5-6 years of age (Grant et al. in Psychopharmacology 152:181-188, 2000) were re-trained in the current study more than a decade later (19.3 ± 1.0 years of age) for a within-subjects comparison. Also, four experimentally naïve middle-aged (mean ± SEM, 17.0 ± 1.5 years of age) female monkeys were trained to discriminate ethanol for between-subjects comparison with published data from young adult naïve monkeys. RESULTS Two of the naïve middle-aged monkeys attained criterion performance, with weak stimulus control and few discrimination tests, despite greater blood-ethanol concentration 60 min after 1.0 g/kg ethanol in middle-aged compared to young adult female monkeys (Green et al. in Alcohol Clin Exp Res 23:611-616, 1999). The efficacy of the GABA(A) receptor positive modulators pentobarbital, midazolam, allopregnanolone, pregnanolone, and androsterone to substitute for the discriminative stimulus effects of 1.0 g/kg ethanol was maintained from young adulthood to middle age. CONCLUSIONS The data suggest that 1.0 g/kg ethanol is a weak discriminative stimulus in naive middle-aged monkeys. Nevertheless, the GABA(A) receptor mechanisms mediating the discriminative stimulus effects of ethanol, when learned as a young adult, appear stable across one third of the primate lifespan.
Collapse
Affiliation(s)
- Christa M Helms
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-6448, USA.
| | | |
Collapse
|
8
|
Helms CM, Rogers LSM, Grant KA. Antagonism of the ethanol-like discriminative stimulus effects of ethanol, pentobarbital, and midazolam in cynomolgus monkeys reveals involvement of specific GABA(A) receptor subtypes. J Pharmacol Exp Ther 2009; 331:142-52. [PMID: 19641166 PMCID: PMC2766226 DOI: 10.1124/jpet.109.156810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/28/2009] [Indexed: 11/22/2022] Open
Abstract
The gamma-aminobutyric acid (GABA)(A) receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing alpha(4/6) and alpha(5) subunits and lower affinity for alpha(1), alpha(2), and alpha(3) subunits. Flumazenil is nonselective for GABA(A) receptors containing alpha(1), alpha(2), alpha(3), and alpha(5) subunits and has low affinity for alpha(4/6)-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003-0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30-10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABA(A) receptors with high affinity for Ro15-4513 (i.e., containing alpha(4/6) and alpha(5) subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol through GABA(A) receptor systems.
Collapse
Affiliation(s)
- Christa M Helms
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, 97006-6448, USA.
| | | | | |
Collapse
|
9
|
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009; 205:529-64. [PMID: 19455309 PMCID: PMC2814770 DOI: 10.1007/s00213-009-1562-z] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/30/2009] [Indexed: 12/12/2022]
Abstract
The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol's effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - David F. Werner
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | | | | | - Rebecca S. Helfand
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - A. Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|