1
|
Løseth G, Eikemo M, Leknes S. Opioid Regulation of Social Homeostasis: Connecting Loneliness to Addiction. Biol Psychiatry 2025; 97:971-981. [PMID: 39608698 DOI: 10.1016/j.biopsych.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Loneliness heightens the risk of substance use disorder, and a desire to escape this negative feeling motivates drug use. Opioid drugs in particular are believed to target neurobiological circuits involved in social bonding, increasing vulnerability to opioid addiction when social connectedness is lacking. In this narrative review, we consider how current understanding of μ opioid modulation of reward and threat processing across domains sheds light on the mechanisms that link loneliness and substance use. We discuss evidence for state- and context-dependent μ opioid modulation of social affect and behaviors, which appears to promote prioritization of high-value reward options also in the context of threat. Tying this literature to the model of social homeostasis, we argue for a role of μ opioids in regulating social homeostasis across species. Finally, we explore how disruption of social homeostasis in chronic opioid use contributes to continued drug use. We highlight how increasing patients' psychosocial resources and opportunities for social bonding can improve recovery from drug addiction. Throughout, we consider the translational robustness and generalizability of the nonhuman animal evidence in light of existing human research.
Collapse
Affiliation(s)
- Guro Løseth
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Løseth G, Trøstheim M, Leknes S. Endogenous mu-opioid modulation of social connection in humans: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:379. [PMID: 39289345 PMCID: PMC11408506 DOI: 10.1038/s41398-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Social bonding, essential for health and survival in all social species, depends on mu-opioid signalling in non-human mammals. A growing neuroimaging and psychopharmacology literature also implicates mu-opioids in human social connectedness. To determine the role of mu-opioids for social connectedness in healthy humans, we conducted a preregistered ( https://osf.io/x5wmq ) multilevel random-effects meta-analysis of randomised double-blind placebo-controlled opioid antagonist studies. We included data from 8 publications and 2 unpublished projects, totalling 17 outcomes (N = 455) sourced from a final literature search in Web of Science, Scopus, PubMed and EMBASE on October 12, 2023, and through community contributions. All studies used naltrexone (25-100 mg) to block the mu-opioid system and measured social connectedness by self-report. Opioid antagonism slightly reduced feelings of social connectedness (Hedges' g [95% CI) = -0.20] [-0.32, -0.07]. Results were highly consistent within and between studies (I2 = 23%). However, there was some indication of bias in favour of larger effects among smaller studies (Egger's test: B = -2.16, SE = 0.93, z = -2.33, p = 0.02), and publication bias analysis indicated that the effect of naltrexone might be overestimated. The results clearly demonstrate that intact mu-opioid signalling is not essential for experiencing social connectedness, as robust feelings of connectedness are evident even during full pharmacological mu-opioid blockade. Nevertheless, antagonism reduced measures of social connection, consistent with a modulatory role of mu-opioids for human social connectedness. The modest effect size relative to findings in non-human animals, could be related to differences in measurement (subjective human responses versus behavioural/motivation indices in animals), species specific neural mechanisms, or naltrexone effects on other opioid receptor subtypes. In sum, these results help explain how mu-opioid dysregulation and social disconnection can contribute to disability, and conversely-how social connection can buffer risk of ill health.
Collapse
Affiliation(s)
- Guro Løseth
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Martin Trøstheim
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Beck A, Ebrahimi C, Rosenthal A, Charlet K, Heinz A. The Dopamine System in Mediating Alcohol Effects in Humans. Curr Top Behav Neurosci 2023. [PMID: 36705911 DOI: 10.1007/7854_2022_415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-imaging studies show that the development and maintenance of alcohol use disorder (AUD) is determined by a complex interaction of different neurotransmitter systems and multiple psychological factors. In this context, the dopaminergic reinforcement system appears to be of fundamental importance. We focus on the excitatory and depressant effects of acute versus chronic alcohol intake and its impact on dopaminergic neurotransmission. Furthermore, we describe alterations in dopaminergic neurotransmission as associated with symptoms of alcohol dependence. We specifically focus on neuroadaptations to chronic alcohol consumption and their effect on central processing of alcohol-associated and reward-related stimuli. Altered reward processing, complex conditioning processes, impaired reinforcement learning, and increased salience attribution to alcohol-associated stimuli enable alcohol cues to drive alcohol seeking and consumption. Finally, we will discuss how the neurobiological and neurochemical mechanisms of alcohol-associated alterations in reward processing and learning can interact with stress, cognition, and emotion processing.
Collapse
Affiliation(s)
- Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Katrin Charlet
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Bach P, de Timary P, Gründer G, Cumming P. Molecular Imaging Studies of Alcohol Use Disorder. Curr Top Behav Neurosci 2023. [PMID: 36639552 DOI: 10.1007/7854_2022_414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alcohol use disorder (AUD) is a serious public health problem in many countries, bringing a gamut of health risks and impairments to individuals and a great burden to society. Despite the prevalence of a disease model of AUD, the current pharmacopeia does not present reliable treatments for AUD; approved treatments are confined to a narrow spectrum of medications engaging inhibitory γ-aminobutyric acid (GABA) neurotransmission and possibly excitatory N-methyl-D-aspartate (NMDA) receptors, and opioid receptor antagonists. Molecular imaging with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can open a window into the living brain and has provided diverse insights into the pathology of AUD. In this narrative review, we summarize the state of molecular imaging findings on the pharmacological action of ethanol and the neuropathological changes associated with AUD. Laboratory and preclinical imaging results highlight the interactions between ethanol and GABA A-type receptors (GABAAR), but the interpretation of such results is complicated by subtype specificity. An abundance of studies with the glucose metabolism tracer fluorodeoxyglucose (FDG) concur in showing cerebral hypometabolism after ethanol challenge, but there is relatively little data on long-term changes in AUD. Alcohol toxicity evokes neuroinflammation, which can be tracked using PET with ligands for the microglial marker translocator protein (TSPO). Several PET studies show reversible increases in TSPO binding in AUD individuals, and preclinical results suggest that opioid-antagonists can rescue from these inflammatory responses. There are numerous PET/SPECT studies showing changes in dopaminergic markers, generally consistent with an impairment in dopamine synthesis and release among AUD patients, as seen in a number of other addictions; this may reflect the composite of an underlying deficiency in reward mechanisms that predisposes to AUD, in conjunction with acquired alterations in dopamine signaling. There is little evidence for altered serotonin markers in AUD, but studies with opioid receptor ligands suggest a specific up-regulation of the μ-opioid receptor subtype. Considerable heterogeneity in drinking patterns, gender differences, and the variable contributions of genetics and pre-existing vulnerability traits present great challenges for charting the landscape of molecular imaging in AUD.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc and Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerhard Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, Samara, Russia
| |
Collapse
|
5
|
Zhao Y, Skandali N, Bethlehem RAI, Voon V. Mesial Prefrontal Cortex and Alcohol Misuse: Dissociating Cross-sectional and Longitudinal Relationships in UK Biobank. Biol Psychiatry 2022; 92:907-916. [PMID: 35589437 DOI: 10.1016/j.biopsych.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol misuse is a major global public health issue. The disorder is characterized by aberrant neural networks interacting with environment and genetics. Dissecting the neural substrates and functional networks that relate to longitudinal changes in alcohol use from those that relate to alcohol misuse cross-sectionally is important to elucidate therapeutic approaches. METHODS To assess how neuroimaging data, including T1, resting-state functional magnetic resonance imaging, and diffusion-weighted imaging, relate to alcohol misuse cross-sectionally and longitudinally in the UK Biobank, this study analyzed range of alcohol misuse in a population-based normative sample of 24,784 participants, ages 45 to 81 years old, in a cross-sectional analysis and a sample of 3070 participants in a longitudinal analysis 2 years later. RESULTS Cross-sectional analysis showed that alcohol use is associated with a reduction in dorsal anterior cingulate cortex and dorsomedial prefrontal cortex gray matter concentration and functional resting-state connectivity (nodal degree: t24,422 = -12.99, p < 1 × 10-17). Reduced dorsal anterior cingulate cortex/dorsomedial prefrontal cortex functional connections to the ventrolateral prefrontal cortex, amygdala, and striatum relate to greater alcohol use. In a longitudinal analysis, higher resting-state nodal degree (t3036 = -3.27, p = .0011) and T1 gray matter concentration in the ventromedial prefrontal cortex relate to reduced alcohol intake frequency 2 years later. Higher ventromedial prefrontal cortex and frontoparietal executive network functional connectivity is associated with lower subsequent drinking longitudinally. CONCLUSIONS Dorsal versus ventromedial prefrontal regions are differentially related to alcohol misuse cross-sectionally or longitudinally in a large UK Biobank normative dataset. Our study provides a comprehensive understanding of the neurobiological substrates of alcohol use as a state or prospectively, thereby providing potential targets for clinical treatment.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Valerie Voon
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
de Laat B, Nabulsi N, Huang Y, O'Malley SS, Morris ED, Krishnan-Sarin S. Differences in the association between kappa opioid receptors and pain among Black and White adults with alcohol use disorders. Alcohol Clin Exp Res 2022; 46:1348-1357. [PMID: 35633151 DOI: 10.1111/acer.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The relationship between alcohol and pain is complex. Associations between pain and alcohol use disorder (AUD) vary by race, but the underlying biological basis is not understood. We examined the association of the kappa opioid receptor (KOR) with responses to the cold-pressor test (CPT), before and after treatment with the opioid antagonist naltrexone, among individuals with AUD who self-identified as Black or White. METHODS Thirty-seven individuals (12 Black, 24 White, and 1 Multiracial) with AUD participated in two CPTs, separated by 1 week during which they received naltrexone 100 mg daily. During each CPT, pain reporting threshold (PRT), average pain increase rate (APIR), relative pain recovery (RPR), and alcohol craving were recorded. KOR availability was measured using [11 C]-LY2795050 positron emission tomography (PET) prior to treatment with naltrexone. RESULTS Black participants reported higher PRT and APIR than White participants during the CPT before, but not after, naltrexone treatment. Among Black participants, KOR availability was positively associated with PRT and APIR before, but not after naltrexone. Greater KOR availability was associated with faster RPR for White, but not Black, participants. The CPT induced more alcohol craving in Black than White participants, particularly in individuals with low KOR availability, an effect that was not attenuated by naltrexone. CONCLUSIONS KOR involvement and naltrexone effects on responses to the CPT were different between Black and White participants. These preliminary findings suggest that further exploration of the differences in the opioid system and pain among Black and White individuals with AUD and their relationship with naltrexone's effects is warranted.
Collapse
Affiliation(s)
- Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | | | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.,Department of Psychiatry, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
7
|
Lalovic B, Shireman L, Shen DD, Cherrier M. Model-Based Analysis of the Influence of Alcohol Use and Age on Pharmacokinetics-Pharmacodynamics of Oral Oxycodone in Middle-Age and Older Community Dwelling Adults. J Clin Pharmacol 2022; 62:1177-1190. [PMID: 35394079 DOI: 10.1002/jcph.2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Abstract
Little is known on how opioid responses vary by age and in the presence of alcohol consumption. This model-based pharmacokinetic-pharmacodynamic (PK-PD) analysis quantified the impact of age and alcohol use on pupillometry and cold pressor test (CPT) PD based on data from an open label study of immediate-release 10 mg oral oxycodone in middle-age and older adults (age 35-85) without severe functional limitations. PK and pupillometry assessments were obtained on 11 occasions over 8 hours. CPT was administered at 1.5, 5 and 8 hours post oxycodone dosing. The study consisted of 62 older adults (age 60+) and 66 middle-age adults (age 35-59), with 82% meeting the unhealthy drinking criteria. Oral oxycodone PK were well described using a one compartment model with a sequential zero to first order absorption process. Recent alcohol use measures were selected a priori. for the analysis. Inhibitory Emax and linear direct effect PD models described the respective pupillometry and CPT data using simultaneous PK-PD analysis in MONOLIX. This analysis demonstrated an influence of age on clearance and bodyweight on the distribution volume of oxycodone, alcohol consumption was not noted to alter oxycodone PK. Oxycodone pupillometry PD were influenced by the level of subject-reported alcohol consumption (AUDIT-C), alcohol use biomarker blood phosphatidylethanol, previous cannabis use, and age. Over the opioid exposure range of the study, none of the covariables including alcohol and age were noted to affect CPT PD. Additional clinical studies are needed to further probe the clinical consequences of opioid-alcohol-age interaction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bojan Lalovic
- Clinical Pharmacology Sciences Modeling and Simulation, Medicines Development Center, Eisai Inc., Woodcliff Lake, NJ, USA
| | - Laura Shireman
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Danny D Shen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Monique Cherrier
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
μ-opioid receptor availability is associated with sex drive in human males. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 22:281-290. [PMID: 34811707 PMCID: PMC8983533 DOI: 10.3758/s13415-021-00960-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/04/2022]
Abstract
The endogenous mu-opioid receptor (MOR) system modulates a multitude of social and reward-related functions, and exogenous opiates also influence sex drive in humans and animals. Sex drive shows substantial variation across humans, and it is possible that individual differences in MOR availability underlie interindividual of variation in human sex drive. We measured healthy male subjects’ (n = 52) brain’s MOR availability with positron emission tomography (PET) using an agonist radioligand, [11C]carfentanil, that has high affinity for MORs. Sex drive was measured using self-reports of engaging in sexual behaviour (sex with partner and masturbating). Bayesian hierarchical regression analysis revealed that sex drive was positively associated with MOR availability in cortical and subcortical areas, notably in caudate nucleus, hippocampus, and cingulate cortices. These results were replicated in full-volume GLM analysis. These widespread effects are in line with high spatial autocorrelation in MOR expression in human brain. Complementary voxel-based morphometry analysis (n = 108) of anatomical MR images provided limited evidence for positive association between sex drive and cortical density in the midcingulate cortex. We conclude that endogenous MOR tone is associated with individual differences in sex drive in human males.
Collapse
|
9
|
Loss of Corticostriatal Mu-Opioid Receptors in α-Synuclein Transgenic Mouse Brains. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010063. [PMID: 35054456 PMCID: PMC8781165 DOI: 10.3390/life12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Ultrastructural, neurochemical, and molecular alterations within the striatum are associated with the onset and progression of Parkinson’s disease (PD). In PD, the dopamine-containing neurons in the substantia nigra pars compacta (SNc) degenerate and reduce dopamine-containing innervations to the striatum. The loss of striatal dopamine is associated with enhanced corticostriatal glutamatergic plasticity at the early stages of PD. However, with disease progression, the glutamatergic corticostriatal white matter tracts (WMTs) also degenerate. We analyzed the levels of Mu opioid receptors (MORs) in the corticostriatal WMTs, as a function of α-Synuclein (α-Syn) toxicity in transgenic mouse brains. Our data show an age-dependent loss of MOR expression levels in the striatum and specifically, within the caudal striatal WMTs in α-Syn tg mouse brains. The loss of MOR expression is associated with degeneration of the myelinated axons that are localized within the corticostriatal WMTs. In brains affected with late stages of PD, we detect evidence confirming the degeneration of myelinated axons within the corticostriatal WMTs. We conclude that loss of corticostriatal MOR expression is associated with degeneration of corticostriatal WMT in α-Syn tg mice, modeling PD.
Collapse
|
10
|
Shokri-Kojori E, Naganawa M, Ramchandani VA, Wong DF, Wang GJ, Volkow ND. Brain opioid segments and striatal patterns of dopamine release induced by naloxone and morphine. Hum Brain Mapp 2021; 43:1419-1430. [PMID: 34873784 PMCID: PMC8837588 DOI: 10.1002/hbm.25733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Opioid receptors are expressed throughout the brain and play a major role in regulating striatal dopamine (DA) release. Clinical studies have shown that naloxone (NAL, a nonspecific opioid antagonist) in individuals with opioid use disorder and morphine (MRP, a nonspecific opioid agonist) in healthy controls, resulted in DA release in the dorsal and ventral striatum, respectively. It is not known whether the underlying patterns of striatal DA release are associated with the striatal distribution of opioid receptors. We leveraged previously published PET datasets (collected in independent cohorts) to study the brain‐wide distribution of opioid receptors and to compare striatal opioid receptor availability with striatal DA release patterns. We identified three major gray matter segments based on availability maps of DA and opioid receptors: striatum, and primary and secondary opioid segments with high and intermediate opioid receptor availability, respectively. Patterns of DA release induced by NAL and MRP were inversely associated and correlated with kappa (NAL: r(68) = −0.81, MRP: r(68) = 0.54), and mu (NAL: r(68) = −0.62, MRP: r(68) = 0.46) opioid receptor availability. Kappa opioid receptor availability accounted for a unique part of variance in NAL‐ and MRP‐DA release patterns (ΔR2 >0.14, p <.0001). In sum, distributions of opioid receptors distinguished major cortical and subcortical regions. Patterns of NAL‐ and MRP‐induced DA release had inverse associations with striatal opioid receptor availability. Our approach provides a pattern‐based characterization of drug‐induced DA targets and is relevant for modeling the role of opioid receptors in modulating striatal DA release.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mika Naganawa
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Dean F Wong
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Cherrier MM, Shen DD, Shireman L, Saxon AJ, Simpson T, Men A, Kooner P, Terman GW. Elevated customary alcohol consumption attenuates opioid effects. Pharmacol Biochem Behav 2021; 211:173295. [PMID: 34742948 DOI: 10.1016/j.pbb.2021.173295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/11/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Regular alcohol consumption is on the rise among older adults and has the potential of altering the subjective experience of pain and response to pain medications. This study examined the cognitive, analgesic and side effect response to oxycodone in middle age and older adults with elevated levels of customary alcohol consumption in a human laboratory setting. METHODS After refraining from alcohol for one day, eligible participants underwent baseline assessment cognition and side effects by means of questionnaires that were repeated at three time points (90 min, 5 and 8 h) following administration of a 10 mg oral dose of oxycodone. Response to pain stimulus (Cold Pressor Test (CPT)), pupil size, and plasma oxycodone were also measured. RESULTS One hundred twenty-eight adults (age 35-85) completed the study day. Compared to those with lower customary alcohol consumption, participants with elevated alcohol consumption showed attenuated opioid-induced pupil constriction and cognitive decline on objective measures of working memory, sustained attention, inhibitory control, coordination on a simulated driving task, and subjective dysphoric effects with enhanced subjective euphoric effects. Oxycodone pharmacokinetics, pain tolerance to CPT, and Berg balance were impacted comparably between alcohol consumption groups. Women endorsed greater negative drug effects, whereas men endorsed positive drug effects. CONCLUSION Independent of subject's age, elevated customary alcohol consumption attenuates opioid central effects (i.e., pupil miosis, impaired cognition) and gender influences subjective drug effects. Clinicians should consider alcohol consumption and gender when prescribing opioid medications.
Collapse
Affiliation(s)
- Monique M Cherrier
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98195, United States of America.
| | - Danny D Shen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States of America
| | - Laura Shireman
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States of America
| | - Andrew J Saxon
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98195, United States of America; Center of Excellence in Substance Addiction Treatment and Education VA Puget Sound Health Care System, Seattle, WA 98108, United States of America
| | - Tracy Simpson
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98195, United States of America; Center of Excellence in Substance Addiction Treatment and Education VA Puget Sound Health Care System, Seattle, WA 98108, United States of America
| | - Alex Men
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States of America
| | - Preetma Kooner
- Department of Anesthesiology and Pain Medicine, School of Medicine; University of Washington, Seattle, WA 98195, United States of America
| | - Gregory W Terman
- Department of Anesthesiology and Pain Medicine, School of Medicine; University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
12
|
Nutt D, Hayes A, Fonville L, Zafar R, Palmer EO, Paterson L, Lingford-Hughes A. Alcohol and the Brain. Nutrients 2021; 13:3938. [PMID: 34836193 PMCID: PMC8625009 DOI: 10.3390/nu13113938] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol works on the brain to produce its desired effects, e.g., sociability and intoxication, and hence the brain is an important organ for exploring subsequent harms. These come in many different forms such as the consequences of damage during intoxication, e.g., from falls and fights, damage from withdrawal, damage from the toxicity of alcohol and its metabolites and altered brain structure and function with implications for behavioral processes such as craving and addiction. On top of that are peripheral factors that compound brain damage such as poor diet, vitamin deficiencies leading to Wernicke-Korsakoff syndrome. Prenatal alcohol exposure can also have a profound impact on brain development and lead to irremediable changes of fetal alcohol syndrome. This chapter briefly reviews aspects of these with a particular focus on recent brain imaging results. Cardiovascular effects of alcohol that lead to brain pathology are not covered as they are dealt with elsewhere in the volume.
Collapse
Affiliation(s)
- David Nutt
- Neuropsychopharmacology Unit, Division of Psychiatry, Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London W12 ONN, UK; (A.H.); (L.F.); (R.Z.); (E.O.C.P.); (L.P.); (A.L.-H.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Giacomini JL, Geiduschek E, Selleck RA, Sadeghian K, Baldo BA. Dissociable control of μ-opioid-driven hyperphagia vs. food impulsivity across subregions of medial prefrontal, orbitofrontal, and insular cortex. Neuropsychopharmacology 2021; 46:1981-1989. [PMID: 34226656 PMCID: PMC8429588 DOI: 10.1038/s41386-021-01068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats. The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL), medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake) interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long, uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL) task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs. consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs in modulating inhibitory control.
Collapse
Affiliation(s)
- Juliana L. Giacomini
- grid.14003.360000 0001 2167 3675Graduate Program in Cellular and Molecular Biology, Physiology Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Emma Geiduschek
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan A. Selleck
- grid.252000.50000 0001 0728 549XDepartment of Psychological Science, Albion College, Albion, MI USA
| | - Ken Sadeghian
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brian A. Baldo
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
14
|
Abstract
After participating in this activity, learners should be better able to:• Identify the effects of dysregulated opioid signalling in depression• Evaluate the use of opioid compounds and ketamine in patients with depression ABSTRACT: Major depressive disorder (MDD) remains one of the leading causes of disability and functional impairment worldwide. Current antidepressant therapeutics require weeks to months of treatment prior to the onset of clinical efficacy on depressed mood but remain ineffective in treating suicidal ideation and cognitive impairment. Moreover, 30%-40% of individuals fail to respond to currently available antidepressant medications. MDD is a heterogeneous disorder with an unknown etiology; novel strategies must be developed to treat MDD more effectively. Emerging evidence suggests that targeting one or more of the four opioid receptors-mu (MOR), kappa (KOR), delta (DOR), and the nociceptin/orphanin FQ receptor (NOP)-may yield effective therapeutics for stress-related psychiatric disorders. Furthermore, the effects of the rapidly acting antidepressant ketamine may involve opioid receptors. This review highlights dysregulated opioid signaling in depression, evaluates clinical trials with opioid compounds, and considers the role of opioid mechanisms in rapidly acting antidepressants.
Collapse
|
15
|
Oswald LM, Dunn KE, Seminowicz DA, Storr CL. Early Life Stress and Risks for Opioid Misuse: Review of Data Supporting Neurobiological Underpinnings. J Pers Med 2021; 11:315. [PMID: 33921642 PMCID: PMC8072718 DOI: 10.3390/jpm11040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
A robust body of research has shown that traumatic experiences occurring during critical developmental periods of childhood when neuronal plasticity is high increase risks for a spectrum of physical and mental health problems in adulthood, including substance use disorders. However, until recently, relatively few studies had specifically examined the relationships between early life stress (ELS) and opioid use disorder (OUD). Associations with opioid use initiation, injection drug use, overdose, and poor treatment outcome have now been demonstrated. In rodents, ELS has also been shown to increase the euphoric and decrease antinociceptive effects of opioids, but little is known about these processes in humans or about the neurobiological mechanisms that may underlie these relationships. This review aims to establish a theoretical model that highlights the mechanisms by which ELS may alter opioid sensitivity, thereby contributing to future risks for OUD. Alterations induced by ELS in mesocorticolimbic brain circuits, and endogenous opioid and dopamine neurotransmitter systems are described. The limited but provocative evidence linking these alterations with opioid sensitivity and risks for OUD is presented. Overall, the findings suggest that better understanding of these mechanisms holds promise for reducing vulnerability, improving prevention strategies, and prescribing guidelines for high-risk individuals.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - Kelly E. Dunn
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21230, USA;
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Carla L. Storr
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| |
Collapse
|
16
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
17
|
Herlinger K, Lingford-Hughes A. Addressing unmet needs in opiate dependence: supporting detoxification and advances in relapse prevention. BJPSYCH ADVANCES 2021. [DOI: 10.1192/bja.2020.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
Despite record-breaking numbers of opiate related deaths in the UK in 2019, pharmacological management of opiate dependence has evolved little since the advent of methadone in 1965. Along with harm minimisation and psychosocial interventions, the mainstay of pharmacological treatment remains opioid substitution therapy (OST) using methadone or buprenorphine, with many patients receiving OST for many years. Even with these treatments, opiate users continue to face mortality risks 12 times higher than the general population, and emerging evidence suggests that individuals who remain on long-term OST present with a range of physical and cognitive impairments. Therefore, with a growing ageing opiate dependent population who would benefit from detoxification from OST, this article provides an overview of the current state of opiate dependence in clinical practice, explores the reasons why availability and acceptability of detoxification pathways are declining, and discusses emerging pharmacological therapies that could provide benefit in relapse prevention.
Collapse
|
18
|
Cortez I, Rodgers SP, Kosten TA, Leasure JL. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast 2020; 6:5-25. [PMID: 33680843 PMCID: PMC7902983 DOI: 10.3233/bpl-190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
19
|
Zhang Y, Collins D, Butelman ER, Blendy JA, Kreek MJ. Relapse-like behavior in a mouse model of the OPRM1 (mu-opioid receptor) A118G polymorphism: Examination with intravenous oxycodone self-administration. Neuropharmacology 2020; 181:108351. [PMID: 33031806 DOI: 10.1016/j.neuropharm.2020.108351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
The widely abused prescription opioid oxycodone is a mu-opioid receptor (MOP-r) agonist and addiction to such opioids is a relapsing disorder. The human MOP-r gene (OPRM1) has an important functional single nucleotide polymorphism (SNP), A118G, which affects risk of severe opioid use disorders. A112G (G/G) knock-in mice are models of human A118G carriers. We examined oxycodone self-administration (SA) in male and female G/G versus wild type (A/A) mice in SA sessions and in relapse-like behavior. Adult male and female G/G and A/A mice self-administered oxycodone (0.25 mg/kg/infusion, FR1) for 10 consecutive days. Following 10-day home cage drug free withdrawal, the mice were re-exposed to oxycodone SA for a further 10 days. MOP-r receptor mRNA in various brain regions were examined immediately after the last re-exposure session. We found that G/G mice had greater oxycodone SA than A/A mice in the initial and in re-exposure sessions. Mice of both genotypes had greater oxycodone intake during the re-exposure period than during the initial exposure. We also detected differences in MOP-r gene expression due to genotype, sex and oxycodone SA history in the dorsal striatum, hippocampus, and prefrontal cortex. These studies may improve our understanding of MOP-r-agonist self-exposure and relapse in human carriers of the A118G SNP.
Collapse
Affiliation(s)
- Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, NY, USA.
| | - Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, NY, USA
| | - Eduardo R Butelman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, NY, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, NY, USA
| |
Collapse
|
20
|
Turton S, Myers JF, Mick I, Colasanti A, Venkataraman A, Durant C, Waldman A, Brailsford A, Parkin MC, Dawe G, Rabiner EA, Gunn RN, Lightman SL, Nutt DJ, Lingford-Hughes A. Blunted endogenous opioid release following an oral dexamphetamine challenge in abstinent alcohol-dependent individuals. Mol Psychiatry 2020; 25:1749-1758. [PMID: 29942043 PMCID: PMC6169731 DOI: 10.1038/s41380-018-0107-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023]
Abstract
Addiction has been proposed as a 'reward deficient' state, which is compensated for with substance use. There is growing evidence of dysregulation in the opioid system, which plays a key role in reward, underpinning addiction. Low levels of endogenous opioids are implicated in vulnerability for developing alcohol dependence (AD) and high mu-opioid receptor (MOR) availability in early abstinence is associated with greater craving. This high MOR availability is proposed to be the target of opioid antagonist medication to prevent relapse. However, changes in endogenous opioid tone in AD are poorly characterised and are important to understand as opioid antagonists do not help everyone with AD. We used [11C]carfentanil, a selective MOR agonist positron emission tomography (PET) radioligand, to investigate endogenous opioid tone in AD for the first time. We recruited 13 abstinent male AD and 15 control participants who underwent two [11C]carfentanil PET scans, one before and one 3 h following a 0.5 mg/kg oral dose of dexamphetamine to measure baseline MOR availability and endogenous opioid release. We found significantly blunted dexamphetamine-induced opioid release in 5 out of 10 regions-of-interest including insula, frontal lobe and putamen in AD compared with controls, but no significantly higher MOR availability AD participants compared with HC in any region. This study is comparable to our previous results of blunted dexamphetamine-induced opioid release in gambling disorder, suggesting that this dysregulation in opioid tone is common to both behavioural and substance addictions.
Collapse
Affiliation(s)
- Samuel Turton
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - James Fm Myers
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Inge Mick
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
- Institute for Clinical Teratology and Drug Risk Assessment in Pregnancy, Charité Universitätsmedizin, Berlin, Germany
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashwin Venkataraman
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Claire Durant
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Adam Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alan Brailsford
- Analytical and Environmental Sciences, King's College London, London, UK
| | - Mark C Parkin
- Analytical and Environmental Sciences, King's College London, London, UK
| | - Gemma Dawe
- Department of Neuroradiology, Imperial College Healthcare NHS Trust, London, UK
| | - Eugenii A Rabiner
- Imanova Limited, London, UK
- Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Roger N Gunn
- Imanova Limited, London, UK
- Centre for Restorative Neuroscience, Division of Brain Sciences, Imperial College London, London, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, University of Bristol, Bristol, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK.
| |
Collapse
|
21
|
Kantonen T, Karjalainen T, Isojärvi J, Nuutila P, Tuisku J, Rinne J, Hietala J, Kaasinen V, Kalliokoski K, Scheinin H, Hirvonen J, Vehtari A, Nummenmaa L. Interindividual variability and lateralization of μ-opioid receptors in the human brain. Neuroimage 2020; 217:116922. [PMID: 32407992 DOI: 10.1016/j.neuroimage.2020.116922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in the brain's μ-opioid receptor (MOR) system have been associated with several neuropsychiatric disorders. Central MOR availability also varies considerably in healthy individuals. Multiple epidemiological factors have been proposed to influence the MOR system, but due to small sample sizes the magnitude of their influence remains inconclusive. We compiled [11C]carfentanil positron emission tomography scans from 204 individuals with no neurologic or psychiatric disorders, and estimated the effects of sex, age, body mass index (BMI) and smoking on [11C]carfentanil binding potential using between-subject regression analysis. We also examined hemispheric differences in MOR availability. Older age was associated with increase in MOR availability in frontotemporal areas but decrease in amygdala, thalamus, and nucleus accumbens. The age-dependent increase was stronger in males. MOR availability was globally lowered in smokers but independent of BMI. Finally, MOR availability was higher in the right versus the left hemisphere. The presently observed variation in MOR availability may explain why some individuals are prone to develop MOR-linked pathological states, such as chronic pain or psychiatric disorders. Lateralized MOR system may reflect hemispheric work specialization in central emotion and pain processes.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Finland; Clinical Neurosciences, University of Turku and Turku University Hospital, Finland.
| | - Tomi Karjalainen
- Turku PET Centre, University of Turku, Finland; Turku PET Centre, Turku University Hospital, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Finland; Department of Endocrinology, Turku University Hospital, Finland
| | | | - Juha Rinne
- Turku PET Centre, University of Turku, Finland; Clinical Neurosciences, University of Turku and Turku University Hospital, Finland
| | - Jarmo Hietala
- Turku PET Centre, University of Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Valtteri Kaasinen
- Turku PET Centre, University of Turku, Finland; Clinical Neurosciences, University of Turku and Turku University Hospital, Finland
| | | | | | | | - Aki Vehtari
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Finland; Department of Psychology, University of Turku, Finland
| |
Collapse
|
22
|
Verplaetse TL, Cosgrove KP, Tanabe J, McKee SA. Sex/gender differences in brain function and structure in alcohol use: A narrative review of neuroimaging findings over the last 10 years. J Neurosci Res 2020; 99:309-323. [PMID: 32333417 DOI: 10.1002/jnr.24625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
Over the last 10 years, rates of alcohol use disorder (AUD) have increased in women by 84% relative to a 35% increase in men. Rates of alcohol use and high-risk drinking have also increased in women by 16% and 58% relative to a 7% and 16% increase in men, respectively, over the last decade. This robust increase in drinking among women highlights the critical need to identify the underlying neural mechanisms that may contribute to problematic alcohol consumption across sex/gender (SG), especially given that many neuroimaging studies are underpowered to detect main or interactive effects of SG on imaging outcomes. This narrative review aims to explore the recent neuroimaging literature on SG differences in brain function and structure as it pertains to alcohol across positron emission tomography, magnetic resonance imaging, and functional magnetic resonance imaging modalities in humans. Additional work using magnetic resonance spectroscopy, diffusion tensor imaging, and event-related potentials to examine SG differences in AUD will be covered. Overall, current research on the neuroimaging of AUD, alcohol consumption, or risk of AUD is limited, and findings are mixed regarding the effect of SG on neurochemical, structural, and functional mechanisms associated with AUD. We address SG disparities in the neuroimaging of AUD and propose a call to action to include women in brain imaging research. Future studies are crucial to our understanding of the neurobiological underpinnings of AUD across neural systems and the vulnerability for AUD among women and men.
Collapse
Affiliation(s)
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale PET Center, New Haven, CT, USA
| | - Jody Tanabe
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Voon V, Grodin E, Mandali A, Morris L, Doñamayor N, Weidacker K, Kwako L, Goldman D, Koob GF, Momenan R. Addictions NeuroImaging Assessment (ANIA): Towards an integrative framework for alcohol use disorder. Neurosci Biobehav Rev 2020; 113:492-506. [PMID: 32298710 DOI: 10.1016/j.neubiorev.2020.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
Alcohol misuse and addiction are major international public health issues. Addiction can be characterized as a disorder of aberrant neurocircuitry interacting with environmental, genetic and social factors. Neuroimaging in alcohol misuse can thus provide a critical window into underlying neural mechanisms, highlighting possible treatment targets and acting as clinical biomarkers for predicting risk and treatment outcomes. This neuroimaging review on alcohol misuse in humans follows the Addictions Neuroclinical Assessment (ANA) that proposes incorporating three functional neuroscience domains integral to the neurocircuitry of addiction: incentive salience and habits, negative emotional states, and executive function within the context of the addiction cycle. Here we review and integrate multiple imaging modalities focusing on underlying cognitive processes such as reward anticipation, negative emotionality, cue reactivity, impulsivity, compulsivity and executive function. We highlight limitations in the literature and propose a model forward in the use of neuroimaging as a tool to understanding underlying mechanisms and potential clinical applicability for phenotyping of heterogeneity and predicting risk and treatment outcomes.
Collapse
Affiliation(s)
- Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Behavioural and Clinical Neurosciences Institute, Cambridge, UK; Cambridgeshire and Peterborough NHS Trust, Cambridge, UK.
| | - Erica Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - Alekhya Mandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Laurel Morris
- Behavioural and Clinical Neurosciences Institute, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Nuria Doñamayor
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Laura Kwako
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, UK
| |
Collapse
|
24
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
25
|
A Survey of Molecular Imaging of Opioid Receptors. Molecules 2019; 24:molecules24224190. [PMID: 31752279 PMCID: PMC6891617 DOI: 10.3390/molecules24224190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of endogenous peptide ligands for morphine binding sites occurred in parallel with the identification of three subclasses of opioid receptor (OR), traditionally designated as μ, δ, and κ, along with the more recently defined opioid-receptor-like (ORL1) receptor. Early efforts in opioid receptor radiochemistry focused on the structure of the prototype agonist ligand, morphine, although N-[methyl-11C]morphine, -codeine and -heroin did not show significant binding in vivo. [11C]Diprenorphine ([11C]DPN), an orvinol type, non-selective OR antagonist ligand, was among the first successful PET tracers for molecular brain imaging, but has been largely supplanted in research studies by the μ-preferring agonist [11C]carfentanil ([11C]Caf). These two tracers have the property of being displaceable by endogenous opioid peptides in living brain, thus potentially serving in a competition-binding model. Indeed, many clinical PET studies with [11C]DPN or [11C]Caf affirm the release of endogenous opioids in response to painful stimuli. Numerous other PET studies implicate μ-OR signaling in aspects of human personality and vulnerability to drug dependence, but there have been very few clinical PET studies of μORs in neurological disorders. Tracers based on naltrindole, a non-peptide antagonist of the δ-preferring endogenous opioid enkephalin, have been used in PET studies of δORs, and [11C]GR103545 is validated for studies of κORs. Structures such as [11C]NOP-1A show selective binding at ORL-1 receptors in living brain. However, there is scant documentation of δ-, κ-, or ORL1 receptors in healthy human brain or in neurological and psychiatric disorders; here, clinical PET research must catch up with recent progress in radiopharmaceutical chemistry.
Collapse
|
26
|
Hansson AC, Gründer G, Hirth N, Noori HR, Spanagel R, Sommer WH. Dopamine and opioid systems adaptation in alcoholism revisited: Convergent evidence from positron emission tomography and postmortem studies. Neurosci Biobehav Rev 2019; 106:141-164. [DOI: 10.1016/j.neubiorev.2018.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
|
27
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
28
|
Khalil R, Humann J. Testosterone modulation of ethanol effects on the �‑opioid receptor kinetics in castrated rats. Biomed Rep 2019; 11:103-109. [PMID: 31423304 PMCID: PMC6684941 DOI: 10.3892/br.2019.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/05/2019] [Indexed: 11/17/2022] Open
Abstract
The present investigation was conducted to evaluate the effects of testosterone on ethanol-induced alterations of µ-opioid receptor binding kinetics in specific brain regions of castrated rats. Male Sprague Dawley rats (100-124 g) adapted to a 12-h light/dark cycle were used. Animals were castrated under pentobarbital anesthesia. After a recovery period of 14 days, ethanol [3 g/kg as 22.5% solution in saline via intraperitoneal injection (i.p.)], testosterone [2.5 mg in 0.2 ml of olive oil via subcutaneous injection (s.c.) in the dorsal neck region] or the combination of ethanol and testosterone were administered to rats at 9:00 a.m. The control group was injected i.p. with 2 ml saline and s.c. with 0.2 ml olive oil for 7 days. Animals were sacrificed by decapitation at 2 h after the final injection. The brains were immediately removed, and the cortex, hippocampus, hypothalamus and midbrain were dissected. In an attempt to elucidate the mechanism involved in the hormonal modulation of the effects of ethanol and testosterone on the endogenous opioid system, the binding kinetics of the µ-opioid receptors were determined. The results obtained in the present study assisted in identifying the regulatory role of testosterone on ethanol-induced changes on µ-opioid receptor binding kinetics.
Collapse
Affiliation(s)
- Rafaat Khalil
- Department of Biology, Florida A&M University College of Science and Technology, Tallahassee, FL 32307, USA
| | - Jessica Humann
- Department of Biology, Florida A&M University College of Science and Technology, Tallahassee, FL 32307, USA
| |
Collapse
|
29
|
Clark L, Boileau I, Zack M. Neuroimaging of reward mechanisms in Gambling disorder: an integrative review. Mol Psychiatry 2019; 24:674-693. [PMID: 30214041 DOI: 10.1038/s41380-018-0230-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Gambling disorder (GD) was reclassified as a behavioral addiction in the DSM-5 and shares clinical and behavioral features with substance use disorders (SUDs). Neuroimaging studies of GD hold promise in isolating core features of the addiction syndrome, avoiding confounding effects of drug neurotoxicity. At the same time, a neurobiologically-grounded theory of how behaviors like gambling can become addictive remains lacking, posing a significant hurdle for ongoing decisions in addiction nosology. This article integrates research on reward-related brain activity (functional MRI) and neurotransmitter function (PET) in GD, alongside the consideration of structural MRI data as to whether these signals more likely reflect pre-existing vulnerability or neuroadaptive change. Where possible, we point to qualitative similarities and differences with established markers for SUDs. Structural MRI studies indicate modest changes in regional gray matter volume and diffuse reductions in white matter integrity in GD, contrasting with clear structural deterioration in SUDs. Functional MRI studies consistently identify dysregulation in reward-related circuitry (primarily ventral striatum and medial prefrontal cortex), but evidence is mixed as to the direction of these effects. The need for further parsing of reward sub-processes is emphasized, including anticipation vs outcome, gains vs. losses, and disorder-relevant cues vs natural rewards. Neurotransmitter PET studies indicate amplified dopamine (DA) release in GD, in the context of minimal differences in baseline DA D2 receptor binding, highlighting a distinct profile from SUDs. Preliminary work has investigated further contributions of opioids, GABA and serotonin. Neuroimaging data increasingly highlight divergent profiles in GD vs. SUDs. The ability of gambling to perpetually activate DA (via maximal uncertainty) may contribute to neuroimaging similarities between GD and SUDs, whereas the supra-physiological DA effects of drugs may partly explain differences in the neuroimaging profile of the two syndromes. Coupled with consistent observations of correlations with gambling severity and related clinical variables within GD samples, the overall pattern of effects is interpreted as a likely combination of shared vulnerability markers across GD and SUDs, but with further experience-dependent neuroadaptive processes in GD.
Collapse
Affiliation(s)
- Luke Clark
- Centre for Gambling Research, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Vivian M. Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Addictions Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Martin Zack
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Clinical Neuroscience Program, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada. .,Department of Public Health Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Browne CA, Lucki I. Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther 2019; 201:51-76. [PMID: 31051197 DOI: 10.1016/j.pharmthera.2019.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Since the serendipitous discovery of the first class of modern antidepressants in the 1950's, all pharmacotherapies approved by the Food and Drug Administration for major depressive disorder (MDD) have shared a common mechanism of action, increased monoaminergic neurotransmission. Despite the widespread availability of antidepressants, as many as 50% of depressed patients are resistant to these conventional therapies. The significant length of time required to produce meaningful symptom relief with these medications, 4-6 weeks, indicates that other mechanisms are likely involved in the pathophysiology of depression which may yield more viable targets for drug development. For decades, no viable candidate target with a different mechanism of action to that of conventional therapies proved successful in clinical studies. Now several exciting avenues for drug development are under intense investigation. One of these emerging targets is modulation of endogenous opioid tone. This review will evaluate preclinical and clinical evidence pertaining to opioid dysregulation in depression, focusing on the role of the endogenous ligands endorphin, enkephalin, dynorphin, and nociceptin/orphanin FQ (N/OFQ) and their respective receptors, mu (MOR), delta (DOR), kappa (KOR), and the N/OFQ receptor (NOP) in mediating behaviors relevant to depression and anxiety. Finally, putative opioid based antidepressants that are under investigation in clinical trials, ALKS5461, JNJ-67953964 (formerly LY2456302 and CERC-501) and BTRX-246040 (formerly LY-2940094) will be discussed. This review will illustrate the potential therapeutic value of targeting opioid dysregulation in developing novel therapies for MDD.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
31
|
Alcohol Interaction with Cocaine, Methamphetamine, Opioids, Nicotine, Cannabis, and γ-Hydroxybutyric Acid. Biomedicines 2019; 7:biomedicines7010016. [PMID: 30866524 PMCID: PMC6466217 DOI: 10.3390/biomedicines7010016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Millions of people around the world drink alcoholic beverages to cope with the stress of modern lifestyle. Although moderate alcohol drinking may have some relaxing and euphoric effects, uncontrolled drinking exacerbates the problems associated with alcohol abuse that are exploding in quantity and intensity in the United States and around the world. Recently, mixing of alcohol with other drugs of abuse (such as opioids, cocaine, methamphetamine, nicotine, cannabis, and γ-hydroxybutyric acid) and medications has become an emerging trend, exacerbating the public health concerns. Mixing of alcohol with other drugs may additively or synergistically augment the seriousness of the adverse effects such as the withdrawal symptoms, cardiovascular disorders, liver damage, reproductive abnormalities, and behavioral abnormalities. Despite the seriousness of the situation, possible mechanisms underlying the interactions is not yet understood. This has been one of the key hindrances in developing effective treatments. Therefore, the aim of this article is to review the consequences of alcohol's interaction with other drugs and decipher the underlying mechanisms.
Collapse
|
32
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
33
|
Vijay A, Cavallo D, Goldberg A, de Laat B, Nabulsi N, Huang Y, Krishnan-Sarin S, Morris ED. PET imaging reveals lower kappa opioid receptor availability in alcoholics but no effect of age. Neuropsychopharmacology 2018; 43:2539-2547. [PMID: 30188515 PMCID: PMC6224533 DOI: 10.1038/s41386-018-0199-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
Abstract
Opioid receptors are implicated in alcoholism, other addictions, withdrawal, and depression, and are considered potential pharmacological targets for treatment. Our goal in the present study was to compare the availability of kappa opioid receptors (KOR) between an alcohol-dependent cohort (AD) and a healthy control cohort (HC). Sixty-four participants-36 AD and 28 HC-underwent PET scans with [11C]LY2795050, a selective kappa antagonist tracer. Partial-volume correction was applied to all PET data to correct for atrophy. Volume of distribution (VT) of the tracer was estimated regionally as a measure of KOR availability. VT values of AD versus HC were compared for 15 defined ROIs. Multivariate analysis showed a main effect of group on VT across these 15 ROIs. Post hoc tests showed that AD had significantly lower VT and thus a lower KOR availability than HC in amygdala and pallidum (corrected for multiple comparisons). Exploratory analysis of change in VT with age was conducted; VT was not found to vary significantly with age in any region. Our findings of lower VT in AD versus HC in multiple regions are in contrast to findings in the mu and delta opioid receptor systems of higher VT in AD versus HC. Although age-related decline in receptors has previously been observed in the mu opioid receptor system, we found that KOR availability does not change with age.
Collapse
Affiliation(s)
- Aishwarya Vijay
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dana Cavallo
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Alissa Goldberg
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Bart de Laat
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
34
|
Karjalainen T, Seppälä K, Glerean E, Karlsson HK, Lahnakoski JM, Nuutila P, Jääskeläinen IP, Hari R, Sams M, Nummenmaa L. Opioidergic Regulation of Emotional Arousal: A Combined PET–fMRI Study. Cereb Cortex 2018; 29:4006-4016. [DOI: 10.1093/cercor/bhy281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
Abstract
Emotions can be characterized by dimensions of arousal and valence (pleasantness). While the functional brain bases of emotional arousal and valence have been actively investigated, the neuromolecular underpinnings remain poorly understood. We tested whether the opioid and dopamine systems involved in reward and motivational processes would be associated with emotional arousal and valence. We used in vivo positron emission tomography to quantify μ-opioid receptor and type 2 dopamine receptor (MOR and D2R, respectively) availability in brains of 35 healthy adult females. During subsequent functional magnetic resonance imaging carried out to monitor hemodynamic activity, the subjects viewed movie scenes of varying emotional content. Arousal and valence were associated with hemodynamic activity in brain regions involved in emotional processing, including amygdala, thalamus, and superior temporal sulcus. Cerebral MOR availability correlated negatively with the hemodynamic responses to arousing scenes in amygdala, hippocampus, thalamus, and hypothalamus, whereas no positive correlations were observed in any brain region. D2R availability—here reliably quantified only in striatum—was not associated with either arousal or valence. These results suggest that emotional arousal is regulated by the MOR system, and that cerebral MOR availability influences brain activity elicited by arousing stimuli.
Collapse
Affiliation(s)
| | | | - Enrico Glerean
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Aalto, Espoo, Finland
- Department of Computer Science, Aalto University, Aalto, Espoo, Finland
- Helsinki Institute for Information Technology, Aalto, Espoo, Finland
| | | | - Juha M Lahnakoski
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Aalto, Espoo, Finland
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Iiro P Jääskeläinen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Aalto, Espoo, Finland
| | - Riitta Hari
- Department of Art, Aalto University, Aalto, Espoo, Finland
| | - Mikko Sams
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, Aalto, Espoo, Finland
- Department of Computer Science, Aalto University, Aalto, Espoo, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
35
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
36
|
Belzeaux R, Lalanne L, Kieffer BL, Lutz PE. Focusing on the Opioid System for Addiction Biomarker Discovery. Trends Mol Med 2018; 24:206-220. [PMID: 29396147 DOI: 10.1016/j.molmed.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
Abstract
Substance use disorders (SUD) and behavioral addictions are devastating conditions that impose a severe burden on all societies, and represent difficult challenges for clinicians. Therefore, biomarkers are urgently needed to help predict vulnerability, clinical course, and response to treatment. Here, we elaborate on the potential for addiction biomarker discovery of the opioid system, particularly within the emerging framework aiming to probe opioid function in peripheral tissues. Mu, delta, and kappa opioid receptors all critically regulate neurobiological and behavioral processes that define addiction, and are also targeted by major pharmacotherapies used in the management of patients with SUD. We propose that opioid biomarkers may have the potential to improve and guide diagnosis and therapeutic decisions in the addiction field.
Collapse
Affiliation(s)
- Raoul Belzeaux
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France; INT-UMR7289,CNRS Aix-Marseille Université, Marseille, France; These authors contributed equally to this article
| | - Laurence Lalanne
- Department of Psychiatry and Addictology, University Hospital of Strasbourg and Medical School of Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, University Hospital of Strasbourg and Medical School of Strasbourg, Strasbourg, France; INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Strasbourg, France; These authors contributed equally to this article
| | - Brigitte L Kieffer
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Current address: Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
37
|
Thobois S, Brefel-Courbon C, Le Bars D, Sgambato-Faure V. Molecular Imaging of Opioid System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:275-303. [DOI: 10.1016/bs.irn.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Poznanski P, Lesniak A, Korostynski M, Szklarczyk K, Lazarczyk M, Religa P, Bujalska-Zadrozny M, Sadowski B, Sacharczuk M. Delta-opioid receptor antagonism leads to excessive ethanol consumption in mice with enhanced activity of the endogenous opioid system. Neuropharmacology 2017; 118:90-101. [PMID: 28322978 DOI: 10.1016/j.neuropharm.2017.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
The opioid system modulates the central reinforcing effects of ethanol and participates in the etiology of addiction. However, the pharmacotherapy of ethanol dependence targeted on the opioid system is little effective and varies due to individual patients' sensitivity. In the present study, we used two mouse lines with high (HA) and low (LA) activity of the endogenous opioid system to analyze the effect of opioid receptor blockade on ethanol drinking behavior. We found that LA and HA lines characterized by divergent magnitudes of swim stress-induced analgesia also differ in ethanol intake and preference. Downregulation of the opioid system in LA mice was associated with increased ethanol consumption. Treatment with a non-selective opioid receptor antagonist (naloxone) had no effect on ethanol intake in this line. Surprisingly, in HA mice, the blockage of opioid receptors led to excessive ethanol consumption. Moreover, naloxone selectively induced high levels of anxiety- and depressive-like behaviors in HA mice which was attenuated by ethanol. With the use of specific opioid receptor antagonists we showed that the naloxone-induced increase in ethanol drinking in HA mice is mediated mainly by δ and to a lower extent by μ opioid receptors. The effect of δ-opioid receptor antagonism was abolished in HA mice carrying a C320T transition in the δ-opioid receptor gene (EU446125.1), which impairs this receptor's function. Our results indicate that high activity of the opioid system plays a protective role against ethanol dependence. Therefore, its blockage with opioid receptor antagonists may lead to a profound increase in ethanol consumption.
Collapse
Affiliation(s)
- Piotr Poznanski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Anna Lesniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Klaudia Szklarczyk
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Marzena Lazarczyk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Religa
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Bogdan Sadowski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
39
|
Savulich G, Riccelli R, Passamonti L, Correia M, Deakin JFW, Elliott R, Flechais RSA, Lingford-Hughes AR, McGonigle J, Murphy A, Nutt DJ, Orban C, Paterson LM, Reed LJ, Smith DG, Suckling J, Tait R, Taylor EM, Sahakian BJ, Robbins TW, Ersche KD. Effects of naltrexone are influenced by childhood adversity during negative emotional processing in addiction recovery. Transl Psychiatry 2017; 7:e1054. [PMID: 28267152 PMCID: PMC5416677 DOI: 10.1038/tp.2017.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
Naltrexone is an opioid receptor antagonist used in the management of alcohol dependence. Although the endogenous opioid system has been implicated in emotion regulation, the effects of mu-opioid receptor blockade on brain systems underlying negative emotional processing are not clear in addiction. Individuals meeting criteria for alcohol dependence alone (n=18, alcohol) and in combination with cocaine and/or opioid dependence (n=21, alcohol/drugs) and healthy individuals without a history of alcohol or drug dependence (n=21) were recruited. Participants were alcohol and drug abstinent before entered into this double-blind, placebo-controlled, randomized, crossover study. Functional magnetic resonance imaging was used to investigate brain response while viewing aversive and neutral images relative to baseline on 50 mg of naltrexone and placebo. We found that naltrexone modulated task-related activation in the medial prefrontal cortex and functional connectivity between the anterior cingulate cortex and the hippocampus as a function of childhood adversity (for aversive versus neutral images) in all groups. Furthermore, there was a group-by-treatment-by-condition interaction in the right amygdala, which was mainly driven by a normalization of response for aversive relative to neutral images under naltrexone in the alcohol/drugs group. We conclude that early childhood adversity is one environmental factor that influences pharmacological response to naltrexone. Pharmacotherapy with naltrexone may also have some ameliorative effects on negative emotional processing in combined alcohol and drug dependence, possibly due to alterations in endogenous opioid transmission or the kappa-opioid receptor antagonist actions of naltrexone.
Collapse
Affiliation(s)
- G Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - R Riccelli
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - L Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Correia
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, UK
| | - J F W Deakin
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - R Elliott
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - R S A Flechais
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | - J McGonigle
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - A Murphy
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - D J Nutt
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - C Orban
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - L M Paterson
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - L J Reed
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - D G Smith
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - J Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - R Tait
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - E M Taylor
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - B J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - T W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - K D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK. E-mail:
| | | |
Collapse
|
40
|
Hermann D, Hirth N, Reimold M, Batra A, Smolka MN, Hoffmann S, Kiefer F, Noori HR, Sommer WH, Reischl G, la Fougère C, Mann K, Spanagel R, Hansson AC. Low μ-Opioid Receptor Status in Alcohol Dependence Identified by Combined Positron Emission Tomography and Post-Mortem Brain Analysis. Neuropsychopharmacology 2017; 42:606-614. [PMID: 27510425 PMCID: PMC5240173 DOI: 10.1038/npp.2016.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
Abstract
Blockade of the μ-opioid receptor (MOR) by naltrexone reduces relapse risk in a subpopulation of alcohol-dependent patients. Previous positron-emission-tomography (PET) studies using the MOR ligand [11C]carfentanil have found increased MOR availability in abstinent alcoholics, which may reflect either increased MOR expression or lower endogenous ligand concentration. To differentiate between both effects, we investigated two cohorts of alcoholic subjects using either post-mortem or clinical PET analysis. Post-mortem brain tissue of alcohol-dependent subjects and controls (N=43/group) was quantitatively analyzed for MOR ([3H]DAMGO)-binding sites and OPRM1 mRNA in striatal regions. [11C]carfentanil PET was performed in detoxified, medication free alcohol-dependent patients (N=38), followed by a randomized controlled study of naltrexone versus placebo and follow-up for 1 year (clinical trial number: NCT00317031). Because the functional OPRM1 variant rs1799971:A>G affects the ligand binding, allele carrier status was considered in the analyses. MOR-binding sites were reduced by 23-51% in post-mortem striatal tissue of alcoholics. In the PET study, a significant interaction of OPRM1 genotype, binding potential (BPND) for [11C]carfentanil in the ventral striatum, and relapse risk was found. Particularly in G-allele carriers, lower striatal BPND was associated with a higher relapse risk. Interestingly, this effect was more pronounced in the naltrexone treatment group. Reduced MOR is interpreted as a neuroadaptation to an alcohol-induced release of endogenous ligands in patients with severe alcoholism. Low MOR availability may explain the ineffectiveness of naltrexone treatment in this subpopulation. Finally, low MOR-binding sites are proposed as a molecular marker for a negative disease course.
Collapse
Affiliation(s)
- Derik Hermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Central Institute of Mental Health (ZI), Square J5, Mannheim 68159, Germany, Tel: +49 621 1703 6293 or +49 621 1703 3522, Fax: 49 621 17036255,E-mail: or
| | - Natalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine, University of Tübingen, Tübingen, Germany
| | - Anil Batra
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Michael N Smolka
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang H Sommer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | | | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Central Institute of Mental Health (ZI), Square J5, Mannheim 68159, Germany, Tel: +49 621 1703 6293 or +49 621 1703 3522, Fax: 49 621 17036255,E-mail: or
| |
Collapse
|
41
|
Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang GJ, Baler R. Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. Neuropharmacology 2017; 122:175-188. [PMID: 28108358 DOI: 10.1016/j.neuropharm.2017.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The use of Positron emission tomography (PET) to study the effects of acute and chronic alcohol on the human brain has enhanced our understanding of the mechanisms underlying alcohol's rewarding effects, the neuroadaptations from chronic exposure that contribute to tolerance and withdrawal, and the changes in fronto-striatal circuits that lead to loss of control and enhanced motivation to drink that characterize alcohol use disorders (AUD). These include studies showing that alcohol's reinforcing effects may result not only from its enhancement of dopaminergic, GABAergic and opioid signaling but also from its caloric properties. Studies in those suffering from an AUD have revealed significant alterations in dopamine (DA), GABA, cannabinoids, opioid and serotonin neurotransmission and in brain energy utilization (glucose and acetate metabolism) that are likely to contribute to compulsive alcohol taking, dysphoria/depression, and to alcohol-associated neurotoxicity. Studies have also evaluated the effects of abstinence on recovery of brain metabolism and neurotransmitter function and the potential value of some of these measures to predict clinical outcomes. Finally, PET studies have started to provide insights about the neuronal mechanisms by which certain genes contribute to the vulnerability to AUD. These findings have helped identify new strategies for prevention and treatment of AUD. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States; National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Corinde E Wiers
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ehsan Shokri-Kojori
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gene-Jack Wang
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ruben Baler
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
42
|
Vijay A, Wang S, Worhunsky P, Zheng MQ, Nabulsi N, Ropchan J, Krishnan-Sarin S, Huang Y, Morris ED. PET imaging reveals sex differences in kappa opioid receptor availability in humans, in vivo. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2016; 6:205-214. [PMID: 27648372 PMCID: PMC5004062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Opioid receptors may play critical roles in alcoholism and other addictions, addiction withdrawal, and depression and are considered pharmacological targets for treatment of these conditions. Sex differences have been demonstrated in mu (MOR) and delta (DOR) opioid receptors in humans, in vivo. In addition, sex differences have been observed in efficacy of treatment targeting kappa opioid receptors (KOR). Our goal in the present study was to compare the availability of KOR (1) between healthy control (HC) men and women. Twenty-seven subjects-18 males (M) and 9 females (F)-underwent PET scans with [(11)C] LY2795050, a selective kappa antagonist tracer. Partial volume correction was applied to all PET data. Volume of distribution (V T) of the tracer was estimated regionally as well as at the voxel level. V T values of males versus females were compared for 19 defined ROIs. Results at the regional and voxel levels were consistent. Males had significantly higher V T and thus a higher KOR availability than women in multiple brain regions. To our knowledge, this is the first report of sex differences in the KOR system in humans, in vivo. These findings could have implications for the treatment of pain with kappa opioid analgesics. The results may also have an impact on the diagnosis and treatment of addictive and other disorders.
Collapse
Affiliation(s)
- Aishwarya Vijay
- Department of Radiology and Biomedical Imaging, Yale Universit New Haven, CT, USA
| | - Shuo Wang
- Department of Radiology and Biomedical Imaging, Yale UniversitNew Haven, CT, USA; Department of Biomedical Engineering, Yale UniversityNew Haven, CT, USA
| | - Patrick Worhunsky
- Department of Radiology and Biomedical Imaging, Yale Universit New Haven, CT, USA
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale Universit New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale Universit New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale Universit New Haven, CT, USA
| | | | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale Universit New Haven, CT, USA
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale UniversitNew Haven, CT, USA; Department of Biomedical Engineering, Yale UniversityNew Haven, CT, USA; Department of Psychiatry, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
43
|
Karlsson HK, Tuulari JJ, Tuominen L, Hirvonen J, Honka H, Parkkola R, Helin S, Salminen P, Nuutila P, Nummenmaa L. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry 2016; 21:1057-62. [PMID: 26460230 DOI: 10.1038/mp.2015.153] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) studies suggest opioidergic system dysfunction in morbid obesity, while evidence for the role of the dopaminergic system is less consistent. Whether opioid dysfunction represents a state or trait in obesity remains unresolved, but could be assessed in obese subjects undergoing weight loss. Here we measured brain μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) availability in 16 morbidly obese women twice-before and 6 months after bariatric surgery-using PET with [(11)C]carfentanil and [(11)C]raclopride. Data were compared with those from 14 lean control subjects. Receptor-binding potentials (BPND) were compared between the groups and between the pre- and postoperative scans among the obese subjects. Brain MOR availability was initially lower among obese subjects, but weight loss (mean=26.1 kg, s.d.=7.6 kg) reversed this and resulted in ~23% higher MOR availability in the postoperative versus preoperative scan. Changes were observed in areas implicated in reward processing, including ventral striatum, insula, amygdala and thalamus (P's<0.005). Weight loss did not influence D2R availability in any brain region. Taken together, the endogenous opioid system plays an important role in the pathophysiology of human obesity. Because bariatric surgery and concomitant weight loss recover downregulated MOR availability, lowered MOR availability is associated with an obese phenotype and may mediate excessive energy uptake. Our results highlight that understanding the opioidergic contribution to overeating is critical for developing new treatments for obesity.
Collapse
Affiliation(s)
- H K Karlsson
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - J J Tuulari
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - L Tuominen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - J Hirvonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - H Honka
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - R Parkkola
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - S Helin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - P Salminen
- Department of Digestive Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - P Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - L Nummenmaa
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.,Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
44
|
Vicente-Sanchez A, Segura L, Pradhan AA. The delta opioid receptor tool box. Neuroscience 2016; 338:145-159. [PMID: 27349452 DOI: 10.1016/j.neuroscience.2016.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/29/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
In recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations. Here, we describe (1) the cell-based assays used to study the delta opioid receptor. (2) The features of several delta opioid receptor ligands, including peptide and non-peptide drugs. (3) The existing approaches to detect delta opioid receptors in fixed tissue, and debates that surround these techniques. (4) Behavioral assays used to study the in vivo effects of delta opioid receptor agonists; including locomotor stimulation and convulsions that are induced by some ligands, but not others. (5) The characterization of genetically modified mice used specifically to study the delta opioid receptor. Overall, this review aims to provide a guideline for the use of these tools with the final goal of increasing our understanding of delta opioid receptor physiology.
Collapse
Affiliation(s)
| | - Laura Segura
- Department of Psychiatry, University of Illinois at Chicago, United States
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, United States.
| |
Collapse
|
45
|
Abstract
Advances in neuroscience identified addiction as a chronic brain disease with strong genetic, neurodevelopmental, and sociocultural components. We here discuss the circuit- and cell-level mechanisms of this condition and its co-option of pathways regulating reward, self-control, and affect. Drugs of abuse exert their initial reinforcing effects by triggering supraphysiologic surges of dopamine in the nucleus accumbens that activate the direct striatal pathway via D1 receptors and inhibit the indirect striato-cortical pathway via D2 receptors. Repeated drug administration triggers neuroplastic changes in glutamatergic inputs to the striatum and midbrain dopamine neurons, enhancing the brain's reactivity to drug cues, reducing the sensitivity to non-drug rewards, weakening self-regulation, and increasing the sensitivity to stressful stimuli and dysphoria. Drug-induced impairments are long lasting; thus, interventions designed to mitigate or even reverse them would be beneficial for the treatment of addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marisela Morales
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Karjalainen T, Tuominen L, Manninen S, Kalliokoski KK, Nuutila P, Jääskeläinen IP, Hari R, Sams M, Nummenmaa L. Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability. Soc Cogn Affect Neurosci 2016; 11:1310-6. [PMID: 27053768 DOI: 10.1093/scan/nsw044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The reinforcement-sensitivity theory proposes that behavioural activation and inhibition systems (BAS and BIS, respectively) guide approach and avoidance behaviour in potentially rewarding and punishing situations. Their baseline activity presumably explains individual differences in behavioural dispositions when a person encounters signals of reward and harm. Yet, neurochemical bases of BAS and BIS have remained poorly understood. Here we used in vivo positron emission tomography with a µ-opioid receptor (MOR) specific ligand [(11)C]carfentanil to test whether individual differences in MOR availability would be associated with BAS or BIS. We scanned 49 healthy subjects and measured their BAS and BIS sensitivities using the BIS/BAS scales. BAS but not BIS sensitivity was positively associated with MOR availability in frontal cortex, amygdala, ventral striatum, brainstem, cingulate cortex and insula. Strongest associations were observed for the BAS subscale 'Fun Seeking'. Our results suggest that endogenous opioid system underlies BAS, and that differences in MOR availability could explain inter-individual differences in reward seeking behaviour.
Collapse
Affiliation(s)
- Tomi Karjalainen
- Turku PET Centre, University of Turku, Turku, Finland Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | - Lauri Tuominen
- Turku PET Centre, University of Turku, Turku, Finland Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | | | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland Department of Endocrinology, Turku University Hospital, Turku 20521, Finland
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | - Riitta Hari
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland Department of Art, School of Arts, Design and Architecture, 00076 AALTO, Helsinki, Finland
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 00076 AALTO, Espoo, Finland Department of Psychology, University of Turku, Turku 20014, Finland
| |
Collapse
|
47
|
Wiers CE, Cabrera E, Skarda E, Volkow ND, Wang GJ. PET imaging for addiction medicine: From neural mechanisms to clinical considerations. PROGRESS IN BRAIN RESEARCH 2015; 224:175-201. [PMID: 26822359 DOI: 10.1016/bs.pbr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Positron emission tomography (PET) has been shown to be an effective imaging technique to study neurometabolic and neurochemical processes involved in addiction. That is, PET has been used to research neurobiological differences in substance abusers versus healthy controls and the pharmacokinetics and pharmacodynamics of abused drugs. Over the past years, the research scope has shifted to investigating neurobiological effects of abstinence and treatment, and their predictive power for relapse and other clinical outcomes. This chapter provides an overview of PET methodology, recent human PET studies on drug addiction and their implications for clinical treatment.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth Cabrera
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emily Skarda
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Abstract
The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence.
Collapse
Affiliation(s)
- Rick E. Bernardi
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim/Heidelberg University; Germany
| |
Collapse
|
49
|
Burghardt PR, Rothberg AE, Dykhuis KE, Burant CF, Zubieta JK. Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans. J Clin Endocrinol Metab 2015; 100:3193-201. [PMID: 26108093 PMCID: PMC4524998 DOI: 10.1210/jc.2015-1783] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Successful long-term weight loss is challenging. Brain endogenous opioid systems regulate associated processes; however, their role in the maintenance of weight loss has not been adequately explored in humans. OBJECTIVE In a preliminary study, the objective was to assess central μ-opioid receptor (MOR) system involvement in eating behaviors and their relationship to long-term maintenance of weight loss. DESIGN This was a case-control study with follow-up of the treatment group at 1 year after intervention. SETTING The study was conducted at a tertiary care university medical center. PARTICIPANTS Lean healthy (n = 7) and chronically obese (n = 7) men matched for age and ethnicity participated in the study. INTERVENTIONS MOR availability measures were acquired with positron emission tomography and [(11)C]carfentanil. Lean healthy men were scanned twice under both fasted and fed conditions. Obese men were placed on a very low-calorie diet to achieve 15% weight loss from baseline weight and underwent two positron emission tomography scans before and two after weight loss, incorporating both fasted and fed states. MAIN OUTCOME MEASURES Brain MOR availability and activation were measured by reductions in MOR availability (nondisplaceable binding potential) from the fed compared with the fasted-state scans. RESULTS Baseline MOR nondisplaceable binding potential was reduced in obese compared with the lean and partially recovered obese after weight loss in regions that regulate homeostatic, hedonic, and emotional responses to feeding. Reductions in negative affect and feeding-induced MOR system activation in the right temporal pole were highly correlated in leans but not in obese men. A trend for an association between MOR activation in the right temporal pole before weight loss and weight regain 1 year was found. CONCLUSIONS Although these preliminary studies have a small sample size, these results suggest that obesity and diet-induced weight loss impact central MOR binding and endogenous opioid system function. MOR system activation in response to an acute meal may be related to the risk of weight regain.
Collapse
|
50
|
Mason AE, Lustig RH, Brown RR, Acree M, Bacchetti P, Moran PJ, Dallman M, Laraia B, Adler N, Hecht FM, Daubenmier J, Epel ES. Acute responses to opioidergic blockade as a biomarker of hedonic eating among obese women enrolled in a mindfulness-based weight loss intervention trial. Appetite 2015; 91:311-320. [PMID: 25931433 PMCID: PMC4485926 DOI: 10.1016/j.appet.2015.04.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022]
Abstract
There are currently no commonly used or easily accessible 'biomarkers' of hedonic eating. Physiologic responses to acute opioidergic blockade, indexed by cortisol changes and nausea, may represent indirect functional measures of opioid-mediated hedonic eating drive and predict weight loss following a mindfulness-based intervention for stress eating. In the current study, we tested whether cortisol and nausea responses induced by oral ingestion of an opioidergic antagonist (naltrexone) correlated with weight and self-report measures of hedonic eating and predicted changes in these measures following a mindfulness-based weight loss intervention. Obese women (N = 88; age = 46.7 ± 13.2 years; BMI = 35.8 ± 3.8) elected to complete an optional sub-study prior to a 5.5-month weight loss intervention with or without mindfulness training. On two separate days, participants ingested naltrexone and placebo pills, collected saliva samples, and reported nausea levels. Supporting previous findings, naltrexone-induced cortisol increases were associated with greater hedonic eating (greater food addiction symptoms and reward-driven eating) and less mindful eating. Among participants with larger cortisol increases (+1 SD above mean), mindfulness participants (relative to control participants) reported greater reductions in food addiction symptoms, b = -0.95, SE(b) = 0.40, 95% CI [-1.74, -0.15], p = .021. Naltrexone-induced nausea was marginally associated with reward-based eating. Among participants who endorsed naltrexone-induced nausea (n = 38), mindfulness participants (relative to control participants) reported greater reductions in food addiction symptoms, b = -1.00, 95% CI [-1.85, -0.77], p = .024, and trended toward reduced reward-based eating, binge eating, and weight, post-intervention. Single assessments of naltrexone-induced cortisol increases and nausea responses may be useful time- and cost-effective biological markers to identify obese individuals with greater opioid-mediated hedonic eating drive who may benefit from weight loss interventions with adjuvant mindfulness training that targets hedonic eating.
Collapse
Affiliation(s)
| | | | - Rashida R. Brown
- UCSF Center for Health and Community
- UC Berkeley School of Public Health
| | | | | | | | | | | | | | | | | | - Elissa S. Epel
- UCSF Osher Center for Integrative Medicine
- UCSF Center for Health and Community
| |
Collapse
|