1
|
Wilk-Kozubek M, Potaniec B, Gazińska P, Cybińska J. Exploring the Origins of Low-Temperature Thermochromism in Polydiacetylenes. Polymers (Basel) 2024; 16:2856. [PMID: 39458684 PMCID: PMC11511177 DOI: 10.3390/polym16202856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This review article delves into the intriguing phenomenon of low-temperature thermochromism, whereby materials change color in response to temperature variations, with a particular focus on its applications in temperature-sensitive fields like medical storage. By closely examining thermochromic materials, this article highlights their potential to offer innovative solutions for monitoring and preserving thermolabile products that require strict temperature control. This leads to a special emphasis on polydiacetylenes (PDAs), a class of conjugated polymers with unique low-temperature thermochromic properties, positioning them as promising candidates for reliable temperature indicators. This article then explores the underlying mechanisms for fine-tuning the thermochromic behavior of PDAs, particularly discussing recent advancements in PDA design, such as structural alterations of monomers to achieve low-temperature thermochromism. These modifications, influenced by factors like side-chain length, hydrogen-bonding interactions, and the use of copolymers, are intended to result in irreversible color transitions at specific low temperatures, which is crucial to maintaining the integrity of thermally sensitive products. Finally, this article discusses the potential applications of PDAs as thermochromic sensors in tissue biobanking, where their ability to provide visual indications of temperature fluctuations could significantly enhance the monitoring and management of biological samples.
Collapse
Affiliation(s)
- Magdalena Wilk-Kozubek
- Materials Science and Engineering Center, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland; (M.W.-K.); (B.P.)
| | - Bartłomiej Potaniec
- Materials Science and Engineering Center, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland; (M.W.-K.); (B.P.)
| | - Patrycja Gazińska
- Center for Population Diagnostics, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland;
| | - Joanna Cybińska
- Materials Science and Engineering Center, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 147 Stabłowicka Street, 54-066 Wrocław, Poland; (M.W.-K.); (B.P.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Lin J, Rivadeneira AP, Ye Y, Ryu C, Parvin S, Jang K, Garraway SM, Choi I. Sodium Bicarbonate Decreases Alcohol Consumption in Mice. Int J Mol Sci 2024; 25:5006. [PMID: 38732226 PMCID: PMC11084513 DOI: 10.3390/ijms25095006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
We previously reported that mice with low neuronal pH drink more alcohol, demonstrating the importance of pH for alcohol reward and motivation. In this study, we tested whether systemic pH affects alcohol consumption and if so, whether it occurs by changing the alcohol reward. C57BL/6J mice were given NaHCO3 to raise their blood pH, and the animals' alcohol consumption was measured in the drinking-in-the-dark and two-bottle free choice paradigms. Alcohol consumption was also assessed after suppressing the bitterness of NaHCO3 with sucrose. Alcohol reward was evaluated using a conditioned place preference. In addition, taste sensitivity was assessed by determining quinine and sucrose preference. The results revealed that a pH increase by NaHCO3 caused mice to decrease their alcohol consumption. The decrease in high alcohol contents (20%) was significant and observed at different ages, as well as in both males and females. Alcohol consumption was also decreased after suppressing NaHCO3 bitterness. Oral gavage of NaHCO3 did not alter quinine and sucrose preference. In the conditioned place preference, NaHCO3-treated mice spent less time in the alcohol-injected chamber. Conclusively, the results show that raising systemic pH with NaHCO3 decreases alcohol consumption, as it decreases the alcohol reward value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Inyeong Choi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (J.L.); (Y.Y.); (C.R.); (S.P.); (K.J.); (S.M.G.)
| |
Collapse
|
3
|
Gong J, Meng T, Yang J, Hu N, Zhao H, Tian T. Three-dimensional in vitro tissue culture models of brain organoids. Exp Neurol 2021; 339:113619. [PMID: 33497645 DOI: 10.1016/j.expneurol.2021.113619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Brain organoids are three-dimensional self-assembled structures that are derived from human induced pluripotent stem cells (hiPSCs). They can recapitulate the spatiotemporal organization and function of the brain, presenting a robust system for in vitro modeling of brain development, evolution, and diseases. Significant advances in biomaterials, microscale technologies, gene editing technologies, and stem cell biology have enabled the construction of human specific brain structures in vitro. However, the limitations of long-term culture, necrosis, and hypoxic cores in different culture models obstruct brain organoid growth and survival. The in vitro models should facilitate oxygen and nutrient absorption, which is essential to generate complex organoids and provides a biomimetic microenvironment for modeling human brain organogenesis and human diseases. This review aims to highlight the progress in the culture devices of brain organoids, including dish, bioreactor, and organ-on-a-chip models. With the modulation of bioactive molecules and biomaterials, the generated organoids recapitulate the key features of the human brain in a more reproducible and hyperoxic fashion. Furthermore, an outlook for future preclinical studies and the genetic modifications of brain organoids is presented.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tianyue Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tian Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Swaab DF, Bao AM. Matching of the postmortem hypothalamus from patients and controls. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:141-156. [PMID: 34225959 DOI: 10.1016/b978-0-12-819975-6.00007-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The quality of postmortem hypothalamus research depends strongly on a thorough clinical investigation and documentation of the patient's disorder and therapies. In addition, a systematic and professional neuropathological investigation of the entire brain of both the cases and the controls is absolutely crucial. In the experience of the Netherlands Brain Bank (NBB), about 20% of the clinical neurological diagnoses, despite being made in first rate clinics, have to be revised or require extra diagnoses after a complete and thorough neuropathologic review by the NBB. The neuropathology examination may reveal for instance that the elderly "controls" already have preclinical neurodegenerative alterations. In postmortem studies, the patient and control groups must be matched for as many as possible of the known confounding factors. This is necessary to make the groups as similar as possible, except for the topic being investigated. Confounding factors are present (i) before, (ii) during, and (iii) after death. They are, respectively: (i) genetic background, systemic diseases, duration and gravity of illness, medicines and addictive compounds used, age, sex, gender identity, sexual orientation, clock- and seasonal time of death, and lateralization; (ii) agonal state, stress of dying; and (iii) postmortem delay, freezing procedures, fixation, and storage time. Agonal state is generally estimated by measuring the pH of the brain. However, there are disorders in which pH is lower as a part of the disease process. Because of the large number of potentially confounding factors that differ according to, for instance, brain area and disease, a brain bank should have a large number of controls at its disposal for appropriate matching. If matching fails for some confounders, the influence of the confounders may be determined by statistical methods, such as analysis of variance or the regression models.
Collapse
Affiliation(s)
- Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT. The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology. Brain Pathol 2019; 29:726-740. [PMID: 30803086 DOI: 10.1111/bpa.12717] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglial associations with both the major Alzheimer's disease (AD) pathognomonic entities, β-amyloid-positive plaques and tau-positive neurofibrillary tangles, have been noted in previous investigations of both human tissue and mouse models. However, the precise nature of their role in the pathogenesis of AD is debated; the major working hypothesis is that pro-inflammatory activities of activated microglia contribute to disease progression. In contrast, others have proposed that microglial dystrophy with a loss of physiological and neuroprotective activities promotes neurodegeneration. This immunohistochemical study sought to gain clarity in this area by quantifying the morphological subtypes of microglia in the mildly-affected primary visual cortex (PVC), the moderately affected superior frontal cortex (SFC) and the severely affected inferior temporal cortex (ITC) of 8 AD cases and 15 age and gender-matched, non-demented controls with ranging AD-type pathology. AD cases had increased β-amyloid and tau levels compared to controls in all regions. Neuronal loss was observed in the SFC and ITC, and was associated with atrophy in the latter. A major feature of the ITC in AD was a decrease in ramified (healthy) microglia with image analysis confirming reductions in arborized area and skeletal complexity. Activated microglia were not associated with AD but were increased in non-demented controls with greater AD-type pathology. Microglial clusters were occasionally associated with β-amyloid- and tau-positive plaques but represented less than 2% of the total microglial population. Dystrophic microglia were not associated with AD, but were inversely correlated with brain pH suggesting that agonal events were responsible for this morphological subtype. Overall these novel findings suggest that there is an early microglial reaction to AD-type pathology but a loss of healthy microglia is the prominent feature in severely affected regions of the AD brain.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Jillian June Kril
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Greg Trevor Sutherland
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
The art of matching brain tissue from patients and controls for postmortem research. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:197-217. [PMID: 29496142 DOI: 10.1016/b978-0-444-63639-3.00015-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quality of postmortem research depends strongly on a thorough clinical investigation and documentation of the patient's disorder and therapies. In addition, a systematic and professional neuropathologic investigation of both cases and controls is absolutely crucial. In the experience of the Netherlands Brain Bank (NBB), about 20% of clinical neurologic diagnoses, despite being made in first-rate clinics, have to be revised or require an extra diagnosis after a complete and thorough review by the NBB. The neuropathology examination may reveal for instance that the "controls" already have preclinical neurodegenerative alterations. In postmortem studies the patient and control groups must be matched for as many of the known confounding factors as possible. This is necessary to make the groups as similar as possible, except for the topic being investigated. Confounding factors are present before, during, and after death. They are respectively: (1) genetic background, systemic diseases, duration and gravity of illness, medicines and addictive compounds used, age, sex, gender identity, sexual orientation, circadian and seasonal fluctuations, lateralization; (2) agonal state, stress of dying; and (3) postmortem delay, freezing procedures, fixation and storage time. Consequently, a brain bank should have a large number of controls at its disposal for appropriate matching. If matching fails for some confounders, then their influence may be determined by statistical methods such as analysis of variance or regression models.
Collapse
|
7
|
Abstract
OBJECTIVES Attaining high-quality RNA from the tissues or organs of deceased donors used for research can be challenging due to physiological and logistical considerations. In this investigation, METHODS: RNA Integrity Number (RIN) was determined in pancreatic samples from 236 organ donors and used to define high (≥6.5) and low (≤4.5) quality RNAs. Logistic regression was used to evaluate the potential effects of novel or established organ and donor factors on RIN. RESULTS Univariate analysis revealed donor cause of death (odds ratio [OR], 0.35; 95% confidence interval [CI], 0.15-0.77; P = 0.01), prolonged tissue storage before RNA extraction (OR, 0.65; 95% CI, 0.52-0.79; P < 0.01), pancreas region sampled (multiple comparisons, P < 0.01), and sample type (OR, 0.32; 95% CI, 0.15-0.67; P < 0.01) negatively influenced outcome. Conversely, duration of final hospitalization (OR, 3.95; 95% CI, 1.59-10.37; P < 0.01) and sample collection protocol (OR, 8.48; 95% CI, 3.96-19.30; P < 0.01) positively impacted outcome. Islet RNA obtained via laser capture microdissection improved RIN when compared with total pancreatic RNA from the same donor (ΔRIN = 1.3; 95% CI, 0.6-2.0; P < 0.01). CONCLUSIONS A multivariable model demonstrates that autopsy-free and biopsy-free human pancreata received, processed, and preserved at a single center, using optimized procedures, from organ donors dying of anoxia with normal lipase levels increase the odds of obtaining high-quality RNA.
Collapse
|
8
|
Coleman LG, Zou J, Crews FT. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 2017; 14:22. [PMID: 28118842 PMCID: PMC5264311 DOI: 10.1186/s12974-017-0799-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Toll-like receptor (TLR) signaling is emerging as an important component of neurodegeneration. TLR7 senses viral RNA and certain endogenous miRNAs to initiate innate immune responses leading to neurodegeneration. Alcoholism is associated with hippocampal degeneration, with preclinical studies linking ethanol-induced neurodegeneration with central innate immune induction and TLR activation. The endogenous miRNA let-7b binds TLR7 to cause neurodegeneration. METHODS TLR7 and other immune markers were assessed in postmortem human hippocampal tissue that was obtained from the New South Wales Tissue Bank. Rat hippocampal-entorhinal cortex (HEC) slice culture was used to assess specific effects of ethanol on TLR7, let-7b, and microvesicles. RESULTS We report here that hippocampal tissue from postmortem human alcoholic brains shows increased expression of TLR7 and increased microglial activation. Using HEC slice culture, we found that ethanol induces TLR7 and let-7b expression. Ethanol caused TLR7-associated neuroimmune gene induction and initiated the release let-7b in microvesicles (MVs), enhancing TLR7-mediated neurotoxicity. Further, ethanol increased let-7b binding to the danger signaling molecule high mobility group box-1 (HMGB1) in MVs, while reducing let-7 binding to classical chaperone protein argonaute (Ago2). Flow cytometric analysis of MVs from HEC media and analysis of MVs from brain cell culture lines found that microglia were the primary source of let-7b and HMGB1-containing MVs. CONCLUSIONS Our results identify that ethanol induces neuroimmune pathology involving the release of let-7b/HMGB1 complexes in microglia-derived microvesicles. This contributes to hippocampal neurodegeneration and may play a role in the pathology of alcoholism.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, The University of North Carolina School of Medicine, 104 Manning Drive, 1007 Thurston-Bowles Building, CB# 7178 UNC-CH, Chapel Hill, NC, 27599, USA. .,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, CB#7178, Thurston-Bowles Building Room 1007, Chapel Hill, NC, 27599, USA.
| | - Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, CB#7178, Thurston-Bowles Building Room 1007, Chapel Hill, NC, 27599, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, CB#7178, Thurston-Bowles Building Room 1007, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
The effects of chronic smoking on the pathology of alcohol-related brain damage. Alcohol 2016; 53:35-44. [PMID: 27286935 DOI: 10.1016/j.alcohol.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/16/2023]
Abstract
Both pathological and neuroimaging studies demonstrate that chronic alcohol abuse causes brain atrophy with widespread white matter loss limited gray matter loss. Recent neuroimaging studies suggest that tobacco smoking also causes brain atrophy in both alcoholics and neurologically normal individuals; however, this has not been confirmed pathologically. In this study, the effects of smoking and the potential additive effects of concomitant alcohol and tobacco consumption were investigated in autopsied human brains. A total of 44 cases and controls were divided into four groups: 16 non-smoking controls, nine smoking controls, eight non-smoking alcoholics, and 11 smoking alcoholics. The volumes of 26 gray and white matter regions were measured using an established point-counting technique. The results showed trends for widespread white matter loss in alcoholics (p < 0.007) but no effect on gray matter regions. In contrast, smoking alone had no effect on brain atrophy and the combination of smoking and alcohol showed no additional effect. Neuronal density was analyzed as a more sensitive assay of gray matter integrity. Similar to the volumetric analysis, there was a reduction in neurons (29%) in the prefrontal cortex of alcoholics, albeit this was only a trend when adjusted for potential confounders (p < 0.06). There were no smoking or combinatorial effects on neuronal density in any of the three regions examined. These results do not support the hypothesis that smoking exacerbates alcohol-related brain damage. The trends here support previous studies that alcohol-related brain damage is characterized by focal neuronal loss and generalized white matter atrophy. These disparate effects suggest that two different pathogenic mechanisms may be operating in the alcoholic brain. Future studies using ultrastructural or molecular techniques will be required to determine if smoking has more subtle effects on the brain and how chronic alcohol consumption leads to widespread white matter loss.
Collapse
|
10
|
Sutherland G, Sheedy D, Stevens J, McCrossin T, Smith C, van Roijen M, Kril J. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research. Alcohol 2016; 52:33-39. [PMID: 27139235 DOI: 10.1016/j.alcohol.2016.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022]
Abstract
The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections.
Collapse
|
11
|
Mamdani M, Williamson V, McMichael GO, Blevins T, Aliev F, Adkins A, Hack L, Bigdeli T, D. van der Vaart A, Web BT, Bacanu SA, Kalsi G, Kendler KS, Miles MF, Dick D, Riley BP, Dumur C, Vladimirov VI. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence. PLoS One 2015; 10:e0137671. [PMID: 26381263 PMCID: PMC4575063 DOI: 10.1371/journal.pone.0137671] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.
Collapse
Affiliation(s)
- Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vernell Williamson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gowon O. McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Tana Blevins
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Fazil Aliev
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Amy Adkins
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Laura Hack
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Tim Bigdeli
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Andrew D. van der Vaart
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Bradley Todd Web
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gursharan Kalsi
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | | | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Danielle Dick
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Catherine Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
12
|
Sutherland GT, Sheedy D, Sheahan PJ, Kaplan W, Kril JJ. Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism. Alcohol Clin Exp Res 2014; 38:994-1001. [PMID: 24460866 DOI: 10.1111/acer.12341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse is the world's third leading cause of disease and disability, and one potential sequel of chronic abuse is alcohol-related brain damage (ARBD). This clinically manifests as cognitive dysfunction and pathologically as atrophy of white matter (WM) in particular. The mechanism linking chronic alcohol intoxication with ARBD remains largely unknown but it is also complicated by common comorbidities such as liver damage and nutritional deficiencies. Liver cirrhosis, in particular, often leads to hepatic encephalopathy (HE), a primary glial disease. METHODS In a novel transcriptomic study, we targeted the WM only of chronic alcoholics in an attempt to tease apart the pathogenesis of ARBD. Specifically, in alcoholics with and without HE, we explored both the prefrontal and primary motor cortices, 2 regions that experience differential levels of neuronal loss. RESULTS Our results suggest that HE, along with 2 confounders, gray matter contamination, and low RNA quality are major drivers of gene expression in ARBD. All 3 exceeded the effects of alcohol itself. In particular, low-quality RNA samples were characterized by an up-regulation of translation machinery, while HE was associated with a down-regulation of mitochondrial energy metabolism pathways. CONCLUSIONS The findings in HE alcoholics are consistent with the metabolic acidosis seen in this condition. In contrast non-HE alcoholics had widespread but only subtle changes in gene expression in their WM. Notwithstanding the latter result, this study demonstrates that significant confounders in transcriptomic studies of human postmortem brain tissue can be identified, quantified, and "removed" to reveal disease-specific signals.
Collapse
Affiliation(s)
- Greg T Sutherland
- Discipline of Pathology, Sydney Medical School , University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
13
|
de la Monte SM, Kril JJ. Human alcohol-related neuropathology. Acta Neuropathol 2014; 127:71-90. [PMID: 24370929 DOI: 10.1007/s00401-013-1233-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 02/08/2023]
Abstract
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.
Collapse
|
14
|
Abstract
Chronic alcohol consumption results in structural changes to the brain. In alcoholics without coexisting thiamine deficiency or liver disease this is largely restricted to a loss of white-matter volume. When it occurs, neuronal loss is limited in anatomic distribution and only detected with quantitative techniques. This relative paucity of neurodegeneration is reflected in studies of gene and protein expression in postmortem brain where findings are subtle and discordant between studies. In alcoholics with coexisting pathologies, neuronal loss is more marked and affects a wider range of anatomic regions, especially subcortical nuclei. Although this more widespread damage may reflect a more severe drinking history, there is evidence linking thiamine deficiency and the consequences of liver disease to the pathogenesis of alcohol-related brain damage. Furthermore, a range of other factors, such as cigarette smoking and mood disorders, that are common in alcoholics, have the potential to influence studies of brain pathology and should be considered in further studies of the neuropathology of alcoholism.
Collapse
Affiliation(s)
- Greg T Sutherland
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Donna Sheedy
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jillian J Kril
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia; Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Abstract
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.
Collapse
|
16
|
Sutherland GT, Sheedy D, Kril JJ. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age. Alcohol Clin Exp Res 2013; 38:1-8. [PMID: 24033426 DOI: 10.1111/acer.12243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539).
Collapse
Affiliation(s)
- Greg T Sutherland
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|