1
|
Ortelli OA, Weiner JL. Evaluating the impact of concurrent sucrose availability on operant ethanol self-administration in male and female Long Evans rats. ADDICTION NEUROSCIENCE 2025; 14:100196. [PMID: 40161352 PMCID: PMC11951412 DOI: 10.1016/j.addicn.2025.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Investigating how environmental factors, such as the availability of non-ethanol alternative reinforcers, influences ethanol self-administration is critical for understanding the pathology of alcohol use disorder (AUD). Here we established the first operant choice paradigm that leverages the strengths of the sipper tube self-administration model to investigate how concurrent access to sucrose altered ethanol self-administration in male and female Long Evans rats. Choice behavior was examined using two distinct paradigms, including a novel adaptation of the response requirement paradigm. Under both a fixed-ratio or response requirement paradigm, we observed that concurrent availability of an alternative reinforcer significantly reduced appetitive and consummatory ethanol drinking-related behaviors. Furthermore, we assessed the sensitivity of the response requirement choice paradigm by administering the pharmacological stressor yohimbine and by altering the taste of the ethanol solution. Yohimbine administration non-selectively increased ethanol and sucrose intake, but not seeking, while taste adulteration decreased ethanol seeking and intake. These experiments demonstrate the utility of two concurrent choice paradigms that can more accurately capture AUD-like phenotypes, such as ethanol-directed choice in the face of alternative reinforcers. Future studies should investigate how models of vulnerability and dependence alter ethanol choice behavior under these paradigms.
Collapse
Affiliation(s)
- Olivia A. Ortelli
- Wake Forest University School of Medicine, Department of Translational Neuroscience, United States
| | - Jeffrey L. Weiner
- Wake Forest University School of Medicine, Department of Translational Neuroscience, United States
| |
Collapse
|
2
|
Baker EJ, Moore S, Gonzales SW, Grant KA. Long-term drinking stability in the open-access self-administration monkey model. Alcohol 2023; 113:41-48. [PMID: 37516372 PMCID: PMC10818025 DOI: 10.1016/j.alcohol.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
The Non-Human Primate (NHP) model for the study of Alcohol Use Disorders (AUD) as developed in our laboratories is critical to our understanding of the pathophysiology of voluntary, chronic, ethanol consumption. Previous work in this model established categories of ethanol consumption that parallel reported categories of human consumption across a spectrum spanning low drinking, binge drinking, heavy drinking, and very heavy drinking, albeit at generally higher daily intakes across categories than documented in people. Original categories assigned to ethanol consumption patterns were established using a limited cohort of rhesus macaques. This study revisits the validity of categorical drinking using an additional 28 monkeys. In addition to finding categorical representations consistent with the original 2014 report, our findings demonstrate that drinking categories remain stable across the observed 12 months of nearly consistent access to ethanol (22 h/day), termed "open access". Animals occupying the two ends of the spectrum, "low" and "very heavy" drinkers, exhibit the largest stability. The findings also indicate a slight escalatory drift over time, with very heavy drinking animals experiencing fatigue near the end of open access.
Collapse
Affiliation(s)
- Erich J Baker
- Department of Computer Science, Baylor University, Waco, TX, USA.
| | - Sharon Moore
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Steven W Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Swain Y, Muelken P, Skansberg A, Lanzdorf D, Haave Z, LeSage MG, Gewirtz JC, Harris AC. Higher anhedonia during withdrawal from initial opioid exposure is protective against subsequent opioid self-administration in rats. Psychopharmacology (Berl) 2020; 237:2279-2291. [PMID: 32388620 PMCID: PMC7354901 DOI: 10.1007/s00213-020-05532-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
RATIONALE Understanding factors contributing to individual differences in vulnerability to opioid addiction is essential for developing more effective preventions and treatments, yet few reliable behavioral predictors of subsequent opioid self-administration have been identified in rodents. Sensitivity to the acute effects of initial drug exposure predicts later addiction vulnerability in both humans and animals, but the relationship between sensitivity to withdrawal from initial drug exposure and later drug use vulnerability is unclear. OBJECTIVE The goal of the current study was to evaluate whether the degree of anhedonia experienced during withdrawal from early opioid exposure predicts subsequent vulnerability to opioid self-administration. METHODS Rats were first tested for withdrawal sensitivity following acute injections of morphine (i.e., "acute dependence"), measured as elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior) during naloxone-precipitated and spontaneous withdrawal. Rats were then tested for addiction-like behavior using various measures of i.v. morphine self-administration (MSA) including acquisition, demand, extinction, and reinstatement induced by morphine, stress, and/or drug-associated cues. RESULTS Greater naloxone-precipitated withdrawal across repeated morphine injections and greater peak spontaneous withdrawal severity following a single morphine injection were associated with lower addiction-like behavior on multiple MSA measures. Withdrawal-induced anhedonia predicted a wider range of MSA measures than did any individual measure of MSA itself. CONCLUSIONS Our data establish WIA as one of the first behavioral measures to predict individual differences in opioid SA in rodents. This model promises to be useful for furthering our understanding of behavioral and neurobiological mechanisms underlying vulnerability to opioid addiction.
Collapse
Affiliation(s)
- Yayi Swain
- Hennepin Healthcare Research Institute,,University of Minnesota Department of Psychology
| | | | - Annika Skansberg
- Hennepin Healthcare Research Institute,,University of Minnesota Department of Psychology
| | - Danielle Lanzdorf
- Hennepin Healthcare Research Institute,,University of Minnesota Department of Psychology
| | - Zachary Haave
- Hennepin Healthcare Research Institute,,University of Minnesota Department of Neuroscience
| | - Mark G. LeSage
- Hennepin Healthcare Research Institute,,University of Minnesota Department of Psychology,,University of Minnesota Department of Medicine
| | - Jonathan C. Gewirtz
- University of Minnesota Department of Psychology,,University of Minnesota Department of Neuroscience
| | - Andrew C. Harris
- Hennepin Healthcare Research Institute,,University of Minnesota Department of Psychology,,University of Minnesota Department of Medicine
| |
Collapse
|
4
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|
5
|
Sun W, Li X, Tang C, An L. Acute Low Alcohol Disrupts Hippocampus-Striatum Neural Correlate of Learning Strategy by Inhibition of PKA/CREB Pathway in Rats. Front Pharmacol 2018; 9:1439. [PMID: 30574089 PMCID: PMC6291496 DOI: 10.3389/fphar.2018.01439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
The hippocampus and striatum guide place-strategy and response-strategy learning, respectively, and they have dissociable roles in memory systems, which could compensate in case of temporary or permanent damage. Although acute alcohol (AA) treatment had been shown to have adverse effects on hippocampal function, whether it causes the functional compensation and the underlying mechanisms is unknown. In this study, rats treated with a low dose of AA avoided a hippocampus-dependent spatial strategy, instead preferring a striatum-dependent response strategy. Consistently, the learning-induced increase in hippocampal, but not striatal, pCREB was rendered less pronounced due to diminished activity of pPKA, but not pERK or pCaMKII. As rats approached the turn-decision area, Sp-cAMP, a PKA activator, was found to mitigate the inhibitory effect of AA on intra- and cross-structure synchronized neuronal oscillations, and rescue response-strategy bias and spatial learning deficits. Our study provides strong evidence of the critical link between neural couplings and strategy selection. Moreover, the PKA/CREB-signaling pathway is involved in the suppressive effect of AA on neural correlates of place-learning strategy. The novel important evidence provided here shows the functional couplings between the hippocampus and striatum in spatial learning processing and suggests possible avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Acupuncture-Moxibustion and Orthopedics, Guiyang University of Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Chronic social instability increases anxiety-like behavior and ethanol preference in male Long Evans rats. Physiol Behav 2017; 173:179-187. [DOI: 10.1016/j.physbeh.2017.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/28/2023]
|
8
|
Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2016; 1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
The orexin/hypocretin (ORX) system regulates motivation for natural rewards and drugs of abuse such as alcohol. ORX receptor antagonists, most commonly OX1R antagonists including SB-334867 (SB), decrease alcohol drinking, self-administration and reinstatement in both genetically-bred alcohol-preferring and outbred strains of rats. Importantly, levels of alcohol seeking and drinking in outbred rats are variable, as they are in humans. We have shown that OX1R antagonism selectively decreases homecage alcohol drinking in high-, but not low-alcohol-preferring rats. It is unknown, however, whether this effect is selective to homecage drinking or whether it also applies to alcohol seeking paradigms such as self-administration and reinstatement following extinction, in which motivation is high in the absence of alcohol. Here we trained Sprague Dawley rats to self-administer 20% ethanol paired with a light-tone cue on an FR3 regimen. Rats were then extinguished and subjected to cue-induced reinstatement. Rats were segregated into high- and low-ethanol-responding groups (HR and LR) based on self-administration levels. During self-administration and cue-induced reinstatement, rats were given SB or vehicle prior to ethanol seeking. In both conditions, OX1R antagonism decreased responding selectively in HR, but not LR rats. There were no non-specific effects of SB treatment on arousal or general behavior. These data indicate that ORX signaling at the OX1R receptor specifically regulates high levels of motivation for alcohol, even in the absence of direct alcohol reinforcement. This implicates the ORX system in the pathological motivation underlying alcohol abuse and alcoholism and demonstrates that the OX1R may be an important target for treating alcohol abuse.
Collapse
|
9
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Trigub MM, Bogdanova NG, Kolpakov AA, Bashkatova VG, Sudakov SK. Effect of peripheral opioid receptor agonists on depressive activity of ethanol. Bull Exp Biol Med 2014; 156:778-80. [PMID: 24824695 DOI: 10.1007/s10517-014-2448-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 12/28/2022]
Abstract
We studied the effect of peripheral μ- and κ-opioid receptor agonists (not crossing the bloodbrain barrier) on locomotor activity and metabolism in rats after acute administration of ethanol. Intraperitoneal injection of ethanol in a single dose of 2 g/kg had a strong depressive effect manifested in a decrease in horizontal locomotor activity and suppression of metabolism. μ-Opioid receptor agonist DAMGO and κ-opioid receptor agonist ICI 204,448 partly abolished the effect of ethanol on locomotor activity of rats. ICI 204,448 was most potent in this respect. In contrast to μ-opioid receptor agonist DAMGO, κ-opioid receptor agonist ICI 204,448 prevented metabolism suppression induced by ethanol. Our results indicate that ICI 204,448 significantly inhibits the depressive effect of ethanol. DAMGO showed only partial effectiveness under these experimental conditions.
Collapse
Affiliation(s)
- M M Trigub
- P. K. Anokhin Research Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Butler TR, Ariwodola OJ, Weiner JL. The impact of social isolation on HPA axis function, anxiety-like behaviors, and ethanol drinking. Front Integr Neurosci 2014; 7:102. [PMID: 24427122 PMCID: PMC3877772 DOI: 10.3389/fnint.2013.00102] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/14/2013] [Indexed: 01/27/2023] Open
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often observed in alcoholics and humans subjected to early life stress, and animal models of ethanol (EtOH) dependence. We examined HPA axis function in a rodent model of early life stress that engenders increases in behavioral and neurobiological risk factors of alcoholism. Long-Evans male rats were group housed (GH) or socially isolated (SI) for 6 weeks during adolescence. We examined the corticosterone (CORT) response to stress with and without dexamethasone (DEX) and anxiety-like behaviors. Following the DEX suppression test and behavioral assays, half of the cohort engaged in 6 weeks of EtOH drinking in a homecage, two-bottle choice intermittent access model. A subset of the cohort was not exposed to EtOH, but was used for electrophysiological measurement of glutamatergic synaptic plasticity in the basolateral amygdala (BLA). Correlational analyses examined relationships between measures of CORT, anxiety-like behaviors, and EtOH intake/preference. With DEX pre-treatment, SI rats failed to suppress CORT in response to an acute stress; GH rats showed a significant suppression. In SI rats, there was a significant negative correlation between baseline CORT and elevated plus maze open arm time, as well as significant positive correlations between baseline CORT and both EtOH intake and preference. No significant relationships between baseline CORT and behavioral measures were observed in GH rats. Glutamatergic plasticity in the BLA was similar in magnitude between GH and SI rats, and was not altered by exogenous application of CORT. These data suggest that HPA axis function is affected by SI, and this is related to antecedent anxiety-like behavior and may predispose for future EtOH self-administration. Relationships between HPA axis function, anxiety, and EtOH measures in SI rats further strengthens the utility of this paradigm in modeling vulnerability for affective disorders and alcoholism.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Olusegun J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
12
|
Butler TR, Chappell AM, Weiner JL. Effect of β3 adrenoceptor activation in the basolateral amygdala on ethanol seeking behaviors. Psychopharmacology (Berl) 2014; 231:293-303. [PMID: 23955701 PMCID: PMC3877711 DOI: 10.1007/s00213-013-3238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/31/2013] [Indexed: 01/15/2023]
Abstract
RATIONALE The interaction between ethanol (EtOH) and anxiety plays an integral role in the development and maintenance of alcoholism. Many medications in pre-clinical or clinical trials for the treatment of alcoholism share anxiolytic properties. However, these drugs typically have untoward side effects, such as sedation or impairment of motor function that may limit their clinical use. We have recently demonstrated that BRL 37344 (BRL), a selective β3-adrenoceptor (AR) agonist, enhances a discrete population of GABAergic synapses in the basolateral amygdala (BLA) that mediates feed-forward inhibition from lateral paracapsular (LPC) GABAergic interneurons onto BLA pyramidal cells. Behavioral studies revealed that intra-BLA infusion of BRL significantly reduced measures of unconditioned anxiety-like behavior without locomotor depressant effects. OBJECTIVES The present studies tested the effect of BRL (0.1, 0.5, or 1.0 μg/side) on EtOH self-administration using an intermittent access home cage two-bottle choice procedure and limited access operant responding for EtOH or sucrose. RESULTS Intra-BLA infusion of BRL did not reduce home cage, intermittent EtOH self-administration. However, using an operant procedure that permits the discrete assessment of appetitive (seeking) and consummatory measures of EtOH self-administration, BRL reduced measures of EtOH and sucrose seeking, but selectively reduced operant responding for EtOH during extinction probe trials. BRL had no effect on consummatory behaviors for EtOH or sucrose. CONCLUSIONS Together, these data suggest that intra-BLA infusion of BRL significantly reduces motivation to seek EtOH and provide initial evidence that β3-ARs and LPC GABAergic synapses may represent promising targets for the development of novel pharmacotherapies for the treatment of alcoholism.
Collapse
Affiliation(s)
- T R Butler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | | |
Collapse
|
13
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Chappell AM, Carter E, McCool BA, Weiner JL. Adolescent rearing conditions influence the relationship between initial anxiety-like behavior and ethanol drinking in male Long Evans rats. Alcohol Clin Exp Res 2012; 37 Suppl 1:E394-403. [PMID: 22924742 DOI: 10.1111/j.1530-0277.2012.01926.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/21/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Rodent studies have demonstrated that adolescent social isolation results in many behavioral perturbations, including increases in anxiety-like behaviors. Socially isolated (SI) rats have also been shown to self-administer greater amounts ethanol (EtOH) in some, but not all, studies. Here, we tested whether juvenile social isolation increases EtOH drinking using an intermittent procedure that engenders relatively high intake in normally reared animals. We also compared the behavioral phenotype of rats reared under social isolation or group-housed conditions with adult rats housed under conditions commonly used in EtOH-drinking studies. METHODS Male Long Evans rats were procured immediately postweaning and were group housed for 1 week. Subjects were then randomly divided into 2 groups: SI rats, housed individually for 6 weeks and group-housed (GH) rats (4/cage). A third group was procured as young adults and was housed individually upon arrival for 1 week (standard housing condition). Rats were then tested in a plus-maze and novelty assay, and then, all subjects were singly housed and EtOH drinking was assessed. RESULTS SI rats displayed increased anxiety-like behaviors on the plus-maze, a greater locomotor response to a novel environment, and increased EtOH intake, relative to GH rats. Age-matched standard housed (STD) rats exhibited an anxiety-like behavioral profile on the plus-maze that was similar to SI, and not GH rats, and also drank EtOH at levels comparable with SI subjects. In addition, anxiety-like behavior on the plus-maze correlated with intermittent EtOH intake in SI and GH rats. CONCLUSIONS These data further support the validity of the rodent juvenile social isolation model for studies directed at elucidating behavioral and neurobiological mechanisms linking anxiety and EtOH drinking. These findings further suggest that housing conditions commonly employed in rodent drinking studies may recapitulate the anxiety-like and EtOH-drinking phenotype engendered by a juvenile social isolation procedure.
Collapse
Affiliation(s)
- Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
15
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
16
|
Devineni AV, McClure KD, Guarnieri DJ, Corl AB, Wolf FW, Eddison M, Heberlein U. The genetic relationships between ethanol preference, acute ethanol sensitivity, and ethanol tolerance in Drosophila melanogaster. Fly (Austin) 2011; 5:191-9. [PMID: 21750412 DOI: 10.4161/fly.5.3.16987] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.
Collapse
Affiliation(s)
- Anita V Devineni
- University of California, San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Trim RS, Simmons AN, Tolentino NJ, Hall SA, Matthews SC, Robinson SK, Smith TL, Padula CB, Paulus MP, Tapert SF, Schuckit MA. Acute ethanol effects on brain activation in low- and high-level responders to alcohol. Alcohol Clin Exp Res 2010; 34:1162-70. [PMID: 20477775 DOI: 10.1111/j.1530-0277.2010.01193.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND A low level of response (LR) to alcohol is an important endophenotype associated with an increased risk of alcoholism. However, little is known about how neural functioning may differ between individuals with low and high LRs to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute alcohol consumption. METHODS A total of 30 matched high- and low-LR pairs (N = 60 healthy young adults) were recruited from the University of California, San Diego, and administered a structured diagnostic interview and laboratory alcohol challenge followed by two functional magnetic resonance imaging (fMRI) sessions under placebo and alcohol conditions, in randomized order. Task performance and blood oxygen level-dependent response contrast to high relative to low working memory load in an event-related visual working memory (VWM) task were examined across 120 fMRI sessions. RESULTS Both LR groups performed similarly on the VWM task across conditions. A significant LR group by condition interaction effect was observed in inferior frontal and cingulate regions, such that alcohol attenuated the LR group differences found under placebo (p < 0.05). The LR group by condition effect remained even after controlling for cerebral blood flow, age, and typical drinking quantity. CONCLUSIONS Alcohol had differential effects on brain activation for low- and high-LR individuals within frontal and cingulate regions. These findings represent an additional step in the search for physiological correlates of a low LR and identify brain regions that may be associated with the low LR response.
Collapse
Affiliation(s)
- Ryan S Trim
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arias C, Molina JC, Spear NE. Ethanol-mediated aversive learning as a function of locomotor activity in a novel environment in infant Sprague-Dawley rats. Pharmacol Biochem Behav 2009; 92:621-8. [PMID: 19281838 DOI: 10.1016/j.pbb.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/25/2009] [Accepted: 03/02/2009] [Indexed: 11/26/2022]
Abstract
Unlike adult heterogeneous rats, infant rats are sensitive to ethanol's locomotor stimulating effects. Susceptibility to this ethanol effect varies as a function of baseline locomotor activity levels. Infant rats with higher baseline activity levels are more sensitive to ethanol's stimulating effects than those with lower baseline activity levels. The present study was designed to analyze susceptibility to ethanol-induced motivational learning in subpopulations of infant heterogeneous rats that differ in baseline activity in a novel environment. On postnatal day 11 (PD 11) baseline locomotor activity was registered and infants were divided into high and low responders (HR, LR). In Experiment 1, pups were trained in a procedure of conditioned taste aversion employing ethanol (0.0, 0.5 or 2.5 g/kg) as unconditioned stimulus (US) and saccharin as conditioned stimulus. In Experiment 2 the same procedure was employed with LiCl (0.0, 0.25 or 0.5% of body weight of a 0.3 M LiCl solution) as US. HR were more resistant to the aversive effects of ethanol than LR while magnitude of LiCl-induced conditioned taste aversion was similar in HR and LR. These results suggest the possibility of early detection of subpopulations of rats with differential sensitivity to ethanol's effects.
Collapse
Affiliation(s)
- Carlos Arias
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, (INIMEC-CONICET), Córdoba, C.P 5000, Argentina.
| | | | | |
Collapse
|