1
|
Moya M, López-Valencia L, García-Bueno B, Orio L. Disinhibition-Like Behavior Correlates with Frontal Cortex Damage in an Animal Model of Chronic Alcohol Consumption and Thiamine Deficiency. Biomedicines 2022; 10:biomedicines10020260. [PMID: 35203470 PMCID: PMC8869694 DOI: 10.3390/biomedicines10020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Wernicke-Korsakoff syndrome (WKS) is induced by thiamine deficiency (TD) and mainly related to alcohol consumption. Frontal cortex dysfunction has been associated with impulsivity and disinhibition in WKS patients. The pathophysiology involves oxidative stress, excitotoxicity and inflammatory responses leading to neuronal death, but the relative contributions of each factor (alcohol and TD, either isolated or in interaction) to these phenomena are still poorly understood. A rat model was used by forced consumption of 20% (w/v) alcohol for 9 months (CA), TD hit (TD diet + pyrithiamine 0.25 mg/kg, i.p. daily injections the last 12 days of experimentation (TDD)), and both combined treatments (CA+TDD). Motor and cognitive performance and cortical damage were examined. CA caused hyperlocomotion as a possible sensitization of ethanol-induced excitatory effects and recognition memory deficits. In addition, CA+TDD animals showed a disinhibited-like behavior which appeared to be dependent on TDD. Additionally, combined treatment led to more pronounced alterations in nitrosative stress, lipid peroxidation, apoptosis and cell damage markers. Correlations between injury signals and disinhibition suggest that CA+TDD disrupts behaviors dependent on the frontal cortex. Our study sheds light on the potential disease-specific mechanisms, reinforcing the need for neuroprotective therapeutic approaches along with preventive treatments for the nutritional deficiency in WKS.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Leticia López-Valencia
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
| | - Borja García-Bueno
- Departament of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica IUIN-UCM, Avda. Complutense s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
2
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
3
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Mechanisms Responsible for the High Sensitivity of Neural Cells to Vitamin B1 Deficiency. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9620-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Duncan JW, Johnson S, Zhang X, Zheng B, Luo J, Ou XM, Stockmeier CA, Wang JM. Up-Regulation of PKR Signaling Pathway by Ethanol Displays an Age of Onset-Dependent Relationship. Alcohol Clin Exp Res 2016; 40:2320-2328. [PMID: 27647657 DOI: 10.1111/acer.13209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ethanol (EtOH) neurotoxicity can result in devastating effects on brain and behavior by disrupting homeostatic signaling cascades and inducing cell death. One such mechanism involves double-stranded RNA activated protein kinase (PKR), a primary regulator of protein translation and cell viability in the presence of a virus or other external stimuli. EtOH-mediated up-regulation of interferon-gamma (IFN-γ; the oxidative stress-inducible regulator of PKR), PKR, and its target, p53, are still being fully elucidated. METHODS Using Western blot analysis, immunofluorescence, and linear regression analyses, changes in the IFN-γ-PKR-p53 pathway following chronic EtOH treatment in the frontal cortex of rodents were examined. The role of PKR on cell viability was also assessed in EtOH-treated cells using PKR overexpression vector and PKR inhibitor (PKRI). RESULTS In rats chronically fed EtOH, PKR, phosphorylated PKR (p-PKR), IFN-γ, and p53 were significantly increased following chronic EtOH exposure. Linear regression revealed a significant correlation between IFN-γ and p-PKR protein levels, as well as p-PKR expression and age of EtOH exposure. Overexpression of PKR resulted in greater cell death, while use of PKRI enhanced cell viability in EtOH-treated cells. CONCLUSIONS Chronic EtOH exposure activates the IFN-γ-PKR-p53 pathway in the frontal cortex of rodents. p-PKR expression is greater in brains of rodents exposed to EtOH at earlier ages compared to later life, suggesting a mechanism by which young brains could be more susceptible to EtOH-related brain injury. PKR and p-PKR were also colocalized in neurons and astrocytes of rats. This study provides additional insight into biochemical mechanisms underlying alcohol use disorder related neuropathology and warrants further investigation of PKR as a potential pharmacotherapeutic target to combat EtOH-related neurotoxicity, loss of protein translation and brain injury.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Program in Neuroscience , University of Mississippi Medical Center, Jackson, Mississippi.,Department of Psychiatry and Human Behavior , University of Mississippi Medical Center, Jackson, Mississippi
| | - Shakevia Johnson
- Department of Psychiatry and Human Behavior , University of Mississippi Medical Center, Jackson, Mississippi
| | - Xiao Zhang
- Program in Neuroscience , University of Mississippi Medical Center, Jackson, Mississippi.,Department of Psychiatry and Human Behavior , University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky.,Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Xiao-Ming Ou
- Department of Psychiatry and Human Behavior , University of Mississippi Medical Center, Jackson, Mississippi
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior , University of Mississippi Medical Center, Jackson, Mississippi
| | - Jun Ming Wang
- Program in Neuroscience , University of Mississippi Medical Center, Jackson, Mississippi. .,Department of Psychiatry and Human Behavior , University of Mississippi Medical Center, Jackson, Mississippi. .,Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
6
|
Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol Neurobiol 2016; 54:5440-5448. [PMID: 27596507 DOI: 10.1007/s12035-016-0079-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.
Collapse
|
7
|
Johnson S, Duncan J, Hussain SA, Chen G, Luo J, Mclaurin C, May W, Rajkowska G, Ou XM, Stockmeier CA, Wang JM. The IFNγ-PKR pathway in the prefrontal cortex reactions to chronic excessive alcohol use. Alcohol Clin Exp Res 2015; 39:476-84. [PMID: 25704249 DOI: 10.1111/acer.12650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Brain cell death is a major pathological consequence of alcohol neurotoxicity. However, the molecular cascades in alcohol-induced brain tissue injury are unclear. METHODS Using Western blot and double immunofluorescence, we examined the expression of interferon (IFN)-induced protein kinase R (PKR), phosphorylated-PKR (p-PKR), and IFN gamma (IFNγ) in the prefrontal cortex (PFC) of postmortem brains from subjects with alcohol use disorders (AUD). RESULTS The protein levels of PKR, p-PKR, and IFNγ were significantly increased in subjects with AUD compared with control subjects without AUD, and a younger age of onset of AUD was significantly correlated with higher protein levels of p-PKR. In addition, elevated PKR- and p-PKR-IR were observed in both neurons and astrocytes in the PFC of subjects with AUD compared to subjects without AUD. CONCLUSIONS The activation of the IFNγ-PKR pathway in PFC of humans is associated with chronic excessive ethanol use with an age of onset dependent manner, and activation of this pathway may play a pivotal role in AUD-related brain tissue injury. This study provides insight into neurodegenerative key factors related to AUD and identifies potential targets for the treatment of alcohol-induced neurotoxicity.
Collapse
Affiliation(s)
- Shakevia Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 2015; 283:157-67. [PMID: 25620058 DOI: 10.1016/j.taap.2014.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1-CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress.
Collapse
|
9
|
Abstract
Acute alcohol intoxication and chronic alcohol dependence alter the neurologic control of posture and motor function. Ethanol delays the conduction of electric signals from the central nervous system to the muscles controlling posture and impairs the integration of sensory inputs required for maintaining vertical stance. Consequently, alcohol intoxication delays the ability to detect postural changes and enact the appropriate response. Common signs of acute alcohol intoxication include spinocerebellar and vestibulocerebellar ataxia, oculomotor changes, and increased reliance on visuospatial clues. Chronic alcoholism results in postural tremors and excessive sway during quiet stance that can persist even after sobriety is achieved. Underlying neurologic changes due to chronic alcoholism have been found to be associated with these characteristic postural changes and include decreased volume of the anterior superior vermis of the cerebellum, decreased connectivity within the corpus callosum, and overall cortical atrophy. Severity of motor impairments and other symptoms from alcoholism relate to a variety of factors, including duration of alcoholism, age, sex, and other health determinants and comorbidities. Imaging studies highlight the potential for partial recovery from neurologic and motor deficits caused by alcoholism. Emerging evidence on the motor and neurologic changes caused by alcohol dependence may allow for improved treatment and prevention of the morbidities associated with alcoholism.
Collapse
Affiliation(s)
| | - Jessica Rose
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Abstract
Although allergic side effects due to parenteral thiamine are well-documented, they are extremely rare when thiamine is used orally. We report a case of a 47-year-old woman who developed angioneurotic oedema secondary to oral ingestion of thiamine at a therapeutic dose. The incident occurred twice with a clear temporal relationship to the initiation on thiamine.
Collapse
Affiliation(s)
- Mugtaba Osman
- Department of Psychiatry, University College Dublin, Dublin, Ireland
| | - Patricia Casey
- Department of Adult Psychiatry, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. THE CEREBELLUM 2012; 11:145-54. [PMID: 20927663 DOI: 10.1007/s12311-010-0219-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.
Collapse
Affiliation(s)
- Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
12
|
Xu M, Chen G, Wang S, Liao M, Frank JA, Bower KA, Zhang Z, Shi X, Luo J. Double-stranded RNA-dependent protein kinase regulates the motility of breast cancer cells. PLoS One 2012; 7:e47721. [PMID: 23112838 PMCID: PMC3480402 DOI: 10.1371/journal.pone.0047721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/14/2012] [Indexed: 11/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.
Collapse
Affiliation(s)
- Mei Xu
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Gang Chen
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Siying Wang
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Pathophysiological Department, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mingjun Liao
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jacqueline A. Frank
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kimberly A. Bower
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
13
|
Spencer PS, Palmer VS. Interrelationships of undernutrition and neurotoxicity: food for thought and research attention. Neurotoxicology 2012; 33:605-16. [PMID: 22394483 PMCID: PMC3437940 DOI: 10.1016/j.neuro.2012.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 12/25/2022]
Abstract
The neurotoxic actions of chemical agents on humans and animals are usually studied with little consideration of the subject's nutritional status. States of protein-calorie, vitamin and/or mineral undernutrition are associated with a range of neurodevelopmental, neurological and psychiatric disorders, commonly with involvement of both the central and the peripheral nervous system. Undernutrition can modify risk for certain chemical-induced neurologic diseases, and in some cases undernutrition may be a prerequisite for neurotoxicity to surface. In addition, neurologic disease associated with undernutrition or neurotoxicity may show similarities in clinical and neuropathological expression, especially in the peripheral nervous system. The combined effects of undernutrition and chemical neurotoxicity are most relevant to people with low incomes who experience chronic hunger, parasitism and infectious disease, monotonous diets of plants with neurotoxic potential (notably cassava), environmental pollution from rapid industrial development, chronic alcohol abuse, or prolonged treatment with certain therapeutic drugs. Undernutrition alone or in combination with chemical exposure is also important in high-income societies in the setting of drug and alcohol abuse, old age, food faddism, post-bariatric surgery, and drug treatment for certain medical conditions, including cancer and tuberculosis. The nutritional demands of pregnancy and lactation increase the risk of fetal and infant undernutrition and chemical interactions therewith.
Collapse
Affiliation(s)
- Peter S Spencer
- Global Health Center, Center for Research on Occupational and Environmental Toxicology, and Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States.
| | | |
Collapse
|
14
|
Savage LM, Hall JM, Resende LS. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychol Rev 2012; 22:195-209. [PMID: 22528861 PMCID: PMC5113815 DOI: 10.1007/s11065-012-9194-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
15
|
Chen Y, Lin X, Liu Y, Xie D, Fang J, Le Y, Ke Z, Zhai Q, Wang H, Guo F, Wang F, Liu Y. Research advances at the Institute for Nutritional Sciences at Shanghai, China. Adv Nutr 2011; 2:428-39. [PMID: 22332084 PMCID: PMC3183593 DOI: 10.3945/an.111.000703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nutrition-related health issues have emerged as a major threat to public health since the rebirth of the economy in China starting in the 1980s. To meet this challenge, the Chinese Academy of Sciences established the Institute for Nutritional Sciences (INS) at Shanghai, China ≈ 8 y ago. The mission of the INS is to apply modern technologies and concepts in nutritional research to understand the molecular mechanism and provide means of intervention in the combat against nutrition-related diseases, including type 2 diabetes, metabolic syndrome, obesity, cardiovascular diseases, and many types of cancers. Through diligent and orchestrated efforts by INS scientists, graduate students, and research staff in the past few years, the INS has become the leading institution in China in the areas of basic nutritional research and metabolic regulation. Scientists at the INS have made important progress in many areas, including the characterization of genetic and nutritional properties of the Chinese population, metabolic control associated with nutrient sensing, molecular mechanisms underlying glucose and lipid metabolism, regulation of metabolism by adipokines and inflammatory pathways, disease intervention using functional foods or extracts of Chinese herbs, and many biological studies related to carcinogenesis. The INS will continue its efforts in understanding the optimal nutritional needs for Chinese people and the molecular causes associated with metabolic diseases, thus paving the way for effective and individualized intervention in the future. This review highlights the major research endeavors undertaken by INS scientists in recent years.
Collapse
Affiliation(s)
- Yan Chen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
García MA, Carrasco E, Aguilera M, Alvarez P, Rivas C, Campos JM, Prados JC, Calleja MA, Esteban M, Marchal JA, Aránega A. The chemotherapeutic drug 5-fluorouracil promotes PKR-mediated apoptosis in a p53-independent manner in colon and breast cancer cells. PLoS One 2011; 6:e23887. [PMID: 21887339 PMCID: PMC3161074 DOI: 10.1371/journal.pone.0023887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/29/2011] [Indexed: 01/14/2023] Open
Abstract
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR) as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNα treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner, inducing phosphorylation of the protein synthesis translation initiation factor eIF-2α and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNα combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.
Collapse
Affiliation(s)
- María Angel García
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Granada, Spain
| | - Esther Carrasco
- Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Granada, Spain
| | - Margarita Aguilera
- Unidad de Farmacogenética, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Pablo Alvarez
- Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Granada, Spain
| | - Carmen Rivas
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Joaquin María Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Jose Carlos Prados
- Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Granada, Spain
| | - Miguel Angel Calleja
- Unidad de Farmacogenética, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Juan Antonio Marchal
- Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Granada, Spain
| | - Antonia Aránega
- Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Granada, Spain
| |
Collapse
|
17
|
Geibprasert S, Gallucci M, Krings T. Alcohol-induced changes in the brain as assessed by MRI and CT. Eur Radiol 2009; 20:1492-501. [DOI: 10.1007/s00330-009-1668-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
|