1
|
Lamb DR, Greenfield A, Thangaraju K, Setua S, Eiker G, Wang Q, Vahedi A, Khan MA, Yahya A, Cabrales P, Palmer AF, Buehler PW. The Molecular Size of Bioengineered Oxygen Carriers Determines Tissue Oxygenation in a Hypercholesterolemia Guinea Pig Model of Hemorrhagic Shock and Resuscitation. Mol Pharm 2023; 20:5739-5752. [PMID: 37843033 DOI: 10.1021/acs.molpharmaceut.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Polymerized human hemoglobin (PolyhHb) has shown promise in preclinical hemorrhagic shock settings. Different synthetic and purification schemes can control the size of PolyhHbs, yet research is lacking on the impact of polymerized hemoglobin size on tissue oxygenation following hemorrhage and resuscitation in specialized animal models that challenge their resuscitative capabilities. Pre-existing conditions that compromise the vasculature and end organs, such as the liver, may limit the effectiveness of resuscitation and exacerbate the toxicity of these molecules, which is an important but minimally explored therapeutic dimension. In this study, we compared the effective oxygen delivery of intermediate molecular weight PolyhHb (PolyhHb-B3; 500-750 kDa) to high molecular weight PolyhHb (PolyhHb-B4; 750 kDa-0.2 μm) for resuscitative effectiveness in guinea pig models subjected to hemorrhagic shock. We evaluated how the size of PolyhHb impacts hemodynamics and tissue oxygenation in normal guinea pigs and guinea pigs on an atherogenic diet. We observed that while PolyhHb-B3 and -B4 equivalently restore hemodynamic parameters of normal-dieted guinea pigs, high-fat-dieted guinea pigs resuscitated with PolyhHb-B4 have lower mean arterial pressures, impaired tissue oxygenation, and higher plasma lactate levels than those receiving PolyhHb-B3. We characterized the plasma of these animals following resuscitation and found that despite similar oxygen delivery kinetics, circulating PolyhHb-B3 and -B4 demonstrated a size-dependent increase in the plasma viscosity, consistent with impaired perfusion in the PolyhHb-B4 transfusion group. We conclude that intermediate-sized PolyhHbs (such as -B3) are ideal for further research given the effective resuscitation of hemorrhagic shock based on tissue oxygenation in hypercholesterolemic guinea pigs.
Collapse
Affiliation(s)
- Derek R Lamb
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Saini Setua
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Gena Eiker
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Qihong Wang
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Amid Vahedi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
- Department of Pathology, University of Maryland School of Medicine, 10 S Pine St # 700A, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Hui W, Mu W, Zhao C, Xue D, Zhong Z, Fang Y, Gao M, Li X, Gao S, Liu K, Yan K. Solid-Phase Polymerization Using Anion-Exchange Resin Can Almost Completely Crosslink Hemoglobin to Prepare Hemoglobin-Based Oxygen Carriers. Int J Nanomedicine 2023; 18:1777-1791. [PMID: 37041816 PMCID: PMC10083038 DOI: 10.2147/ijn.s403739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction A limitation of hemoglobin-based oxygen carriers (HBOCs) as oxygen therapeutics is unpolymerized hemoglobin, which induces vasoconstriction leading to hypertension. The removal of unpolymerized hemoglobin from polymerized hemoglobin (PolyHb) is complex, expensive, and time-consuming. Methods Herein, we developed a method to completely polymerize hemoglobin almost without unpolymerized hemoglobin. Hemoglobin was adsorbed on the anion-exchange resin Q Sepharose Fast Flow or DEAE Sepharose Fast Flow, and acetal, a crosslinker prepared from glutaraldehyde and ethylene glycol, was employed to polymerize the hemoglobin. The polymerization conditions, including reaction time, pH, resin type, and molar ratios of glutaraldehyde to ethylene glycol and hemoglobin to acetal, were optimized. The blood pressure and blood gas of mice injected with PolyHb were monitored as well. Results The optimal polymerization condition of PolyHb was when the molar ratio of glutaraldehyde to ethylene glycol was 1:20, and the molar ratio of 10 mg/mL hemoglobin adsorbed on anion-exchange resin to glutaraldehyde was 1:300 for 60 min. Under optimized reactive conditions, hemoglobin was almost completely polymerized, with <1% hemoglobin remaining unpolymerized, and the molecular weight of PolyHb was more centrally distributed. Furthermore, hypertension was not induced in mice by PolyHb, and there were also no pathological changes observed in arterial oxygen, blood gas, electrolytes, and some metabolic indicators. Conclusion The findings of this study indicate that the use of solid-phase polymerization and acetal is a highly effective and innovative approach to HBOCs, resulting in the almost completely polymerized hemoglobin. These results offer promising implications for the development of new methods for preparing HBOCs.
Collapse
Affiliation(s)
- Wenli Hui
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Wenhua Mu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Cong Zhao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Dan Xue
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Zihua Zhong
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Yani Fang
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Ming Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Xiao Li
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Shihao Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kaiyue Liu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kunping Yan
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
- Correspondence: Kunping Yan, Email
| |
Collapse
|
3
|
Olson JS. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxid Redox Signal 2020; 32:228-246. [PMID: 31530172 PMCID: PMC6948003 DOI: 10.1089/ars.2019.7876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Over the past 50 years, the mechanisms for O2 storage and transport have been determined quantitatively on distance scales from millimeters to tenths of nanometers and timescales from seconds to picoseconds. Recent Advances: In this review, I have described four key conclusions from work done by my group and our close colleagues. (i) O2 uptake by mammalian red cells is limited by diffusion through unstirred water layers adjacent to the cell surface and across cell-free layers adjacent to vessel walls. (ii) In most vertebrates, hemoglobins (Hbs) and myoglobins (Mbs), the distal histidine at the E7 helical position donates a strong hydrogen bond to bound O2, which selectively enhances O2 affinity, prevents carbon monoxide poisoning, and markedly slows autoxidation. (iii) O2 binding to mammalian Hbs and Mbs occurs by migration of the ligand through a channel created by upward rotation of the His(E7) side chain, capture in the empty space of the distal pocket, and then coordination with the ferroprotoporphyrin IX (heme) iron atom. (iv) The assembly of Mbs and Hbs occurs by formation of molten globule intermediates, in which the N- and C-terminal helices have almost fully formed secondary structures, but the heme pockets are disordered and followed by high-affinity binding of heme. Critical Issues: These conclusions indicate that there are often compromises between O2 transport function, holoprotein stability, and the efficiency of assembly. Future Directions: However, the biochemical mechanisms underlying these conclusions provide the framework for understanding globin evolution in greater detail and for engineering more efficient and stable globins.
Collapse
Affiliation(s)
- John S Olson
- BioSciences Department, Rice University, Houston, Texas
| |
Collapse
|
4
|
Edmondson M, Jana S, Meng F, Strader MB, Baek JH, Gao Y, Buehler PW, Alayash AI. Redox states of hemoglobin determine left ventricle pressure recovery and activity of mitochondrial complex IV in hypoxic rat hearts. Free Radic Biol Med 2019; 141:348-361. [PMID: 31302228 DOI: 10.1016/j.freeradbiomed.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
Cardiovascular effects were reported to occur in humans and in animal models during transfusion with hemoglobin (Hb)-based oxygen therapeutics. The effects of Hb's iron redox states on cardiac parameters during hypoxia/reoxygenation are however poorly defined. We hypothesize that acute exposures to ferric Hb during hypoxia leads to cardiomyocyte injury and an impaired left ventricular response accompanied by cardiac mitochondrial bioenergetic dysfunction. Recovery of left ventricular functions in an isolated rat heart Langendorff perfusion system was observed following perfusion with ferrous but not with ferric Hb. Ferric Hb induced the development of heart lesions, and impairment of the respiratory chain complex activity. Under normoxia, a sharp decline in cardiac parameters was observed following co-perfusion of low (20 μM) and high (100 μM) ascorbic acid (Asc) with ferrous Hb. This trend continued with ferric Hb co-perfusion, but only at the higher concentration of Asc. These observations suggest that perfusion of the hypoxic heart with ferric Hb increases oxidative stress thereby resulting in cardiac dysfunction. Intervention with Asc to reduce ferric Hb may offer a strategy to control Hb toxicity; however, timing of administration, and dosage of Asc may require individual optimization to target specific redox forms of Hb.
Collapse
Affiliation(s)
- Makhosazane Edmondson
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA
| | - Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA
| | - Fantao Meng
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA
| | - Michael Brad Strader
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA
| | - Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA
| | - Yamei Gao
- Laboratory of Pediatric and Respiratory Viral Disease, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Maryland, USA.
| |
Collapse
|
5
|
Webster KD, Dahhan D, Otto AM, Frosti CL, Dean WL, Chaires JB, Olsen KW. "Inside-Out" PEGylation of Bovine β-Cross-Linked Hemoglobin. Artif Organs 2017; 41:351-358. [PMID: 28321886 DOI: 10.1111/aor.12928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/06/2023]
Abstract
The development of a blood substitute is urgent due to blood shortages and potential communicable diseases. A novel method, inside-out PEGylation, has been used here to conjugate a multiarm maleimide-PEG (Mal-PEG) to β-cross-linked (βXL-Hb) hemoglobin (Hb) tetramers through the Cys β93 residues. This method produces a polymer with a single PEG backbone that is surrounded by multiple proteins, rather than coating a single protein with multiple PEG chains. Electrophoresis under denaturing conditions showed a large molecular weight species. Gel filtration chromatography and analytical ultracentrifugation determined the most prevalent species had three βXL-Hb to one Mal-PEG. Thermal denaturation studies showed that the cross-linked and PEGylated species were more stable than native Hb. Cross-linking under oxy-conditions produced a high oxygen affinity Hb species (P50 = 9.18 Torr), but the oxygen affinity was not significantly altered by PEGylation (P50 = 9.67 Torr). Inside-out PEGylation can be used to produce a hemoglobin-based oxygen carrier and potentially for other multiprotein complexes.
Collapse
Affiliation(s)
- Kyle D Webster
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL
| | - Dana Dahhan
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL
| | - Abigail M Otto
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL
| | - Cheyanne L Frosti
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL
| | | | - Jonathan B Chaires
- James Graham Brown Cancer Center.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL
| |
Collapse
|
6
|
Management of the Jehovah's Witness in Obstetrics and Gynecology: A Comprehensive Medical, Ethical, and Legal Approach. Obstet Gynecol Surv 2017; 71:488-500. [PMID: 27526872 DOI: 10.1097/ogx.0000000000000343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Obstetricians and gynecologists frequently deal with hemorrhage so they should be familiar with management of patients who refuse blood transfusion. Although there are some reports in the literature about management of Jehovah's Witness patients in obstetrics and gynecology, most of them are case reports, and a comprehensive review about these patients including ethicolegal perspective is lacking. OBJECTIVE This review outlines the medical, ethical, and legal implications of management of Jehovah's Witness patients in obstetrical and gynecological settings. EVIDENCE ACQUISITION A search of published literature using PubMed, Ovid Medline, EMBASE, and Cochrane databases was conducted about physiology of oxygen delivery and response to tissue hypoxia, mortality rates at certain hemoglobin levels, medical management options for anemic patients who refuse blood transfusion, and ethical/legal considerations in Jehovah's Witness patients. RESULTS Early diagnosis of anemia and immediate initiation of therapy are essential in patients who refuse blood transfusion. Medical management options include iron supplementation and erythropoietin. There are also some promising therapies that are in development such as antihepcidin antibodies and hemoglobin-based oxygen carriers. Options to decrease blood loss include antifibrinolytics, desmopressin, recombinant factor VII, and factor concentrates. When surgery is the only option, every effort should be made to pursue minimally invasive approaches. CONCLUSION AND RELEVANCE All obstetricians and gynecologists should be familiar with alternatives and "less invasive" options for patients who refuse blood transfusions.
Collapse
|
7
|
Zhou W, Li S, Hao S, Liu J, Wang H, Yang C. An optimal polymerization process for low mean molecular weight HBOC with lower dimer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:148-51. [PMID: 25519745 DOI: 10.3109/21691401.2014.934455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The new research tried to improve the distribution of molecular weight of Hb-based oxygen carriers (HBOC), a bottleneck of glutaraldehyde (GDA)-polymerization process. The orthogonal experiments were done on the basis of the early study of human placenta Hemoglobin (Hb)-crosslinked-GDA and three factors were selected including the molar ratio of GDA and Hb, Hb concentration, and the rate of the feeding GDA. The optimal match condition of polymerization process prepared for the purpose of lower mean molecular weight, content of super-weight molecule, and the content of dimer. The results showed that the molar ratio of GDA and Hb was the greatest influencing factor on the molecular weight distribution of polymerized-Hb, followed by the Hb concentration, and the last is the rate of feeding GDA. The optimum matching conditions had reached the objective that the mean molecular weight with 155.54 ± 5.79, the content of dimer with 17.23 ± 3.71, and content of super-weight molecule with 0.17 ± 0.09, and the results can be repeated in the 30 times expansion experiments.
Collapse
Affiliation(s)
- Wentao Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences , Chengdu, Sichuan , P. R. China
| | | | | | | | | | | |
Collapse
|
8
|
Varnado CL, Mollan TL, Birukou I, Smith BJ, Henderson DP, Olson JS. Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal 2013; 18:2314-28. [PMID: 23025383 PMCID: PMC3638513 DOI: 10.1089/ars.2012.4917] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/23/2012] [Accepted: 10/01/2012] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. RECENT ADVANCES Large amounts of recombinant human Hb can be expressed and purified from transgenic Escherichia coli. The physiological suitability of this material can be enhanced using protein-engineering strategies to address specific efficacy and toxicity issues. Mutagenesis of Hb can (i) adjust dioxygen affinity over a 100-fold range, (ii) reduce nitric oxide (NO) scavenging over 30-fold without compromising dioxygen binding, (iii) slow the rate of autooxidation, (iv) slow the rate of hemin loss, (v) impede subunit dissociation, and (vi) diminish irreversible subunit denaturation. Recombinant Hb production is potentially unlimited and readily subjected to current good manufacturing practices, but may be restricted by cost. Acellular Hb-based O(2) carriers have superior shelf-life compared to red blood cells, are universally compatible, and provide an alternative for patients for whom no other alternative blood products are available or acceptable. CRITICAL ISSUES Remaining objectives include increasing Hb stability, mitigating iron-catalyzed and iron-centered oxidative reactivity, lowering the rate of hemin loss, and lowering the costs of expression and purification. Although many mutations and chemical modifications have been proposed to address these issues, the precise ensemble of mutations has not yet been identified. FUTURE DIRECTIONS Future studies are aimed at selecting various combinations of mutations that can reduce NO scavenging, autooxidation, oxidative degradation, and denaturation without compromising O(2) delivery, and then investigating their suitability and safety in vivo.
Collapse
Affiliation(s)
| | - Todd L. Mollan
- Center for Biologics Evaluation and Research, Division of Hematology, United States Food and Drug Administration, Bethesda, Maryland
| | - Ivan Birukou
- Department of Biochemistry, Duke University, Durham, North Carolina
| | - Bryan J.Z. Smith
- Department of Biology, The University of Texas of the Permian Basin, Odessa, Texas
| | - Douglas P. Henderson
- Department of Biology, The University of Texas of the Permian Basin, Odessa, Texas
| | - John S. Olson
- Department of Biochemistry & Cell Biology, Rice University, Houston, Texas
| |
Collapse
|
9
|
Zhou W, Zhao L, Wang J, Li S, Chen G, Liu J, Yang C. An optimal polymerization conditions for poly-human placenta hemoglobin with lower mean molecular weight. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 41:289-92. [PMID: 23363417 DOI: 10.3109/21691401.2012.744995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To reduce the mean molecular weight [Formula: see text] and to increase the effective polymerization ratio (REff) of polymerized human placenta hemoglobin (PolyPHb). METHODS Three factors of GDA-PolyPHb process such as the approach of feeding GDA (FGDA), hemoglobin concentration ([Hb]) and the molar ratio of GDA, and hemoglobin(RGDA:Hb) were investigated. Finally, the expansion experiments were conducted with optimal conditions. RESULTS The data showed that the HBOCs with the REff of 67.35% and lower [Formula: see text] of 162.70 kDa were prepared by optimal conditions. CONCLUSION Compared to original process, the optimal process greatly decreased the [Formula: see text] and increased the REff.
Collapse
Affiliation(s)
- Wentao Zhou
- School of Pharmaceutical Science & Technology, Tianjin University , Tianjin , P. R. China
| | | | | | | | | | | | | |
Collapse
|
10
|
Olsson MG, Allhorn M, Bülow L, Hansson SR, Ley D, Olsson ML, Schmidtchen A, Akerström B. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Antioxid Redox Signal 2012; 17:813-46. [PMID: 22324321 DOI: 10.1089/ars.2011.4282] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hemoglobin (Hb) is the major oxygen (O(2))-carrying system of the blood but has many potentially dangerous side effects due to oxidation and reduction reactions of the heme-bound iron and O(2). Extracellular Hb, resulting from hemolysis or exogenous infusion, is shown to be an important pathogenic factor in a growing number of diseases. This review briefly outlines the oxidative/reductive toxic reactions of Hb and its metabolites. It also describes physiological protection mechanisms that have evolved against extracellular Hb, with a focus on the most recently discovered: the heme- and radical-binding protein α(1)-microglobulin (A1M). This protein is found in all vertebrates, including man, and operates by rapidly clearing cytosols and extravascular fluids of heme groups and free radicals released from Hb. Five groups of pathological conditions with high concentrations of extracellular Hb are described: hemolytic anemias and transfusion reactions, the pregnancy complication pre-eclampsia, cerebral intraventricular hemorrhage of premature infants, chronic inflammatory leg ulcers, and infusion of Hb-based O(2) carriers as blood substitutes. Finally, possible treatments of these conditions are discussed, giving a special attention to the described protective effects of A1M.
Collapse
|
11
|
Monodisperse 130 kDa and 260 kDa Recombinant Human Hemoglobin Polymers as Scaffolds for Protein Engineering of Hemoglobin-Based Oxygen Carriers. J Funct Biomater 2012; 3:61-78. [PMID: 24956516 PMCID: PMC4031019 DOI: 10.3390/jfb3010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
Abstract
A recombinant 130 kDa dihemoglobin which is made up of a single-chain tetra-α globin and four β globins has been expressed as a soluble protein in E. coli. The sequence of the single chain tetra-α is: αI-Gly-αII-(SerGlyGly)5Ser-αIII-Gly-αIV. This dihemoglobin has been purified and characterized in vitro by size exclusion chromatography, electrospray mass spectroscopy, equilibrium oxygen binding, and analytical ultracentrifugation. The observed values of P50 and nmax for the dihemoglobin are slightly lower than those observed for the recombinant hemoglobin rHb1.1 (a “monohemoglobin” comprised of two β globins and an αI-Gly-αII diα-globin chain). Titration of the deoxy form of dihemoglobin with CO shows that all eight heme centers bind ligand.In vivo, dihemoglobin showed increased circulating halflife and a reduced pressor response in conscious rats when compared to rHb1.1. These observations suggest that dihemoglobin is an oxygen carrying molecule with desirable in vivo properties and provides a platform for an isooncotic hemoglobin solution derived solely from a recombinant source. A 260 kDa tetrahemoglobin has also been produced by chemical crosslinking of a dihemoglobin that contains a Lys16Cys mutation in the C-terminal α-globin subunit. Tetrahemoglobin also shows reduced vasoactivity in conscious rats that is comparable to that observed for dihemoglobin.
Collapse
|
12
|
Harrington JP, Wollocko H. Molecular Design Properties of OxyVita Hemoglobin, a New Generation Therapeutic Oxygen Carrier: A Review. J Funct Biomater 2011; 2:414-24. [PMID: 24956452 PMCID: PMC4030918 DOI: 10.3390/jfb2040414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/03/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022] Open
Abstract
OxyVita Hb is a new generation hemoglobin based oxygen carrier (HBOC) produced through modification of a zero-linked polymerization mechanism using activators which incorporate cross-linked bovine tetramer hemoglobin into "super-polymeric" macromolecules (Average molecular weight = 17 MDa) for the purpose of oxygen delivery when whole blood or packed red cells are not available. This molecular design approach was generated in order to address several fundamental biochemical and physiological weaknesses of previous generations of HBOCs. Observation during pre-clinical and clinical studies provided evidence that these early generation acellular HBOCs were directly associated with loss of retention within the circulatory system, extravasation across endothelial tissue membranes due to their small molecular size leading to arterial and venous vasoconstriction with coupled increases in mean arterial pressure (MAP). The inherent increase in molecular size and structural stability of the OxyVita Hb is a direct response to addressing these serious weaknesses that have occurred during the evolution of HBOC development within the past two decades. The nature of the zero-linked synthetic route eliminates any chemical linkers remaining in the product, eliminating side reaction concerns, such as reversibility and decomposition due to weak chemical bonds, dependency on temperature and pressure, and residual toxicity.
Collapse
Affiliation(s)
- John P Harrington
- Department of Chemistry, State University of New York, New Paltz, NY 12561, USA.
| | | |
Collapse
|
13
|
Faggiano S, Bruno S, Ronda L, Pizzonia P, Pioselli B, Mozzarelli A. Modulation of expression and polymerization of hemoglobin Polytaur, a potential blood substitute. Arch Biochem Biophys 2011; 505:42-7. [DOI: 10.1016/j.abb.2010.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/25/2022]
|
14
|
Haemoglobin-based oxygen carriers: research and reality towards an alternative to blood transfusions. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2010; 8 Suppl 3:s59-68. [PMID: 20606751 DOI: 10.2450/2010.010s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Pre-clinical studies using OxyVita hemoglobin, a zero-linked polymeric hemoglobin: a review. J Artif Organs 2010; 13:183-8. [PMID: 21127928 DOI: 10.1007/s10047-010-0528-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Hemoglobin-based oxygen carriers (HBOC) are being developed to provide the oxygen necessary in clinical situations when whole blood is not available. The safety and effectiveness of each HBOC must be determined before clinical approval. In the past several years animal studies have been conducted with zero-linked polymers to evaluate their effectiveness at delivering oxygen in vivo. Studies have addressed issues associated with interstitial extravasation, cerebral ischemia and blood flow, resuscitation, and coagulation interactions. Several of the investigations reviewed are based on early preparations of zero-linked polymerized bovine hemoglobins (ZL-HbBv), which contained a wide range of high-molecular-weight polymers. Recent studies using the Oxyvita product OxyVita Hb, which contains a more homogenous population (97%) of large-molecular-weight species (~17 MDa), are also included in this review.
Collapse
|
16
|
Abstract
A viable blood substitute is still of great necessity throughout the world. Perfluorocarbon-based oxygen carriers (PFCOCs) are emulsions that take advantage of the high solubility of respiratory gases in perfluorocarbons (PFCs). Despite attractive characteristics, no PFCOC is currently approved for clinical uses. Some PFCOCs have failed due to secondary effects of the surfactants employed, like Fluosol DA, whereas others to adverse cerebrovascular effects on cardiopulmonary bypass, such as Oxygent. Further in-depth, rigorous work is needed to overcome the annotated failures and to obtain a safe PFCOC approved for human use. The aim of this study is to review in detail the most-used PFCOCs, their formulation, and preclinical and clinical trials, and to reflect upon causes of failure and strategies to overcome such failures.
Collapse
Affiliation(s)
- Camila Irene Castro
- Blood Substitutes Laboratory, Fundación Cardio Infantil-Universidad de los Andes, Bogota, Colombia
| | | |
Collapse
|
17
|
Valeri CR, Ragno G. An approach to prevent the severe adverse events associated with transfusion of FDA-approved blood products. Transfus Apher Sci 2010; 42:223-33. [DOI: 10.1016/j.transci.2009.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/10/2009] [Indexed: 11/25/2022]
|
18
|
When Blood Is Not an Option: Factors Affecting Survival After the Use of a Hemoglobin-Based Oxygen Carrier in 54 Patients with Life-Threatening Anemia. Anesth Analg 2010; 110:685-93. [DOI: 10.1213/ane.0b013e3181cd473b] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Donahue LL, Shapira I, Shander A, Kolitz J, Allen S, Greenburg G. Management of acute anemia in a Jehovah's Witness patient with acute lymphoblastic leukemia with polymerized bovine hemoglobin-based oxygen carrier: a case report and review of literature. Transfusion 2010; 50:1561-7. [DOI: 10.1111/j.1537-2995.2010.02603.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Kluger R, Foot JS, Vandersteen AA. Protein–protein coupling and its application to functional red cell substitutes. Chem Commun (Camb) 2010; 46:1194-202. [DOI: 10.1039/b922694j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Fonseca V, Avizinis J, Moon-Massat P, Freilich D, Kim HW, Hai CM. Differential sensitivities of pulmonary and coronary arteries to hemoglobin-based oxygen carriers and nitrovasodilators: study in a bovine ex vivo model of vascular strips. Vascul Pharmacol 2009; 52:215-23. [PMID: 20026426 DOI: 10.1016/j.vph.2009.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 12/13/2009] [Indexed: 01/10/2023]
Abstract
Vasoconstriction is a major adverse effect of first and second generation hemoglobin-based oxygen carriers (HBOCs) that hinders their development as blood substitute. However, intravenous infusion of HBOC-201 (second generation) to patients induces significant pulmonary hypertension without significant coronary vasoconstriction. We compared contractile responses of isolated bovine pulmonary and coronary arterial strips to HBOC-201 and HBOC-205LL.LT.MW600 (third generation), polymerized bovine hemoglobins of different molecular weight, and their attenuation by nitroglycerin, sodium nitroprusside (SNP), and sodium nitrite. Pulmonary arteries developed negligible basal tone, but exhibited HBOC-dependent amplification of phenylephrine-induced contractions. In contrast, coronary arteries developed significant basal tone, and exhibited HBOC-dependent constant force increment to serotonin-induced contractions. Therefore, relative to basal tone, HBOC-induced contractions were greater in pulmonary than coronary arteries. Furthermore, HBOC-205LL.LT.MW600 appeared to be less vasoactive than HBOC-201. Unexpectedly, pulmonary and coronary arteries exhibited differential sensitivities to nitrovasodilators in parallel with their differential sensitivities to HBOC. However, SNP and sodium nitrite induced significant methemoglobin formation from HBOC, whereas nitroglycerin did not. These results suggest that phenotypic differences between pulmonary and coronary vascular smooth muscle cells could explain the differential hypertensive effects of HBOC on pulmonary and coronary circulation in patients. Among the three nitrovasodilators investigated, nitroglycerin appears to be the most promising candidate for attenuating HBOC-induced pulmonary hypertension in older HBOCs.
Collapse
Affiliation(s)
- Vera Fonseca
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kleinman S. Translational research: an important integrated paradigm for transfusion medicine. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1751-2824.2009.01252.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Asmundson AL, Taber AM, van der Walde A, Lin DH, Olson JS, Anthony-Cahill SJ. Coexpression of human alpha- and circularly permuted beta-globins yields a hemoglobin with normal R state but modified T state properties. Biochemistry 2009; 48:5456-65. [PMID: 19397368 DOI: 10.1021/bi900216p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the first time, a circularly permuted human beta-globin (cpbeta) has been coexpressed with human alpha-globin in bacterial cells and shown to associate to form alpha-cpbeta hemoglobin in solution. Flash photolysis studies of alpha-cpbeta show markedly biphasic CO and O(2) kinetics with the amplitudes for the fast association phases being dominant due the presence of large amounts of high-affinity liganded hemoglobin dimers. Extensive dimerization of liganded but not deoxygenated alpha-cpbeta was observed by gel chromatography. The rate constants for O(2) and CO binding to the R state forms of alpha-cpbeta are almost identical to those of native HbA (k'(R(CO)) approximately 5.0 microM(-1) s(-1); k'(R(O(2))) approximately 50 microM(-1) s(-1)), and the rate of O(2) dissociation from fully oxygenated alpha-cpbeta is also very similar to that observed for HbA (k(R(O(2))) approximately 21-28 s(-1)). When the equilibrium deoxyHb form of alpha-cpbeta is reacted with CO in rapid mixing experiments, the observed time courses are monophasic and the observed bimolecular association rate constant is approximately 1.0 microM(-1) s(-1), which is intermediate between the R state rate measured in partial photolysis experiments (approximately 5 microM(-1) s(-1)) and that observed for T state deoxyHbA (k'(T(CO)) approximately 0.1 to 0.2 microM(-1) s(-1)). Thus the deoxygenated permutated beta subunits generate an intermediate, higher affinity, deoxyHb quaternary state. This conclusion is supported by equilibrium oxygen binding measurements in which alpha-cpbeta exhibits a P(50) of approximately 1.5 mmHg and a low n-value (approximately 1.3) at pH 7, 20 degrees C, compared to 8.5 mmHg and n approximately 2.8 for native HbA under identical, dilute conditions.
Collapse
Affiliation(s)
- Anna L Asmundson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225-9150, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The management of massively transfused trauma patients has improved with a better understanding of trauma-induced coagulopathy, the limitations of crystalloid infusion, and the implementation of massive transfusion protocols (MTPs), which encompass transfusion management and other patient care needs to mitigate the "lethal triad" of acidosis, hypothermia, and coagulopathy. MTPs are currently changing in the United States and worldwide because of recent data showing that earlier and more aggressive transfusion intervention and resuscitation with blood components that approximate whole blood significantly decrease mortality. In this context, MTPs are a key element of "damage control resuscitation," which is defined as the systematic approach to major trauma that addresses the lethal triad mentioned above. MTPs using adequate volumes of plasma, and thus coagulation factors, improve patient outcome. The ideal amounts of plasma, platelet, cryoprecipitate and other coagulation factors given in MTPs in relationship to the red blood cell transfusion volume are not known precisely, but until prospective, randomized, clinical trials are performed and more clinical data are obtained, current data support a target ratio of plasma:red blood cell:platelet transfusions of 1:1:1. Future prospective clinical trials will allow continued improvement in MTPs and thus in the overall management of patients with trauma.
Collapse
|
25
|
|
26
|
Hemoglobin-based Oxygen Carriers: First, Second or Third Generation? Human or Bovine? Where are we Now? Crit Care Clin 2009; 25:279-301, Table of Contents. [DOI: 10.1016/j.ccc.2009.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Hu D, Kluger R. Functional Cross-Linked Hemoglobin Bis-tetramers: Geometry and Cooperativity. Biochemistry 2008; 47:12551-61. [DOI: 10.1021/bi801452b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongxin Hu
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Ronald Kluger
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
29
|
Mozzarelli A. Hemoglobin-based oxygen carriers as blood substitutes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1363-4. [DOI: 10.1016/j.bbapap.2008.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
|