1
|
Djordjević I, Djordjević S, Kosać A, Vučinić D, Ivanović Radović N, Ždraljević M, Mijajlović M. Transcranial brain parenchyma sonography in patients with juvenile myoclonic epilepsy. Acta Neurol Belg 2024; 124:1335-1342. [PMID: 38644442 DOI: 10.1007/s13760-024-02561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION There are rising evidences that subcortical structures, including the basal ganglia, are affected in patients with epilepsy. These structures are thought to influence the modulation and phenotypic expression of epileptic seizures. Our study aimed to evaluate the presence of structural abnormalities in subcortical structures in patients with juvenile myoclonic epilepsy (JME). METHODS This cross-sectional study included 51 patients who were diagnosed with JME and who were monitored on an outpatient basis at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade from January 1985 to October 2017. All patients underwent transcranial parenchymal sonography (TCS) from October 2015 to October 2017. Relation of clinical parameters (seizure control andcognitive functioning,) with TCS results was assessed. RESULTS Hyperechogenicity of the substantia nigra (SN) was detected in 37.2% of JME subjects and it was significantly more common in patients with JME than in the control group. The marked echogenicity of the red nucleus (RN) was detected in 17.6% of cases, while 11.8% of subjects had hyperechogenic RN. The presence of hyperechogenic RN (both right and left) was significantly more frequent in the group of patients with JME compared to the control group. The third ventricle diameter was larger in patients with JME than in controls. CONCLUSION Structural changes of certain subcortical structures, primarily SN and RN, detected in JME patients indicate additional non-lesional abnormalities of the basal ganglia and midbrain structures in these patients.
Collapse
Affiliation(s)
- Ivana Djordjević
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - Stefan Djordjević
- University Children's Hospital, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Kosać
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Vučinić
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - Nelica Ivanović Radović
- Institute for Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Mirjana Ždraljević
- University Clinical Center of Serbia, Neurology Clinic, 6, Dr Subotica Street, 11000, Belgrade, Serbia
| | - Milija Mijajlović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
- University Clinical Center of Serbia, Neurology Clinic, 6, Dr Subotica Street, 11000, Belgrade, Serbia.
| |
Collapse
|
2
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
3
|
Campos-Rodriguez C, Palmer D, Forcelli PA. Optogenetic stimulation of the superior colliculus suppresses genetic absence seizures. Brain 2023; 146:4320-4335. [PMID: 37192344 PMCID: PMC11004938 DOI: 10.1093/brain/awad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
While anti-seizure medications are effective for many patients, nearly one-third of individuals have seizures that are refractory to pharmacotherapy. Prior studies using evoked preclinical seizure models have shown that pharmacological activation or excitatory optogenetic stimulation of the deep and intermediate layers of the superior colliculus (DLSC) display multi-potent anti-seizure effects. Here we monitored and modulated DLSC activity to suppress spontaneous seizures in the WAG/Rij genetic model of absence epilepsy. Female and male WAG/Rij adult rats were employed as study subjects. For electrophysiology studies, we recorded single unit activity from microwire arrays placed within the DLSC. For optogenetic experiments, animals were injected with virus coding for channelrhodopsin-2 or a control vector, and we compared the efficacy of continuous neuromodulation to that of closed-loop neuromodulation paradigms. For each, we compared three stimulation frequencies on a within-subject basis (5, 20, 100 Hz). For closed-loop stimulation, we detected seizures in real time based on the EEG power within the characteristic frequency band of spike-and-wave discharges (SWDs). We quantified the number and duration of each SWD during each 2 h-observation period. Following completion of the experiment, virus expression and fibre-optic placement was confirmed. We found that single-unit activity within the DLSC decreased seconds prior to SWD onset and increased during and after seizures. Nearly 40% of neurons displayed suppression of firing in response to the start of SWDs. Continuous optogenetic stimulation of the DLSC (at each of the three frequencies) resulted in a significant reduction of SWDs in males and was without effect in females. In contrast, closed-loop neuromodulation was effective in both females and males at all three frequencies. These data demonstrate that activity within the DLSC is suppressed prior to SWD onset, increases at SWD onset, and that excitatory optogenetic stimulation of the DLSC exerts anti-seizure effects against absence seizures. The striking difference between open- and closed-loop neuromodulation approaches underscores the importance of the stimulation paradigm in determining therapeutic effects.
Collapse
Affiliation(s)
| | - Devin Palmer
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
- Department of Neuroscience, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
4
|
Abstract
Mapping neuronal circuits that generate focal to bilateral tonic-clonic seizures is essential for understanding general principles of seizure propagation and modifying the risk of death and injury due to bilateral motor seizures. We used novel techniques developed over the past decade to study these circuits. We propose the general hypothesis that at the mesoscale, seizures follow anatomical projections of the seizure focus, preferentially activating more excitable neurons.
Collapse
Affiliation(s)
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Gernert M, MacKeigan D, Deking L, Kaczmarek E, Feja M. Acute and chronic convection-enhanced muscimol delivery into the rat subthalamic nucleus induces antiseizure effects associated with high responder rates. Epilepsy Res 2023; 190:107097. [PMID: 36736200 DOI: 10.1016/j.eplepsyres.2023.107097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Intracerebral drug delivery is an emerging treatment strategy aiming to manage seizures in patients with systemic drug-resistant epilepsies. In rat seizure and epilepsy models, the GABAA receptor agonist muscimol has shown powerful antiseizure potential when injected acutely into the subthalamic nucleus (STN), known for its capacity to provide remote control of different seizure types. However, chronic intrasubthalamic muscimol delivery required for long-term seizure suppression has not yet been investigated. We tested the hypothesis that chronic convection-enhanced delivery (CED) of muscimol into the STN produces long-lasting antiseizure effects in the intravenous pentylenetetrazole seizure threshold test in female rats. Acute microinjection was included to verify efficacy of intrasubthalamic muscimol delivery in this seizure model and caused significant antiseizure effects at 30 and 60 ng per hemisphere with a dose-dependent increase of responders and efficacy and only mild adverse effects compared to controls. For the chronic study, muscimol was bilaterally infused into the STN over three weeks at daily doses of 60, 300, or 600 ng per hemisphere using an implantable pump and cannula system. Chronic intrasubthalamic CED of muscimol caused significant long-lasting antiseizure effects for up to three weeks at 300 and 600 ng daily. Drug responder rate increased dose-dependently, as did drug tolerance rates. Transient ataxia and body weight loss were the main adverse effects. Drug distribution was comparable (about 2-3 mm) between acute and chronic delivery. This is the first study providing proof-of-concept that not only acute, but also chronic, continuous CED of muscimol into the STN raises seizure thresholds.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
7
|
Ramos-Riera KP, Pérez-Severiano F, López-Meraz ML. Oxidative stress: a common imbalance in diabetes and epilepsy. Metab Brain Dis 2023; 38:767-782. [PMID: 36598703 DOI: 10.1007/s11011-022-01154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The brain requires a large amount of energy. Its function can be altered when energy demand exceeds supply or during metabolic disturbances such as diabetes mellitus. Diabetes, a chronic disease with a high incidence worldwide, is characterized by high glucose levels (hyperglycemia); however, hypoglycemic states may also occur due to insulin treatment or poor control of the disease. These alterations in glucose levels affect the brain and could cause epileptic seizures and status epilepticus. In addition, it is known that oxidative stress states emerge as diabetes progresses, contributing to the development of diseases secondary to diabetes, including retinopathy, nephropathy, cardiovascular alterations, and alterations in the central nervous system, such as epileptic seizures. Seizures are a complex of transient signs and symptoms resulting from abnormal, simultaneous, and excessive activity of a population of neurons, and they can be both a cause and a consequence of oxidative stress. This review aims to outline studies linking diabetes mellitus and seizures to oxidative stress, a condition that may be relevant to the development of severe seizures in diabetes mellitus patients.
Collapse
Affiliation(s)
- Karen Paola Ramos-Riera
- Doctorado de Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez," Insurgentes Sur 3877, 14269, La Fama, CDMX, México
| | - María Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México.
| |
Collapse
|
8
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
9
|
Bandopadhyay R, Singh T, Ghoneim MM, Alshehri S, Angelopoulou E, Paudel YN, Piperi C, Ahmad J, Alhakamy NA, Alfaleh MA, Mishra A. Recent Developments in Diagnosis of Epilepsy: Scope of MicroRNA and Technological Advancements. BIOLOGY 2021; 10:1097. [PMID: 34827090 PMCID: PMC8615191 DOI: 10.3390/biology10111097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, resulting from abnormally synchronized episodic neuronal discharges. Around 70 million people worldwide are suffering from epilepsy. The available antiepileptic medications are capable of controlling seizures in around 60-70% of patients, while the rest remain refractory. Poor seizure control is often associated with neuro-psychiatric comorbidities, mainly including memory impairment, depression, psychosis, neurodegeneration, motor impairment, neuroendocrine dysfunction, etc., resulting in poor prognosis. Effective treatment relies on early and correct detection of epileptic foci. Although there are currently a few well-established diagnostic techniques for epilepsy, they lack accuracy and cannot be applied to patients who are unsupportive or harbor metallic implants. Since a single test result from one of these techniques does not provide complete information about the epileptic foci, it is necessary to develop novel diagnostic tools. Herein, we provide a comprehensive overview of the current diagnostic tools of epilepsy, including electroencephalography (EEG) as well as structural and functional neuroimaging. We further discuss recent trends and advances in the diagnosis of epilepsy that will enable more effective diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.); (C.P.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Guwahati 781101, Assam, India
| |
Collapse
|
10
|
Cannabidiol modifies the seizure expression and effects of antiseizure drugs in a rat model of recurrent severe seizures. Seizure 2021; 90:67-73. [DOI: 10.1016/j.seizure.2021.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
|
11
|
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain 2021; 144:2074-2091. [PMID: 33730155 DOI: 10.1093/brain/awab119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Shinnosuke Shiono
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
12
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|
13
|
Sirvanci S, Akakin D, Gulcebi İdrizoglu M, Kaya OT, Karamahmutoglu T, Turgan Aşık ZN, Onat F. Ultrastructural GABA immunogold labeling in the substantia nigra pars reticulata of kindled genetic absence epilepsy rats. Ultrastruct Pathol 2020; 44:379-386. [PMID: 33118420 DOI: 10.1080/01913123.2020.1839153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is a well-known animal model of absence epilepsy and they are resistant to electrical kindling stimulations. The present study aimed to examine possible differences in gamma-aminobutyric acid (GABA) levels and synapse counts in the substantia nigra pars reticulata anterior (SNRa) and posterior (SNRp) regions between GAERS and Wistar rats receiving kindling stimulations. Animals in the kindling group either received six stimulations in the amygdala and had grade 2 seizures or they were kindled, having grade five seizures. Rats were decapitated one hour after the last stimulation. SNR regions were obtained after vibratome sectioning of the brain tissue. GABA immunoreactivity was detected by immunogold method and synapses were counted. Sections were observed by transmission electron microscope and analyzed by Image J program. GABA density in the SNRa region of fully kindled GAERS and Wistar groups increased significantly compared to that of their corresponding grade 2 groups. The number of synapses increased significantly in kindled and grade 2 GAERS groups, compared to kindled and grade 2 Wistar groups, respectively, in the SNRa region. GABA density in the SNRp region of kindled GAERS group increased significantly compared to that of GAERS grade 2 group. In the SNRp region, both kindled and grade 2 GAERS groups were found to have increased number of synapses compared to that of GAERS control group. We concluded that both SNRa and SNRp regions may be important in modulating resistance of GAERS to kindling stimulations.
Collapse
Affiliation(s)
- Serap Sirvanci
- Department of Histology and Embryology, School of Medicine, Marmara University , Maltepe, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, School of Medicine, Marmara University , Maltepe, Turkey
| | | | - Ozlem Tugce Kaya
- Department of Histology and Embryology, School of Medicine, Marmara University , Maltepe, Turkey
| | - Tugba Karamahmutoglu
- Department of Medical Pharmacology, School of Medicine, Marmara University , Maltepe, Turkey
| | - Zehra Nur Turgan Aşık
- Department of Medical Pharmacology, School of Medicine, Marmara University , Maltepe, Turkey
| | - Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Marmara University , Maltepe, Turkey
| |
Collapse
|
14
|
A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun 2020; 11:923. [PMID: 32066723 PMCID: PMC7026152 DOI: 10.1038/s41467-020-14648-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/26/2020] [Indexed: 01/11/2023] Open
Abstract
The precise circuit of the substantia nigra pars reticulata (SNr) involved in temporal lobe epilepsy (TLE) is still unclear. Here we found that optogenetic or chemogenetic activation of SNr parvalbumin+ (PV) GABAergic neurons amplifies seizure activities in kindling- and kainic acid-induced TLE models, whereas selective inhibition of these neurons alleviates seizure activities. The severity of seizures is bidirectionally regulated by optogenetic manipulation of SNr PV fibers projecting to the parafascicular nucleus (PF). Electrophysiology combined with rabies virus-assisted circuit mapping shows that SNr PV neurons directly project to and functionally inhibit posterior PF GABAergic neurons. Activity of these neurons also regulates seizure activity. Collectively, our results reveal that a long-range SNr-PF disinhibitory circuit participates in regulating seizure in TLE and inactivation of this circuit can alleviate severity of epileptic seizures. These findings provide a better understanding of pathological changes from a circuit perspective and suggest a possibility to precisely control epilepsy. The neural circuits through which the substantia nigra pars reticulata (SNr) exerts its role in epilepsy control are not known. Here the authors reveal that a long-range SNr-parafascicular nucleus disinhibitory circuit participates in regulating seizures in temporal lobe epilepsy and inhibition of this circuit can alleviate severity of epileptic seizures.
Collapse
|
15
|
Molinero I, Galanopoulou AS, Moshé SL. Rodent models: Where it all started with these "truths". Eur J Paediatr Neurol 2020; 24:61-65. [PMID: 31875833 PMCID: PMC7179510 DOI: 10.1016/j.ejpn.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Isaac Molinero
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; 111 East 210th Street, Montefiore Medical Center, Bronx, NY, 10467, USA.
| | - Aristea S Galanopoulou
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA.
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology and Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; 1410 Pelham Parkway South, Kennedy Center Rm 316, Bronx, NY, 10461, USA.
| |
Collapse
|
16
|
Persson J, Szalisznyó K, Antoni G, Wall A, Fällmar D, Zora H, Bodén R. Phosphodiesterase 10A levels are related to striatal function in schizophrenia: a combined positron emission tomography and functional magnetic resonance imaging study. Eur Arch Psychiatry Clin Neurosci 2020; 270:451-459. [PMID: 31119377 PMCID: PMC7210243 DOI: 10.1007/s00406-019-01021-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Pharmacological inhibition of phosphodiesterase 10A (PDE10A) is being investigated as a treatment option in schizophrenia. PDE10A acts postsynaptically on striatal dopamine signaling by regulating neuronal excitability through its inhibition of cyclic adenosine monophosphate (cAMP), and we recently found it to be reduced in schizophrenia compared to controls. Here, this finding of reduced PDE10A in schizophrenia was followed up in the same sample to investigate the effect of reduced striatal PDE10A on the neural and behavioral function of striatal and downstream basal ganglia regions. A positron emission tomography (PET) scan with the PDE10A ligand [11C]Lu AE92686 was performed, followed by a 6 min resting-state magnetic resonance imaging (MRI) scan in ten patients with schizophrenia. To assess the relationship between striatal function and neurophysiological and behavioral functioning, salience processing was assessed using a mismatch negativity paradigm, an auditory event-related electroencephalographic measure, episodic memory was assessed using the Rey auditory verbal learning test (RAVLT) and executive functioning using trail-making test B. Reduced striatal PDE10A was associated with increased amplitude of low-frequency fluctuations (ALFF) within the putamen and substantia nigra, respectively. Higher ALFF in the substantia nigra, in turn, was associated with lower episodic memory performance. The findings are in line with a role for PDE10A in striatal functioning, and suggest that reduced striatal PDE10A may contribute to cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Jonas Persson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden.
| | - K. Szalisznyó
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - G. Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden ,PET-Centre, Uppsala University Hospital, Uppsala, Sweden
| | - A. Wall
- PET-Centre, Uppsala University Hospital, Uppsala, Sweden ,Department of Surgical Sciences, Nuclear medicine and PET, Uppsala University, Uppsala, Sweden
| | - D. Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - H. Zora
- Department of Linguistics, Stockholm University, Stockholm, Sweden
| | - R. Bodén
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Abstract
Mapping the circuits underlying the generation and propagation of seizures is critically important for understanding their pathophysiology. We review evidence to suggest that circuits engaged in secondarily generalized seizures are likely to be more complex than those currently proposed. Focal seizures have been proposed to engage canonical thalamocortical circuits that mediate primarily generalized absence seizures, leading to secondarily generalized tonic-clonic seizures. In addition to traveling through the canonical thalamocortical circuits, secondarily generalized seizures could also travel through the striatum, globus pallidus, substantia nigra reticulata, and corpus callosum to the contralateral hemisphere. Recruitment of principal neurons in superficial layers 2/3 of the cortex can play a critical role in corticocortical seizure spread. Understanding the neuronal structures engaged in generating secondarily generalized seizures could provide novel targets for neuromodulation for the treatment of seizures. Furthermore, these sites may be loci of neuronal plasticity facilitating epileptogenesis. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
Affiliation(s)
- Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Departments of Neurology, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
18
|
Abstract
[Box: see text].
Collapse
|
19
|
Zhang K, Li Y, Gong H, Liang P, Zhang P. The role of the substantia nigra pars reticulata anterior in amygdala-kindled seizures. Brain Res 2019; 1715:84-93. [DOI: 10.1016/j.brainres.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/26/2022]
|
20
|
Backofen-Wehrhahn B, Gey L, Bröer S, Petersen B, Schiff M, Handreck A, Stanslowsky N, Scharrenbroich J, Weißing M, Staege S, Wegner F, Niemann H, Löscher W, Gernert M. Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Exp Neurol 2018; 310:70-83. [PMID: 30205107 DOI: 10.1016/j.expneurol.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
Cell transplantation based therapy is a promising strategy for treating intractable epilepsies. Inhibition of the subthalamic nucleus (STN) or substantia nigra pars reticulata (SNr) is a powerful experimental approach for remote control of different partial seizure types, when targeting the seizure focus is not amenable. Here, we tested the hypothesis that grafting of embryonic/fetal neural precursor cells (NPCs) from various species (rat, human, pig) into STN or SNr of adult rats induces anticonvulsant effects. To rationally refine this approach, we included NPCs derived from the medial ganglionic eminence (MGE) and ventral mesencephalon (VM), both of which are able to develop a GABAergic phenotype. All VM- and MGE-derived cells showed intense migration behavior after grafting into adult rats, developed characteristics of inhibitory interneurons, and survived at least up to 4 months after transplantation. By using the intravenous pentylenetetrazole (PTZ) seizure threshold test in adult rats, transient anticonvulsant effects were observed after bilateral grafting of NPCs derived from human and porcine VM into STN, but not after SNr injection (site-specificity). In contrast, MGE-derived NPCs did not cause anticonvulsant effects after grafting into STN or SNr (cell-specificity). Neither induction of status epilepticus by lithium-pilocarpine to induce neuronal damage prior to the PTZ test nor pretreatment of MGE cells with retinoic acid and potassium chloride to increase differentiation into GABAergic neurons could enhance anticonvulsant effectiveness of MGE cells. This is the first proof-of-principle study showing anticonvulsant effects by bilateral xenotransplantation of NPCs into the STN. Our study highlights the value of VM-derived NPCs for interneuron-based cell grafting targeting the STN.
Collapse
Affiliation(s)
- Bianca Backofen-Wehrhahn
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Laura Gey
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Miriam Schiff
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annelie Handreck
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Jessica Scharrenbroich
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Michael Weißing
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Selma Staege
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
21
|
Moshé SL. The 2017 Sachs Lecture: Kindling Knowledge in Epilepsy. Pediatr Neurol 2018; 85:5-12. [PMID: 29958806 DOI: 10.1016/j.pediatrneurol.2018.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
22
|
Lauková M, Velíšková J, Velíšek L, Shakarjian MP. Developmental and sex differences in tetramethylenedisulfotetramine (TMDT)-induced syndrome in rats. Dev Neurobiol 2018; 78:403-416. [PMID: 29411537 DOI: 10.1002/dneu.22582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Tetramethylenedisulfotetramine (TMDT) is a synthetic neurotoxic rodenticide considered a chemical threat agent. Symptoms of intoxication include seizures leading to status epilepticus and death. While children and women have been often the victims, no studies exist investigating the neurotoxic effects of TMDT in developing individuals or females. Thus, we performed such an investigation in developing Sprague-Dawley rats of both sexes in order to identify potential age- or sex-dependent vulnerability to TMDT exposure. Subcutaneous injection was chosen as the preferred route of TMDT exposure. EEG recordings confirmed the seizure activity observed in both postnatal day 15 (P15) and adult rats. Additionally, P15 rats displayed greater sensitivity to TMDT than postnanatal day 25 or adult animals. Seizures were generally more severe in females compared to males. Barrel rotations accompanied convulsions in P25 and adult, but sparsely in P15 rats. Adults developed barrel rolling less frequently than P25 population. Neuronal cell death was not present in 24-h TMDT survivors at any age or sex tested. A seizure rechallenge with flurothyl 7 days following TMDT exposure demonstrated longer latencies to the first clonic seizure but a faster progression into the tonic-clonic seizure in P15 and adult survivors as compared to their vehicle-injected counterparts. In conclusion, the youngest age group represents the most vulnerable population to the TMDT-induced toxidrome. Females appear to be more vulnerable than males. TMDT exposure promotes seizure spread and progression in survivors. These findings will help to establish sex- and age-specific treatment strategies for TMDT-exposed individuals. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 403-416, 2018.
Collapse
Affiliation(s)
- Marcela Lauková
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York.,Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Michael P Shakarjian
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
23
|
Saniya K, Patil BG, Chavan MD, Prakash KG, Sailesh KS, Archana R, Johny M. Neuroanatomical Changes in Brain Structures Related to Cognition in Epilepsy: An Update. J Nat Sci Biol Med 2017; 8:139-143. [PMID: 28781476 PMCID: PMC5523517 DOI: 10.4103/0976-9668.210016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Understanding the microanatomical changes in brain structures is necessary for developing innovative therapeutic approaches to prevent/delay the cognitive impairment in epilepsy. We review here the microanatomical changes in the brain structures related to cognition in epilepsy. Here, we have presented the changes in major brain structures related to cognition, which helps the clinicians understand epilepsy more clearly and also helps researchers develop new treatment procedures.
Collapse
Affiliation(s)
- K Saniya
- Department of Anatomy, Azeezia Institute of Medical Sciences, Kollam, Kerala, India
| | - B G Patil
- Department of Anatomy, Shri B. M. Patil Medical College, Bijapur, Karnataka, India
| | - Madhavrao D Chavan
- Department of Pharmacology, Azeezia Institute of Medical Sciences, Kollam, Kerala, India
| | - K G Prakash
- Department of Anatomy, Azeezia Institute of Medical Sciences, Kollam, Kerala, India
| | - Kumar Sai Sailesh
- Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly, Kerala, India
| | - R Archana
- Department of Anatomy, Saveetha Medical College, Saveetha University, Chennai, Tamil Nadu, India
| | - Minu Johny
- Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly, Kerala, India
| |
Collapse
|
24
|
Evaluation of GAD67 immunoreactivity in the region of substantia nigra pars reticulata in resistance to development of convulsive seizure in genetic absence epilepsy rats. North Clin Istanb 2017; 3:161-167. [PMID: 28275746 PMCID: PMC5336619 DOI: 10.14744/nci.2016.16056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE: Nonconvulsive absence epilepsy and convulsive epilepsy seizures are rarely seen in the same patient. It has been demonstrated that there is a resistance to development of convulsive seizures in genetic absence epilepsy models. The present study investigated glutamic acid decarboxylase (GAD) immunoreactivity in the brain region related to the interaction of these two seizure types, namely substantia nigra pars reticulata (SNR) subregions, SNRanterior and SNRposterior. METHODS: Nonepileptic adult male Wistar rats and Genetic Absence Epilepsy Rats from Strasbourg (GAERS) were used. Experimental groups of Wistar and GAERS were electrically stimulated for kindling model to induce convulsive epileptic seizures. An electrical stimulation cannula was stereotaxically implanted to the basolateral amygdala and recording electrodes were placed on the cortex. Sagittal sections of SNR were used to evaluate immunohistochemical reaction. Sections were incubated with anti-GAD67 antibody. Densitometric analysis of GAD67 immunoreactive neurons was performed using photographs of stained sections. One-way analysis of variance and post hoc Bonferroni test were used for statistical analysis of the data. RESULTS: There was no difference in GAD67 immunoreactivity of SNR subregions of control Wistar and control GAERS. An increase in GAD67 immunoreactivity was detected in SNRposterior subregion of stimulated Wistar rats, whereas there was a decrease in GAD67 immunoreactivity in SNRposterior of stimulated GAERS. The difference in GAD67 immunoreactivity between these two groups was statistically significant. CONCLUSION: Level of synthetized gamma-aminobutyric acid in SNRposterior subregion plays an important role in the interaction of nonconvulsive absence epilepsy seizures and convulsive epilepsy seizures.
Collapse
|
25
|
Abstract
Positron emission tomography (PET) is a neuroimaging method that offers insights into the molecular functioning of a human brain. It has been widely used to study metabolic and neurotransmitter abnormalities in people with epilepsy. This article reviews the development of several PET radioligands and their application in studying the molecular mechanisms of epilepsy. Over the last decade, tracers binding to serotonin and γ-aminobutyric acid (GABA) receptors have been used to delineate the location of the epileptic focus. PET studies have examined the role of opioids, cannabinoids, acetylcholine, and dopamine in modulating neuronal hyperexcitability and seizure termination. In vivo analyses of drug transporters, e.g., P-glycoprotein, have increased our understanding of pharmacoresistance that could inform new therapeutic strategies. Finally, PET experiments targeting neuroinflammation and glutamate receptors might guide the development of novel biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom.,Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom. .,Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, United Kingdom.
| |
Collapse
|
26
|
Developmental pharmacology of benzodiazepines under normal and pathological conditions. Epileptic Disord 2016; 16 Spec No 1:S59-68. [PMID: 25335485 DOI: 10.1684/epd.2014.0690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Benzodiazepines are allosteric agonists of GABAA receptors (GABAAR), pentameric ligand-gated Cl(-) channels, which serve both an important neurodevelopmental role but are also the principal inhibitory system in the brain. However, their subunit composition, channel properties, and function, as well as their region-specific expression patterns, change through development. These processes have been extensively studied in rodents and to some extent confirmed in higher species. Specifically, GABAARs acquire faster kinetics with age and their pharmacology changes rendering them more sensitive to drugs that have higher affinity for α1 subunit-containing GABAARs, such as benzodiazepines, but also, their inhibitory function becomes more potent as they shift from having depolarising to hyperpolarising responses due to a shift in Cl(-) gradient and cation chloride cotransporter expression. Concerns have been raised about possible pro-apoptotic and paradoxical effects of benzodiazepines in the neonatal normal rat brain, although it is unclear, as yet, whether this extends to brains exposed to seizures. Growing evidence indicates that the pharmacology and physiology of GABAARs may be altered in the brain of rats or humans with seizures or epilepsy, or different aetiologies that predispose to epilepsy. These changes follow different paths, depending on sex, age, region, cell type, aetiology, or time-point specific factors. Identification of dynamic biomarkers that could enable these changes in vivo to be monitored would greatly facilitate the selection of more effective agonists with fewer side effects.
Collapse
|
27
|
Follow Thy Bear: The NMDA Receptor Antibodies Are Epileptogenic. Epilepsy Curr 2016; 16:174-6. [DOI: 10.5698/1535-7511-16.3.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Quinn JC. Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine. J Parasitol Res 2015; 2015:368064. [PMID: 26576290 PMCID: PMC4630403 DOI: 10.1155/2015/368064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
The alkaloid toxin quinine and its derivative compounds have been used for many centuries as effective medications for the prevention and treatment of malaria. More recently, synthetic derivatives, such as the quinoline derivative mefloquine (bis(trifluoromethyl)-(2-piperidyl)-4-quinolinemethanol), have been widely used to combat disease caused by chloroquine-resistant strains of the malaria parasite, Plasmodium falciparum. However, the parent compound quinine, as well as its more recent counterparts, suffers from an incidence of adverse neuropsychiatric side effects ranging from mild mood disturbances and anxiety to hallucinations, seizures, and psychosis. This review considers how the pharmacology, cellular neurobiology, and membrane channel kinetics of mefloquine could lead to the significant and sometimes life-threatening neurotoxicity associated with mefloquine exposure. A key role for mefloquine blockade of ATP-sensitive potassium channels and connexins in the substantia nigra is considered as a unifying hypothesis for the pathogenesis of severe neuropsychiatric events after mefloquine exposure in humans.
Collapse
Affiliation(s)
- Jane C. Quinn
- Plant and Animal Toxicology Group, School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
29
|
Akman O, Gulcebi MI, Carcak N, Ketenci Ozatman S, Eryigit T, Moshé SL, Galanopoulou AS, Onat FY. The role of the substantia nigra pars reticulata in kindling resistance in rats with genetic absence epilepsy. Epilepsia 2015; 56:1793-802. [PMID: 26471261 DOI: 10.1111/epi.13204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Genetic Absence Epilepsy Rats from Strasbourg (GAERS) show a resistance to secondary generalization of focal limbic seizures evoked by kindling. The substantia nigra pars reticulata (SNR) is involved in the propagation and modulation of seizures in kindling. We first examined the role of the SNRanterior and SNRposterior subregions in the resistance to the development of kindling in GAERS. Subsequently, to determine whether kindling resistance relates to differential sensitivity of γ-aminobutyric acid γ-aminobutyric acid (GABA)ergic or dopaminergic SNR neurons to kindling, we studied the effects of kindling-inducing stimulations on parvalbumin (PRV; GABAergic neuron marker) or tyrosine hydroxylase (TH; dopaminergic neuron marker) immunoreactivity (ir), respectively, in GAERS and in nonepileptic control (NEC) Wistar rats that lack kindling resistance. METHODS Adult male GAERS were implanted with a stimulation electrode in the amygdala, and bilateral injection cannulas for lidocaine or saline injection (30 min before each kindling stimulation until the animals reached three stage 5 seizures or the 22 stimulations) into the SNRanterior or SNRposterior . In another experiment, PRV-ir in SNRanterior and SNRposterior and TH-ir in SNRposterior only were densitometrically compared in GAERS-SHAM, NEC-SHAM GAERS-STIM, and NEC-STIM animals (6 kindling stimulations). RESULTS Bilateral SNRposterior infusions of lidocaine eliminated the kindling resistance and resulted in stage 5 generalized motor seizures in all kindled rats. Bilateral lidocaine infusions in the SNRanterior failed to alter the kindling resistance in GAERS. PRV-ir in the SNRposterior was unaltered in GAERS-STIM but increased in NEC-STIM group. Cellular TH-ir in the SNRposterior significantly increased by kindling stimulations in both NEC-STIM and GAERS-STIM groups. SIGNIFICANCE The kindling resistance in GAERS is mediated by the SNRposterior in a lidocaine-sensitive manner. The insensitivity to kindling stimulation of PRV-ir in SNRposterior of GAERS but not NEC rats, implicate GABAergic SNRposterior neurons in kindling resistance. In contrast, the observed stimulation-specific increase in TH-ir in the SNRposterior is unrelated to kindling resistance.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Medine I Gulcebi
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Nihan Carcak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sema Ketenci Ozatman
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey.,Vocational School of Health Service, Istanbul Bilim University, Istanbul, Turkey
| | - Tugba Eryigit
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A
| | - Filiz Yilmaz Onat
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey.,Epilepsy Research Center, Marmara University, Istanbul, Turkey
| |
Collapse
|
30
|
Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata. Neurochem Res 2015; 40:747-57. [PMID: 25645446 DOI: 10.1007/s11064-015-1523-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.
Collapse
|
31
|
Giorgi FS, Galanopoulou AS, Moshé SL. Sex dimorphism in seizure-controlling networks. Neurobiol Dis 2014; 72 Pt B:144-52. [PMID: 24851800 DOI: 10.1016/j.nbd.2014.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022] Open
Abstract
Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks.
Collapse
Affiliation(s)
- Fillippo Sean Giorgi
- Department of Clinical and Experimental Medicine, Section of Neurology, University of Pisa-Pisa University Hospital, I56126 Pisa, Italy.
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, and Dominick P. Purpura Department of Neuroscience, Bronx, NY, 10461, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, and Dominick P. Purpura Department of Neuroscience, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
32
|
Galanopoulou AS, Moshé SL. Does epilepsy cause a reversion to immature function? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:195-209. [PMID: 25012378 DOI: 10.1007/978-94-017-8914-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Seizures have variable effects on brain. Numerous studies have examined the consequences of seizures, in light of the way that these may alter the susceptibility of the brain to seizures, promote epileptogenesis, or functionally alter brain leading to seizure-related comorbidities. In many -but not all- situations, seizures shift brain function towards a more immature state, promoting the birth of newborn neurons, altering the dendritic structure and neuronal connectivity, or changing neurotransmitter signaling towards more immature patterns. These effects depend upon many factors, including the seizure type, age of seizure occurrence, sex, and brain region studied. Here we discuss some of these findings proposing that these seizure-induced immature features do not simply represent rejuvenation of the brain but rather a de-synchronization of the homeostatic mechanisms that were in place to maintain normal physiology, which may contribute to epileptogenesis or the cognitive comorbidities.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, The Laboratory of Developmental Epilepsy, Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA,
| | | |
Collapse
|
33
|
Handreck A, Backofen-Wehrhahn B, Bröer S, Löscher W, Gernert M. Anticonvulsant Effects by Bilateral and Unilateral Transplantation of GABA-Producing Cells into the Subthalamic Nucleus in an Acute Seizure Model. Cell Transplant 2014. [DOI: 10.3727/096368912x658944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural transplantation of GABA-producing cells into key structures within seizure-suppressing circuits holds promise for medication-resistant epilepsy patients not eligible for resection of the epileptic focus. The substantia nigra pars reticulata (SNr), a basal ganglia output structure, is well known to modulate different seizure types. A recent microinjection study by our group indicated that the subthalamic nucleus (STN), which critically regulates nigral activity, might be a more promising target for focal therapy in epilepsies than the SNr. As a proof of principle, we therefore assessed the anticonvulsant efficacy of bilateral and unilateral allografting of GABA-producing cell lines into the STN using the timed intravenous pentylenetetrazole seizure threshold test, which allows repeated seizure threshold determinations in individual rats. We observed (a) that grafted cells survived up to the end of the experiments, (b) that anticonvulsant effects can be induced by bilateral transplantation into the STN using immortalized GABAergic cells derived from the rat embryonic striatum and cells additionally transfected to obtain higher GABA synthesis than the parent cell line, and (c) that anticonvulsant effects were observed even after unilateral transplantation into the STN. Neither grafting of control cells nor transplantation outside the STN induced anticonvulsant effects, emphasizing the site and cell specificity of the observed anticonvulsant effects. To our knowledge, the present study is the first showing anticonvulsant effects by grafting of GABA-producing cells into the STN. The STN can be considered a highly promising target region for modulation of seizure circuits and, moreover, has the advantage of being clinically established for functional neurosurgery.
Collapse
Affiliation(s)
- Annelie Handreck
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Bianca Backofen-Wehrhahn
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
34
|
Lado FA, Rubboli G, Capovilla G, Avanzini G, Moshé SL. Pathophysiology of epileptic encephalopathies. Epilepsia 2013; 54 Suppl 8:6-13. [PMID: 24571111 PMCID: PMC3937844 DOI: 10.1111/epi.12417] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The application of metabolic imaging and genetic analysis, and now the development of appropriate animal models, has generated critical insights into the pathogenesis of epileptic encephalopathies. In this article we present ideas intended to move from the lesions associated with epileptic encephalopathies toward understanding the effects of these lesions on the functioning of the brain, specifically of the cortex. We argue that the effects of focal lesions may be magnified through the interaction between cortical and subcortical structures, and that disruption of subcortical arousal centers that regulate cortex early in life may lead to alterations of intracortical synapses that affect a critical period of cognitive development. Impairment of interneuronal function globally through the action of a genetic lesion similarly causes widespread cortical dysfunction manifesting as increased delta slow waves on electroencephalography (EEG) and as developmental delay or arrest clinically. Finally, prolonged focal epileptic activity during sleep (as occurring in the syndrome of continuous spike-wave in slow sleep, or CSWSS) might interfere with local slow wave activity at the site of the epileptic focus, thereby impairing the neural processes and, possibly, the local plastic changes associated with learning and other cognitive functions. Seizures may certainly add to these pathologic processes, but they are likely not necessary for the development of the cognitive pathology. Nevertheless, although seizures may be either a consequence or symptom of the underlying lesion, their effective treatment can improve outcomes as both clinical and experimental studies may suggest. Understanding their substrates may lead to novel, effective treatments for all aspects of the epileptic encephalopathy phenotype.
Collapse
Affiliation(s)
- Fred A. Lado
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center; Bronx, New York, U.S.A
| | - Guido Rubboli
- Danish Epilepsy Center, Epilepsihospitalet, Dianalund, Denmark and Neurology Unit, Department of Neurosciences, Bellaria Hospital, Bologna, Italy
| | - Giuseppe Capovilla
- Epilepsy Center, Department of Child Neuropsychiatry, C. Poma Hospital, Mantova, Italy
| | - Giuliano Avanzini
- Department of Neurophysiology IRCCS Foundation Neurological Institute, Milano, Italy
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience and Department of Pediatrics, Laboratory of Developmental Epilepsy, Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
35
|
Lehman RM, Augustine JR. Evolution and Rebirth of Functional Stereotaxy in the Subthalamus. World Neurosurg 2013; 80:521-33. [DOI: 10.1016/j.wneu.2012.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 03/19/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
|
36
|
Tanchuck MA, Cozzoli DK, He I, Kaufman KR, Snelling C, Crabbe JC, Mark GP, Finn DA. Local changes in neurosteroid levels in the substantia nigra reticulata and the ventral tegmental area alter chronic ethanol withdrawal severity in male withdrawal seizure-prone mice. Alcohol Clin Exp Res 2013; 37:784-93. [PMID: 23278716 PMCID: PMC3620817 DOI: 10.1111/acer.12027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/17/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allopregnanolone (ALLO) is a potent positive modulator of γ-aminobutyric acidA receptors (GABAA Rs) that affects ethanol (EtOH) withdrawal. Finasteride (FIN), a 5α-reductase inhibitor that blocks the formation of ALLO and other GABAergic neurosteroids, alters EtOH sensitivity. Recently, we found that Withdrawal Seizure-Prone mice from the first genetic replicate (WSP-1) exhibited behavioral tolerance to the anticonvulsant effect of intrahippocampal ALLO during EtOH withdrawal and that intrahippocampal FIN significantly increased EtOH withdrawal severity. The purpose of this study was to determine whether neurosteroid manipulations in the substantia nigra reticulata (SNR) and ventral tegmental area (VTA) produced effects during EtOH withdrawal comparable to those seen with intrahippocampal ALLO and FIN. METHODS Male WSP-1 mice were surgically implanted with bilateral guide cannulae aimed at the SNR or VTA at 2 weeks prior to EtOH vapor or air exposure for 72 hours. Initial studies examined the anticonvulsant effect of a single ALLO infusion (0, 100, or 400 ng/side) at a time corresponding to peak withdrawal in the air- and EtOH-exposed mice. Separate studies examined the effect of 4 FIN infusions (0 or 10 μg/side/d) during the development of physical dependence on the expression of EtOH withdrawal. RESULTS ALLO infusion exerted a potent anticonvulsant effect in EtOH-naïve mice, but a diminished anticonvulsant effect during EtOH withdrawal. Administration of FIN into the SNR exerted a delayed proconvulsant effect in EtOH-naïve mice, whereas infusion into the VTA increased EtOH withdrawal duration. CONCLUSIONS Activation of local GABAA Rs in the SNR and VTA via ALLO infusion is sufficient to exert an anticonvulsant effect in naïve mice and to produce behavioral tolerance to the anticonvulsant effect of ALLO infusion during EtOH withdrawal. Thus, EtOH withdrawal reduced sensitivity of GABAA Rs to GABAergic neurosteroids in 2 neuroanatomical substrates within the basal ganglia in WSP-1 male mice.
Collapse
Affiliation(s)
- Michelle A Tanchuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Velíšková J, Desantis KA. Sex and hormonal influences on seizures and epilepsy. Horm Behav 2013; 63:267-77. [PMID: 22504305 PMCID: PMC3424285 DOI: 10.1016/j.yhbeh.2012.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
38
|
Abstract
Deep brain stimulation (DBS) is a method of treatment utilized to control medically refractory epilepsy (RE). Patients with medically refractory epilepsy who do not achieve satisfactory control of seizures with pharmacological treatment or surgical resection of the epileptic focus and those who do not qualify for surgery could benefit from DBS. The most frequently used stereotactic targets for DBS are the anterior thalamic nucleus, subthalamic nucleus, central-medial thalamic nucleus, hippocampus, amygdala and cerebellum. The DBS is believed to be an effective method of treatment for various types of epilepsy among adults and adolescents. Side effects may be associated with implantation of electrodes and with the stimulation itself. An increasing number of publications and growing interest in DBS application for RE may result in standardization of the qualification and treatment protocol for RE with DBS.
Collapse
Affiliation(s)
- Tomasz Tykocki
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Institute of Oncology, Warsaw, Poland
| | | | - Henryk Koziara
- Department of Neurosurgery, Institute of Oncology, Warsaw, Poland
| | - Paweł Nauman
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
39
|
Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav 2012; 25:56-9. [PMID: 22835431 DOI: 10.1016/j.yebeh.2012.04.125] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 11/22/2022]
Abstract
There is substantial evidence in the literature that the basal ganglia (BG), namely the striatum and pallidum, are involved in temporal lobe epilepsy (TLE). The BG are probably not involved in elaborating clinical seizures, as they do not produce specific epileptiform activity and there is no evident change in the electrical activity in the BG immediately after seizure onset. The data we obtained by direct ictal recording in the BG [1,2], as well as a large body of experimental and clinical evidence reported by other groups, suggest an inhibitory role of the BG during temporal lobe seizures. The BG may have a remote influence on cortical oscillatory processes related to control of epileptic seizures via their feedback pathways to the cortex.
Collapse
|
40
|
Abstract
Voltage-gated K(+) channels (Kv) represent the largest family of genes in the K(+) channel family. The Kv1 subfamily plays an essential role in the initiation and shaping of action potentials, influencing action potential firing patterns and controlling neuronal excitability. Overlapping patterns with differential expression and precise localization of Kv1.1 and Kv1.2 channels targeted to specialized subcellular compartments contribute to distinctive patterns of neuronal excitability. Dynamic regulation of the components in these subcellular domains help to finely tune the cellular and regional networks. Disruption of the expression, distribution, and density of these channels through deletion or mutation of the genes encoding these channels, Kcna1 and Kcna2, is associated with neurologic pathologies including epilepsy and ataxia in humans and in rodent models. Kv1.1 and Kv1.2 knockout mice both have seizures beginning early in development; however, each express a different seizure type (pathway), although the channels are from the same subfamily and are abundantly coexpressed. Voltage-gated ion channels clustered in specific locations may present a novel therapeutic target for influencing excitability in neurologic disorders associated with some channelopathies.
Collapse
Affiliation(s)
- Carol A Robbins
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
41
|
Crepeau AZ, Moseley BD, Wirrell EC. Specific safety and tolerability considerations in the use of anticonvulsant medications in children. DRUG HEALTHCARE AND PATIENT SAFETY 2012; 4:39-54. [PMID: 22792008 PMCID: PMC3392695 DOI: 10.2147/dhps.s28821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epilepsy is one of the most common neurological disorders in the pediatric age range, and the majority of affected children can be safely and effectively treated with antiepileptic medication. While there are many antiepileptic agents on the market, specific drugs may be more efficacious for certain seizure types or electroclinical syndromes. Furthermore, certain adverse effects are more common with specific classes of medication. Additionally patient-specific factors, such as age, race, other medical conditions, or concurrent medication use may result in higher rates of side effects or altered efficacy. Significant developmental changes in gastric absorption, protein binding, hepatic metabolism, and renal clearance are seen over the pediatric age range, which impact pharmacokinetics. Such changes must be considered to determine optimal dosing and dosing intervals for children at specific ages. Furthermore, approximately one third of children require polytherapy for seizure control, and many more take concurrent medications for other conditions. In such children, drug–drug interactions must be considered to minimize adverse effects and improve efficacy. This review will address issues of antiepileptic drug efficacy, tolerability and ease of use, pharmacokinetics, and drug–drug interactions in the pediatric age range.
Collapse
Affiliation(s)
- Amy Z Crepeau
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
42
|
Turner DA. Re-engineering the subthalamus. World Neurosurg 2012; 80:476-8. [PMID: 22634466 DOI: 10.1016/j.wneu.2012.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
Affiliation(s)
- Dennis A Turner
- Department of Neurosurgery and Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
43
|
Mejía-Toiber J, Limón-Pacheco J, Gonzalez-Gallardo A, Giordano M. In vivo GABA release and kinetics of transgene loss in a GABAergic cell line after long-term transplantation into the rat brain. Neuroscience 2012; 203:244-54. [DOI: 10.1016/j.neuroscience.2011.11.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/08/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
44
|
Casas S, García S, Cabrera R, Nanfaro F, Escudero C, Yunes R. Progesterone prevents depression-like behavior in a model of Parkinson's disease induced by 6-hydroxydopamine in male rats. Pharmacol Biochem Behav 2011; 99:614-8. [DOI: 10.1016/j.pbb.2011.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/09/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
|
45
|
Citraro R, Scicchitano F, De Fazio S, Raggio R, Mainardi P, Perucca E, De Sarro G, Russo E. Preclinical activity profile of α-lactoalbumin, a whey protein rich in tryptophan, in rodent models of seizures and epilepsy. Epilepsy Res 2011; 95:60-9. [PMID: 21458955 DOI: 10.1016/j.eplepsyres.2011.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the potential anticonvulsant activity of α-lactalbumin (ALAC), a whey protein rich in tryptophan (TRP) relative to other large neutral amino acids (LNAAs), in rodent models of seizures and epilepsy. METHODS The effects of ALAC administered per os were evaluated by standard protocols against audiogenic seizures in Genetic Epilepsy Prone Rats (GEPR-9 rats), maximal electroshock (MES)-induced seizures in rats, pilocarpine-induced seizures in mice, spontaneous chronic seizures in mice exposed to pilocarpine-induced status epilepticus (SE), and absence seizures in WAG/Rij rats. In some models, carbamazepine (CBZ) was included as an active control. Plasma TRP/LNAAs ratios were measured by GC-MS. RESULTS Single doses of ALAC up to 500 or 6000 mg/kg were devoid of anticonvulsant activity in all models tested. Conversely, 5- and 12-day treatment with ALAC (250-1000 mg/kg/day) in GEPR rats reduced dose-dependently seizure scores and prolonged latency to clonus onset, with full persistence of the effect for up to 12h. ALAC (125-500 mg/kg/day for 15 days) protected against seizures induced by 250 mg/kg pilocarpine, but was less effective against higher pilocarpine doses. Similarly to CBZ, ALAC (125-500 mg/kg/day for 15 days) was also effective against spontaneous seizures in the post-pilocarpine SE model. ALAC (up to 6000 mg/kg/day for 12 days) did not prevent MES-induced seizures, although it reduced the duration of tonic extension at doses between 250 and 1000 mg/kg/day. Absence seizures in WAG/Rij rats were not significantly affected by ALAC. Plasma TRP/LNAAS ratios increased 2- to 3-fold after dosing with ALAC (250 mg/kg/day) for 7 and 14 days, respectively. CONCLUSIONS ALAC exerts significant protective activity against seizures in animal models, the effect being especially prominent against audiogenic seizures in GEPR-9 rats, seizures induced by low-dose pilocarpine in mice, and spontaneous seizures in mice exposed to pilocarpine-induced SE. This action is likely to be mediated by increased availability of TRP in the brain, with a consequent increase in 5-HT mediated transmission.
Collapse
Affiliation(s)
- Rita Citraro
- Chair of Pharmacology, Department of Experimental and Clinical Medicine, School of Medicine, University Magna Graecia of Catanzaro, Via T. Campanella 115, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zawadzki L, Stafstrom CE. Status epilepticus treatment and outcome in children: what might the future hold? Semin Pediatr Neurol 2010; 17:201-5. [PMID: 20727491 DOI: 10.1016/j.spen.2010.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Status epilepticus is a life-threatening emergency that requires urgent treatment. Over the past decade, numerous advances have been made in the management of status epilepticus. Clinical studies have now established the benefit of early, aggressive treatment of status epilepticus with benzodiazepines in both prehospital and hospital settings. Neuroscientific advances are revealing mechanisms of status epilepticus that could translate into targets for treating acute status epilepticus and even reducing epileptogenesis. This article discusses future trends in the diagnosis, neurobiology, and treatment of status epilepticus.
Collapse
Affiliation(s)
- Lucyna Zawadzki
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin, Madison, WI 53705, USA
| | | |
Collapse
|
47
|
Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 2010; 460:505-23. [PMID: 20352446 DOI: 10.1007/s00424-010-0816-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 02/02/2023]
Abstract
The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Room 306, Bronx, NY 10461, USA.
| |
Collapse
|
48
|
Kücker S, Töllner K, Piechotta M, Gernert M. Kindling as a model of temporal lobe epilepsy induces bilateral changes in spontaneous striatal activity. Neurobiol Dis 2010; 37:661-72. [DOI: 10.1016/j.nbd.2009.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 11/18/2009] [Accepted: 12/03/2009] [Indexed: 11/26/2022] Open
|
49
|
Coppola A, Moshé SL. Why is the developing brain more susceptible to status epilepticus? Epilepsia 2010; 50 Suppl 12:25-6. [PMID: 19941516 DOI: 10.1111/j.1528-1167.2009.02371.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonietta Coppola
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | | |
Collapse
|
50
|
Age- and gender-related differences in GABAA receptor-mediated postsynaptic currents in GABAergic neurons of the substantia nigra reticulata in the rat. Neuroscience 2009; 163:155-67. [PMID: 19531372 DOI: 10.1016/j.neuroscience.2009.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/10/2009] [Accepted: 06/01/2009] [Indexed: 11/21/2022]
Abstract
The responsiveness of the rat anterior substantia nigra pars reticulata (SNR) GABAergic neurons to GABA(A)ergic drugs changes with age and gender, altering its role in seizure control. To determine whether maturational and gender-specific differences in the properties of spontaneous GABA(A)Rs-mediated inhibitory postsynaptic currents (sIPSCs) underlie these events, we studied sIPSCs at baseline and after application of the alpha1 GABA(A)Rs subunit selective agonist zolpidem, at postnatal days (PN) 5-9, PN12-15, and PN28-32. Results were correlated with the alpha1 and alpha 3 GABA(A)Rs subunit immunoreactivity (-ir) at PN5, PN15, and PN30, using immunochemistry. The mean frequency, amplitude and charge transfer increased whereas the 10-90% rise time and decay time accelerated with age in both genders. The faster sIPSC kinetics in older rats were paralleled by increased alpha1-ir and decreased alpha 3-ir. At PN5-9, males had more robust sIPSCs (frequency, amplitude, charge carried per event and charge transfer) than females. At PN28-32, males exhibited higher amplitudes and faster kinetics than females. The zolpidem-induced increase of decay times, amplitude and charge transfer and alpha1-ir expression were the lowest in PN5-9 males but increased with age, in both genders. Our findings demonstrate that alterations in GABA(A)Rs subunit expression partially underlie age- and gender-specific sIPSC changes in SNR neurons. However, the observation of gender differences in sIPSC kinetics that cannot be attributed to changes in perisomatic alpha1 expression suggests the existence of additional gender-specific factors that control the sIPSC kinetics in rat SNR.
Collapse
|