1
|
Siadat MR, Elisevich K, Soltanian-Zadeh H, Eetemadi A, Smith B. Curvature analysis of perisylvian epilepsy. Acta Neurol Belg 2023; 123:2303-2313. [PMID: 37368146 DOI: 10.1007/s13760-023-02238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE We assess whether alterations in the convolutional anatomy of the deep perisylvian area (DPSA) might indicate focal epileptogenicity. MATERIALS AND METHODS The DPSA of each hemisphere was segmented on MRI and a 3D gray-white matter interface (GWMI) geometrical model was constructed. Comparative visual and quantitative assessment of the convolutional anatomy of both the left and right DPSA models was performed. Both the density of thorn-like contours (peak percentage) and coarse interface curvatures was computed using Gaussian curvature and shape index, respectively. The proposed method was applied to a total of 14 subjects; 7 patients with an epileptogenic DPSA and 7 non-epileptic subjects. RESULTS A high peak percentage correlated well with the epileptogenic DPSA. It distinguished between patients and non-epileptic subjects (P = 0.029) and identified laterality of the epileptic focus in all but one case. A diminished regional curvature also identified epileptogenicity (P = 0.016) and, moreover, its laterality (P = 0.001). CONCLUSION An increased peak percentage from a global view of the GWMI of the DPSA provides some indication of a propensity toward a focal or regional DPSA epileptogenicity. A diminished convolutional anatomy (i.e., smoothing effect) appears also to coincide with the epileptogenic site in the DPSA and to distinguish laterality.
Collapse
Affiliation(s)
- Mohammad-Reza Siadat
- Department of Computer Science and Engineering, Oakland University, 115 Library Dr., #540, Rochester, MI, 48309, USA.
| | - Kost Elisevich
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Hamid Soltanian-Zadeh
- Department of Diagnostic Radiology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Ameen Eetemadi
- Department of Computer Science, University of California, Davis, CA, 95616, USA
| | - Brien Smith
- Department of Neurosurgery, Ohio Health, Columbus, OH, 43228, USA
| |
Collapse
|
2
|
Mo J, Zhao B, Adler S, Zhang J, Shao X, Ma Y, Sang L, Hu W, Zhang C, Wang Y, Wang X, Liu C, Zhang K. Quantitative assessment of structural and functional changes in temporal lobe epilepsy with hippocampal sclerosis. Quant Imaging Med Surg 2021; 11:1782-1795. [PMID: 33936964 DOI: 10.21037/qims-20-624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Magnetic resonance imaging (MRI) changes in hippocampal sclerosis (HS) could be subtle in a significant proportion of mesial temporal lobe epilepsy (mTLE) patients. In this study, we aimed to document the structural and functional changes in the hippocampus and amygdala seen in HS patients. Methods Quantitative features of the hippocampus and amygdala were extracted from structural MRI data in 66 mTLE patients and 28 controls. Structural covariance analysis was undertaken using volumetric data from the amygdala and hippocampus. Functional connectivity (FC) measured using resting intracranial electroencephalography (EEG) was analyzed in 22 HS patients and 16 non-HS disease controls. Results Hippocampal atrophy was present in both MRI-positive and MRI-negative HS groups (Mann-Whitney U: 7.61, P<0.01; Mann-Whitney U: 6.51, P<0.01). Amygdala volumes were decreased in the patient group (Mann-Whitney U: 2.92, P<0.05), especially in MRI-negative HS patients (Mann-Whitney U: 2.75, P<0.05). The structural covariance analysis showed the normalized volumes of the amygdala and hippocampus were tightly coupled in both controls and HS patients (ρSpearman =0.72, P<0.01). FC analysis indicated that HS patients had significantly increased connectivity (Student's t: 2.58, P=0.03) within the hippocampus but decreased connectivity between the hippocampus and amygdala (Student's t: 3.33, P=0.01), particularly for MRI-negative HS patients. Conclusions Quantitative structural changes, including hippocampal atrophy and temporal pole blurring, are present in both MRI-positive and MRI-negative HS patients, suggesting the potential usefulness of incorporating quantitative analyses into clinical practice. HS is characterized by increased intra-hippocampal EEG synchronization and decreased coupling between the hippocampus and amygdala.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sophie Adler
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoqiu Shao
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanshan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Luther N, Rubens E, Sethi N, Kandula P, Labar DR, Harden C, Perrine K, Christos PJ, Iorgulescu JB, Lancman G, Schaul NS, Kolesnik DV, Nouri S, Dawson A, Tsiouris AJ, Schwartz TH. The value of intraoperative electrocorticography in surgical decision making for temporal lobe epilepsy with normal MRI. Epilepsia 2011; 52:941-8. [PMID: 21480886 DOI: 10.1111/j.1528-1167.2011.03061.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE We hypothesized that acute intraoperative electrocorticography (ECoG) might identify a subset of patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE) who could proceed directly to standard anteromesial resection (SAMR), obviating the need for chronic electrode implantation to guide resection. METHODS Patients with TLE and a normal MRI who underwent acute ECoG prior to chronic electrode recording of ictal onsets were evaluated. Intraoperative interictal spikes were classified as mesial (M), lateral (L), or mesial/lateral (ML). Results of the acute ECoG were correlated with the ictal-onset zone following chronic ECoG. Onsets were also classified as "M,""L," or "ML." Positron emission tomography (PET), scalp-EEG (electroencephalography), and Wada were evaluated as adjuncts. KEY FINDINGS Sixteen patients fit criteria for inclusion. Outcomes were Engel class I in nine patients, Engel II in two, Engel III in four, and Engel IV in one. Mean postoperative follow-up was 45.2 months. Scalp EEG and PET correlated with ictal onsets in 69% and 64% of patients, respectively. Wada correlated with onsets in 47% of patients. Acute intraoperative ECoG correlated with seizure onsets on chronic ECoG in all 16 patients. All eight patients with "M" pattern ECoG underwent SAMR, and six (75%) experienced Engel class I outcomes. Three of eight patients with "L" or "ML" onsets (38%) had Engel class I outcomes. SIGNIFICANCE Intraoperative ECoG may be useful in identifying a subset of patients with MRI-negative TLE who will benefit from SAMR without chronic implantation of electrodes. These patients have uniquely mesial interictal spikes and can go on to have improved postoperative seizure-free outcomes.
Collapse
Affiliation(s)
- Neal Luther
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|