1
|
Rodríguez-Morales J, Guartazaca-Guerrero S, Rizo-Téllez SA, Viurcos-Sanabria R, Barrón EV, Hernández-Valencia AF, Nava P, Escobedo G, Carrillo-Ruiz JD, Méndez-García LA. Blood-brain Barrier Damage is Pivotal for SARS-CoV-2 Infection to the Central Nervous System. Exp Neurobiol 2022; 31:270-276. [PMID: 36050226 PMCID: PMC9471413 DOI: 10.5607/en21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Transsynaptic transport is the most accepted proposal to explain the SARS-CoV-2 infection of the CNS. Nevertheless, emerging evidence shows that neurons do not express the SARS-CoV-2 receptor ACE2, which highlights the importance of the blood-brain barrier (BBB) in preventing virus entry to the brain. In this study, we examine the presence of SARS-CoV-2 messenger ribonucleic acid (mRNA) and the cytokine profile in cerebrospinal fluids (CSF) from two patients with a brain tumor and COVID-19. To determine the BBB damage, we evaluate the Q- albumin index, which is an indirect parameter to assess the permeability of this structure. The Q-albumin index of the patient with an intraventricular brain tumor suggests that the BBB is undamaged, preventing the passage of SARS-CoV-2 and pro-inflammatory molecules. The development of brain tumors that disrupt the BBB (measured by the Q-albumin index), in this case, a petroclival meningioma (Case 1), allows the free passage of the SARS-CoV-2 virus and probably lets the free transit of pro-inflammatory molecules to the CNS, which leads to a possible activation of the microglia (astrogliosis) and an exacerbated immune response represented by IL-13, IFN-γ, and IL-2 trying to inhibit both the infection and the carcinogenic process.
Collapse
Affiliation(s)
- Jahir Rodríguez-Morales
- Neurosurgery Specialty, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.,Neurology and Neurosurgery Unit, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | - Sebastián Guartazaca-Guerrero
- Neurosurgery Specialty, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.,Neurology and Neurosurgery Unit, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | - Salma A Rizo-Téllez
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico.,PECEM, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Rebeca Viurcos-Sanabria
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico.,PECEM, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Eira Valeria Barrón
- Genomic Medicine, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | - Aldo F Hernández-Valencia
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City 06720, Mexico
| | - Porfirio Nava
- Departments of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | - José Damián Carrillo-Ruiz
- Unit for Stereotactic and Functional Neurosurgery, General Hospital of Mexico, Mexico City 06720, Mexico.,Direction of Research, General Hospital of Mexico, Mexico City 06720, Mexico.,Faculty of Health Sciences, Anahuac University, Mexico City 52786, Mexico
| | - Lucía A Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| |
Collapse
|
2
|
Fredriksson L, Lawrence DA, Medcalf RL. tPA Modulation of the Blood-Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS. Semin Thromb Hemost 2017; 43:154-168. [PMID: 27677179 PMCID: PMC5848490 DOI: 10.1055/s-0036-1586229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The plasminogen activation (PA) system is best known for its role in fibrinolysis. However, it has also been shown to regulate many nonfibrinolytic functions in the central nervous system (CNS). In particular, tissue-type plasminogen activator (tPA) is reported to have pleiotropic activities in the CNS, regulating events such as neuronal plasticity, excitotoxicity, and cerebrovascular barrier integrity, whereas urokinase-type plasminogen activator is mainly associated with tissue remodeling and cell migration. It has been suggested that the role tPA plays in controlling barrier integrity may provide a unifying mechanism for the reported diverse, and often opposing, functions ascribed to tPA in the CNS. Here we will review the possibility that the pleiotropic effects reported for tPA in physiologic and pathologic processes in the CNS may be a consequence of its role in the neurovascular unit in regulation of cerebrovascular responses and subsequently parenchymal homeostasis. We propose that this might offer an explanation for the ongoing debate regarding the neurotoxic versus neuroprotective roles of tPA.
Collapse
Affiliation(s)
- Linda Fredriksson
- Department of Medical Biochemistry & Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Fredriksson L, Stevenson TK, Su EJ, Ragsdale M, Moore S, Craciun S, Schielke GP, Murphy GG, Lawrence DA. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol 2015; 2:722-38. [PMID: 26273685 PMCID: PMC4531055 DOI: 10.1002/acn3.209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE A growing body of evidence suggests that increased blood-brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures. METHODS An experimental model of kainate-induced seizures was used in genetically modified mice, including mice deficient in tPA (tPA (-/-) ), its inhibitor neuroserpin (Nsp (-/-) ), or both (Nsp:tPA (-/-) ), and in mice conditionally deficient in the platelet-derived growth factor receptor alpha (PDGFRα). RESULTS Compared to wild-type (WT) mice, Nsp (-/-) mice have significantly reduced latency to seizure onset and generalization; whereas tPA (-/-) mice have the opposite phenotype, as do Nsp:tPA (-/-) mice. Furthermore, interventions that maintain BBB integrity delay seizure propagation, whereas osmotic disruption of the BBB in seizure-resistant tPA (-/-) mice dramatically reduces the time to seizure onset and accelerates seizure progression. The phenotypic differences in seizure progression between WT, tPA (-/-) , and Nsp (-/-) mice are also observed in electroencephalogram recordings in vivo, but absent in ex vivo electrophysiological recordings where regulation of the BBB is no longer necessary to maintain the extracellular environment. Finally, we demonstrate that these effects on seizure progression are mediated through signaling by PDGFRα on perivascular astrocytes. INTERPRETATION Together, these data identify a specific molecular pathway involving tPA-mediated PDGFRα signaling in perivascular astrocytes that regulates seizure progression through control of the BBB. Inhibition of PDGFRα signaling and maintenance of BBB integrity might therefore offer a novel clinical approach for managing seizures.
Collapse
Affiliation(s)
- Linda Fredriksson
- Division of Vascular Biology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet Stockholm, Sweden ; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, Michigan
| | - Tamara K Stevenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, Michigan
| | - Enming J Su
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, Michigan
| | - Margaret Ragsdale
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, Michigan
| | - Shannon Moore
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, Michigan
| | - Stefan Craciun
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, Michigan
| | - Gerald P Schielke
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, Michigan
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, Michigan ; Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, Michigan
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, Michigan ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, Michigan
| |
Collapse
|
4
|
Joshi S, Singh-Moon R, Wang M, Bruce JN, Bigio IJ, Mayevsky A. Real-time hemodynamic response and mitochondrial function changes with intracarotid mannitol injection. Brain Res 2014; 1549:42-51. [PMID: 24440631 DOI: 10.1016/j.brainres.2013.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/02/2013] [Accepted: 12/31/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Disruption of blood brain barrier (BBB) is used to enhance chemotherapeutic drug delivery. The purpose of this study was to understand the time course of hemodynamic and metabolic response to intraarterial (IA) mannitol infusions in order to optimize the delivery of drugs for treating brain tumors. PRINCIPAL RESULTS We compared hemodynamic response, EEG changes, and mitochondrial function as judged by relative changes in tissue NADH concentrations, after intracarotid (IC) infusion of equal volumes of normal saline and mannitol in our rabbit IC drug delivery model. We observed significantly greater, though transient, hyperemic response to IC infusion of mannitol compared to normal saline. Infusion of mannitol also resulted in a greater increase in tissue NADH concentrations relative to the baseline. These hemodynamic, and metabolic changes returned to baseline within 5min of mannitol injection. CONCLUSION Significant, though transient, changes in blood flow and brain metabolism occur with IA mannitol infusion. The observed transient hyperemia would suggest that intravenous (IV) chemotherapy should be administered either just before, or concurrent with IA mannitol injections. On the other hand, IA chemotherapy should be delayed until the peak hyperemic response has subsided.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.
| | - Rajinder Singh-Moon
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Mei Wang
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Avraham Mayevsky
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
5
|
Abstract
Autoimmune diseases currently affect 5-7% of the world's population; in most diseases there are circulating autoantibodies. Brain-reactive antibodies are present in approximately 2-3% of the general population but do not usually contribute to brain pathology. These antibodies penetrate brain tissue only early in development or under pathologic conditions. This restriction on their pathogenicity and the lack of correlation between serum titers and brain pathology have, no doubt, contributed to a delayed appreciation of the contribution of autoantibodies in diseases of the central nervous system. Nonetheless, it is increasingly clear that antibodies can cause damage in the brain and likely initiate or aggravate multiple neurologic conditions; brain-reactive antibodies contribute to symptomatology in autoimmune disease, infectious disease, and malignancy.
Collapse
Affiliation(s)
- B Diamond
- Feinstein Institute for Medical Research, Manhasset, New York 11030, USA.
| | | | | | | | | |
Collapse
|
6
|
Jeon D, Chu K, Lee ST, Jung KH, Kang KM, Ban JJ, Kim S, Seo JS, Won CH, Kim M, Lee SK, Roh JK. A cell-free extract from human adipose stem cells protects mice against epilepsy. Epilepsia 2011; 52:1617-26. [PMID: 21777228 DOI: 10.1111/j.1528-1167.2011.03182.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Stem cell-based therapies are being considered for various neurologic diseases, such as epilepsy. Recent studies have suggested that some effects of transplanted stem cells are due to bystander effects that modulate the host environment, rather than direct effects of cell replacement. The extract from human adipose stem cells (ASCs) that secrete multiple growth factors including cytokines and chemokines may be a potential source of bystander effects for the treatment of epilepsy, in which inflammation is thought to play an important role. Here, we investigated the effects of a cytosolic extract of human ASCs (ASCs-E) in a mouse model of epilepsy. METHODS Human ASCs-E, boiled ASCs-E, or fibroblast-extract (fibroblast-E) was intraperitoneally administrated to C57BL/6 mice 15 min before pilocarpine-induced status epilepticus (SE) or during chronic epileptic stage. Blood-brain barrier (BBB) leakage was evaluated by measuring Evans blue dye extravasation. Spontaneous recurrent seizure (SRS) was investigated by long-term video-electroencephalography (EEG) monitoring. The mice performed elevated plus maze, open-field, light/dark transition, and novel object recognition tasks. KEY FINDINGS Acute application of human ASCs-E before SE led to earlier attenuation of seizure spike activities after treatment with diazepam, reduction of BBB leakage, and inhibition of the development of epilepsy. Human ASCs-E treatment (for 7 days) during the chronic epileptic stage suppressed SRS and reduced abnormal epileptic behavioral phenotypes. However, neither boiled ASCs-E nor fibroblast-E had any effects in the experimental epilepsy model. SIGNIFICANCE Our results demonstrate that human ASCs-E prevents or inhibits epileptogenesis and SRS in mice. They also suggest a stem cell-based, noninvasive therapy for the treatment of epilepsy.
Collapse
Affiliation(s)
- Daejong Jeon
- Electrophysiological & Behavioral Brain Science Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia 2011; 52 Suppl 3:33-9. [PMID: 21542844 DOI: 10.1111/j.1528-1167.2011.03034.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Experimental evidence strongly indicates a significant role for inflammatory and immune mediators in initiation of seizures and epileptogenesis. Here we will summarize data supporting the involvement of IL-1β, TNF-α and toll-like receptor 4 in seizure generation and the process of epileptogenesis. The physiological homeostasis and control over brain immune response depends on the integrity of the blood-brain barrier, transforming growth factor (TGF)-β signaling and leukocyte migration. To what extent targeting the immune system is successful in preventing epileptogenesis, and which signaling pathway should be beleaguered is still under intensive research.
Collapse
Affiliation(s)
- Alon Friedman
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | |
Collapse
|
8
|
Fabene PF, Bramanti P, Constantin G. The emerging role for chemokines in epilepsy. J Neuroimmunol 2010; 224:22-7. [PMID: 20542576 DOI: 10.1016/j.jneuroim.2010.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/04/2010] [Indexed: 01/13/2023]
Abstract
Epilepsy has been considered mainly a neuronal disease, without much attention to non-neuronal cells. In recent years growing evidence suggest that astrocytes, microglia, blood leukocytes and blood-brain barrier breakdown are involved in the pathogenesis of epilepsy. In particular, leukocyte-endothelium interactions and eventually subsequent leukocyte recruitment in the brain parenchyma seem to represent key players in the epileptogenic cascade. Chemokines are chemotactic factors controlling leukocyte migration under physiological and pathological conditions. In the light of recent advances in our understanding of the role of inflammation mechanisms in the pathogenesis of epilepsy, pro-inflammatory chemokines may play a critical role in epileptogenesis.
Collapse
Affiliation(s)
- Paolo F Fabene
- Department of Morphological and Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy.
| | | | | |
Collapse
|
9
|
Fabene PF. Non-neuronal cells, inflammation and epilepsy (Commentary on Aronicaet al.). Eur J Neurosci 2010; 31:1098-9. [DOI: 10.1111/j.1460-9568.2010.07187.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
|
11
|
Stokely ME, Orr EL. Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J Neurotrauma 2008; 25:52-61. [PMID: 18355158 DOI: 10.1089/neu.2007.0397] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED Neurological complications after mild head injury can include vasogenic edema and/or subsequent development of epilepsy, conditions associated with elevated histamine. In the present study we assessed the potential of mast cells located in the dura mater to contribute to elevated cortical histamine and breakdown of the blood-brain barrier after minor head injury, modeled by either a parietal craniectomy or producing a groove in (scoring) the parietal bone surface to model a grazing head injury. We measured the following effects at 5-20 min after a unilateral parietal craniectomy (rats) or unilateral scoring of the parietal bone (mice): (1) mast cell integrity in subjacent dura mater; (2) subjacent vs. contralateral histamine in dura mater and cerebral cortex; (3) vascular permeability of cerebral cortical blood vessels subjacent to the injury, and; (4) the effects of an H(2)-receptor antagonist on cerebral cortical vascular permeability. RESULTS Dural mast cells subjacent to the craniectomy became activated (degranulated) concomitant with (1) decreased histamine in dura mater subjacent to the craniectomy; (2) increased histamine in the subjacent cerebral cortex; and (3) extravasation of Evans blue-albumin which stained the subjacent cerebral cortex, indicating a localized breakdown of the blood-brain barrier. Similar results were observed in mice after scoring the parietal bone surface and, additionally, pretreatment with the histamine H(2)-receptor antagonist zolantadine (1 h before injury) dose-dependently inhibited extravasation of Evans blue-albumin. We conclude that even a minor grazing injury of the skull, in the absence of penetrating brain injury or concussion, can activate dural mast cells and elevate cortical histamine, a novel mechanism with potential contributions to neurotraumatic complications arising from a relatively minor or grazing head wound.
Collapse
Affiliation(s)
- Martha E Stokely
- Department of Pharmacology and Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | | |
Collapse
|