1
|
Luken JS, Ritsema SP, Van der Wal MM, van der Schoot CE, Rouwette EAJA, de Haas M, Janssen MP. Mapping anticipated advantages and disadvantages of implementation of extensive donor genotyping: A focus group approach. Transfus Med 2022; 32:366-374. [PMID: 35668008 DOI: 10.1111/tme.12887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 04/24/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Current genotyping techniques allow typing of all relevant red cell, human leukocyte and platelet antigens in a single analysis. Even genetic markers related to donor health can be added. Implementation of this technology will affect various stakeholders within the transfusion chain. This study aims to systematically map the anticipated advantages and disadvantages of a national rollout of blood group genotyping of donors, which will affect the availability of rare donors and the implementation of an extensively typed blood transfusion policy. MATERIALS AND METHODS Two focus-group sessions were held with a wide representation of stakeholders, including representatives of donor and patient organisations. A dedicated software tool was used to collect the reflections of participants on genotyping for blood group antigens and extensive matching. Additionally, stakeholders and experts discussed various prepared propositions. All information collected was categorised. RESULTS From 162 statements collected, 59 statements (36%) were labelled as 'hopes' and 77 (48%) as 'fears'. Twenty-six (16%) statements remained unlabelled. The statements were divided in 18 categories under seven main themes: patient health, genotyping, privacy issues and ethical aspects, donor management, inventory management and logistics, hospital and transfusion laboratory and general aspects. The discussion on the propositions was analysed and summarised. CONCLUSION Stakeholders believe that a genotyped donor pool can result in a reduction of alloimmunization and higher availability of typed blood products. There are concerns regarding logistics, costs, consent for extended typing, data sharing, privacy issues and donor management. These concerns need to be carefully addressed before further implementation.
Collapse
Affiliation(s)
- Jessie S Luken
- Department of Immunohaematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Sebastien P Ritsema
- Transfusion Technology Assessment Group, Donor Medicine Research Department, Sanquin Research, Amsterdam, The Netherlands
| | - Merel M Van der Wal
- Institute for Management Research, Radboud University, Nijmegen, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Masja de Haas
- Department of Immunohaematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, The Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mart P Janssen
- Transfusion Technology Assessment Group, Donor Medicine Research Department, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Nathalang O, Intharanut K, Leetrakool N, Mitundee S, Kupatawintu P. Impact of using genotyping to predict SERF negative phenotype in Thai blood donor populations. Blood Res 2020; 55:107-111. [PMID: 32408415 PMCID: PMC7343545 DOI: 10.5045/br.2020.2020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Background SERF(+) is a high prevalence antigen in the Cromer blood group system that is encoded by a CROM*01.12 allele. The SERF(-) on red cells is caused by a single nucleotide variation, c.647C>T, in exon 5 of the Decay-accelerating factor,DAF gene. Alloanti-SERF was found in a pregnant Thai woman, and a SERF(-) individual was found among Thai blood donors. Since anti-SERF is commercially unavailable, this study aimed to develop appropriate genotyping methods for CROM*01.12 and CROM*01.-12 alleles and predict the SERF(-) phenotype in Thai blood donors. Methods DNA samples obtained from 1,580 central, 300 northern, and 427 southern Thai blood donors were genotyped for CROM*01.12 and CROM*01.-12 allele detection using in-house PCR with sequence-specific primer (PCR-SSP) confirmed by DNA sequencing. Results Validity of the PCR-SSP genotyping results agreed with DNA sequencing; CROM*01.12/CROM*01.12 was the most common (98.42%, 98.00%, and 98.59%), followed by CROM*01.12/CROM*01.-12 (1.58%, 2.00%, and 1.41%) among central, northern, and southern Thais, respectively. CROM*01.-12/CROM*01.-12 was not detected in all three populations. The alleles found in central Thais did not significantly differ from those found in northern and southern Thais. Conclusion This study is the first to distinguish the predicted SERF phenotypes from genotyping results obtained using in-house PCR-SSP, confirming that the CROM*01.-12 allele frequency ranged from 0.007 to 0.010 in three Thai populations. This helps identify the SERF(-) phenotype among donors and patients, ultimately preventing adverse transfusion reactions.
Collapse
Affiliation(s)
- Oytip Nathalang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Kamphon Intharanut
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
| | - Nipapan Leetrakool
- Blood Bank Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Supattra Mitundee
- Regional Blood Centre 12th Songkhla, Thai Red Cross Society, Songkhla, Thailand
| | | |
Collapse
|
3
|
Flesch BK, Scherer V, Just B, Opitz A, Ochmann O, Janson A, Steitz M, Zeiler T. Molecular Blood Group Screening in Donors from Arabian Countries and Iran Using High-Throughput MALDI-TOF Mass Spectrometry and PCR-SSP. Transfus Med Hemother 2020; 47:396-408. [PMID: 33173458 DOI: 10.1159/000505495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Aims Only little is known about blood groups other than ABO blood groups and Rhesus factors in Arabian countries and Iran. During the last years, increased migration to Central Europe has put a focus on the question how to guarantee blood supply for patients from these countries, particularly because hemoglobinopathies with the need of regular blood support are more frequent in patients from that region. Therefore, blood group allele frequencies should be determined in individuals from Arabian countries and Iran by molecular typing and compared to a German rare donor panel. Methods 1,111 samples including 800 individuals from Syria, 147 from Iran, 123 from the Arabian Peninsula, and 41 from Northern African countries were included in a MALDI-TOF MS assay to detect polymorphisms coding for Kk, Fy(a/b), Fy<sub>null</sub>, C<sub>w</sub>, Jk(a/b), Jo(a+/a-), Lu(a/b), Lu(8/14), Ss, Do(a/b), Co(a/b), In(a/b), Js(a/b), Kp(a/b), and variant alleles RHCE*c.697C>G and RHCE *c.733C>G. Yt(a/b), S-s-U-, Vel<sub>null</sub>, Co<sub>null</sub>, and RHCE *c.667G>T were tested by PCR-SSP. Results Of the Arabian donors, 2% were homozygous for the FY *02.01N allele (Fy<sub>null</sub>), and 15.7% carried the heterozygous mutation. However, 0.8% of the German donors also carried 1 copy of the allele. 3.6% of all and 29.3% of Northern African donors were heterozygous for the RHCE *c.733C>G substitution, 0.4% of the Syrian probands were heterozygous for DO *01/DO *01.-05, a genotype that was lacking in German donors. Whereas the KEL *02.06 allele coding for the Js(a) phenotype was missing in Germans; 0.8% of the Syrian donors carried 1 copy of this allele. 1.8% of the Syrian but only 0.3% of the German donors were negative for YT *01. One donor from Northern Africa homo-zygously carried the GYPB *270+5g>t mutation, inducing the S-s-U+<sup>w</sup> phenotype, and in 2 German donors a GYPB *c.161G>A exchange, which induces the Mit+ phenotype, caused a GYPB *03 allele dropout in the MALDI assay. The overall failure rate of the Arabian panel was 0.4%. Conclusions Some blood group alleles that are largely lacking in Europeans but had been described in African individuals are present in Arabian populations at a somewhat lower frequency. In single cases, it could be challenging to provide immunized Arabian patients with compatible blood.
Collapse
Affiliation(s)
- Brigitte Katharina Flesch
- German Red Cross Blood Service Rhineland-Palatinate and Saarland, Bad Kreuznach, Germany.,German Red Cross Blood Service West, Hagen, Germany
| | - Vanessa Scherer
- German Red Cross Blood Service Rhineland-Palatinate and Saarland, Bad Kreuznach, Germany
| | | | - Andreas Opitz
- German Red Cross Blood Service Rhineland-Palatinate and Saarland, Bad Kreuznach, Germany
| | - Oswin Ochmann
- German Red Cross Blood Service Rhineland-Palatinate and Saarland, Bad Kreuznach, Germany
| | - Anne Janson
- German Red Cross Blood Service Rhineland-Palatinate and Saarland, Bad Kreuznach, Germany
| | - Monika Steitz
- German Red Cross Blood Service Rhineland-Palatinate and Saarland, Bad Kreuznach, Germany
| | | |
Collapse
|
4
|
Panch SR, Savani BN, Stroncek DF. Transfusion Support in Patients with Hematologic Disease: New and Novel Transfusion Modalities. Semin Hematol 2019; 56:227-228. [PMID: 31836027 DOI: 10.1053/j.seminhematol.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Carter JH, Flegel WA. Red Cell Transfusions in the Genomics Era. Semin Hematol 2019; 56:236-240. [PMID: 31836029 DOI: 10.1053/j.seminhematol.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 11/11/2022]
Abstract
Red cell genotyping has become widely available and now contributes to support transfusion of patients with hematologic diseases. This technology has facilitated the immunohematologic approach to antibody prevention, detection and identification. Donors, particularly rare donors, are most efficiently screened and identified by red cell genotyping. In transfused patients with challenging serologic reactivity, antibodies are more reliably identified when molecular typing information is available. Red cell genotyping of both donors and patients augments the selection of blood components. This technology, serving at the core of a real-time database inventory, is resulting in blood supply efficiencies. However, there is limited published evidence on the extent to which red cell genotyping has translated into improved clinical outcomes. Red cell alloimmunized patients may benefit the most in enhanced safety. For patients with antibodies to high-prevalence antigens, other than Rh, blood centers realized supply-chain efficiencies in the past decade. Prospective clinical trials and cost-effectiveness studies would contribute to further clarifying the optimal role of molecular testing in providing transfusion support for patients with hematologic diseases.
Collapse
Affiliation(s)
- Jamal H Carter
- Division of Clinical Pathology/Laboratory Medicine, Department of Pathology, Montefiore Medical Center, Bronx, NY
| | - Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
6
|
Portegys J, Rink G, Bloos P, Scharberg EA, Klüter H, Bugert P. Towards a Regional Registry of Extended Typed Blood Donors: Molecular Typing for Blood Group, Platelet and Granulocyte Antigens. Transfus Med Hemother 2018; 45:331-340. [PMID: 30498411 PMCID: PMC6257148 DOI: 10.1159/000493555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The provision of compatible blood products to patients is the most essential task of transfusion medicine. Besides ABO and Rh, a number of additional blood group antigens often have to be considered for the blood supply of immunized or chronically transfused patients. It also applies for platelet antigens (HPA) and neutrophil antigens (HNA) for patients receiving platelet or granulocyte concentrates. Here, we describe the molecular screening for a number of blood group, HPA, and HNA alleles. Based on the screening results we are building up a regional blood donor registry to provide extended matched blood products on demand. METHODS We developed and validated TaqMan™ PCR and PCR-SSP methods for genetic markers defining 37 clinically relevant blood group antigens (beyond ABO and Rh), 10 HPA, and 11 HNA. Furthermore, we describe a feasible method for fast molecular screening of the HNA-2null phenotype. All data were statistically evaluated regarding genotype distribution. Allele frequencies were compared to ExAC data from non-Finnish Europeans. RESULTS Up to now more than 2,000 non-selected regular blood donors in south-west Germany have been screened for blood group, HPA, and HNA alleles. The screening results were confirmed by serology and PCR-SSP methods for selected numbers of samples. The allele frequencies were similar to non-finnish Europeans in the ExAC database except for the alleles encoding the S, HPA-3b and HNA-4b antigens, with significantly lower prevalence in our cohort, as well as the LU14 and the HNA-3b antigens, with a higher frequency compared to the ExAC data. We identified 71 donors with rare blood groups such as Lu(a+b-), Kp(a+b-), Fy(a-b-) and Vel-, and 169 donors with less prevalent HPA or HNA types. CONCLUSION Molecular screening for blood group alleles by using TaqMan™ PCR is an effective and reliable high-throughput method for establishing a rare donor registry.
Collapse
Affiliation(s)
- Jan Portegys
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Gabi Rink
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Pia Bloos
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Erwin A. Scharberg
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg - Hessen, Baden-Baden; Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
7
|
Scharberg E, Rink G, Portegys J, Rothenberger S, Gillhuber N, Richter E, Bugert P. The Impact of Using Genotyped Reagent Red Blood Cells in Antibody Identification. Transfus Med Hemother 2018; 45:218-224. [PMID: 30283270 DOI: 10.1159/000491884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Background The detection and identification of antibodies to red blood cell (RBC) antigens is one of the most important and challenging issues in transfusion medicine. Up to date there are 354 RBC antigens recognized by the International Society of Blood Transfusion (ISBT). The reagent RBCs used in commercial antibody screening and identification panels however are usually serologically typed for up to 40 clinically important antigens. Thus the identification of many antibody specificities remains impossible when using reagent RBCs with only limited information about their antigens. To improve the pre-transfusion diagnostics, we developed antibody identification panels with reagent RBCs serologically typed for 26 antigens and additionally genotyped for 30 blood group alleles. Methods The reagent RBCs in the panels were characterized serologically for the clinically most significant 'standard' antigens. The reagent RBC donors were additionally genotyped by using in-house PCR-SSP methods. The antibody identification was performed in the indirect antiglobulin test using untreated and papain-treated RBCs in the gel technique. Antibodies identified due to the genotype information were confirmed by serology using appropriate reference RBCs. Results Within a time period of 3 years and 8 months, 16,878 blood samples from 8,467 patients were tested in our reference laboratory. In total, 21 different antibodies from 10 different blood group systems could be identified in 126 patients (1.5%) due to the genotype information obtained for the reagent RBCs. Antibodies to antigens from the Knops system (53 patients; 42%, 8 patients with anti-Knb) and to Cartwright antigens (31 patients; 25%) were the most frequent. Conclusion The use of genotyped reagent RBCs in antibody identification panels extends the range of detectable antibody specificities, accelerates the antibody identification, and improves the pre-transfusion diagnostics.
Collapse
Affiliation(s)
- Erwin Scharberg
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg - Hesse, Baden-Baden, Germany
| | - Gabi Rink
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Jan Portegys
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Sina Rothenberger
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg - Hesse, Baden-Baden, Germany
| | - Nicole Gillhuber
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg - Hesse, Baden-Baden, Germany
| | - Ekkehard Richter
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg - Hesse, Baden-Baden, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
8
|
Wagner FF, Doescher A, Bittner R, Müller TH. Extended Donor Typing by Pooled Capillary Electrophoresis: Impact in a Routine Setting. Transfus Med Hemother 2018; 45:225-237. [PMID: 30283272 DOI: 10.1159/000490155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
Background PCR with sequence-specific priming using allele-specific fluorescent primers and analysis on a capillary sequencer is a standard technique for DNA typing. We aimed to adapt this method for donor typing in a medium-throughput setting. Methods Using the Extract-N-Amp PCR system, we devised a set of eight multiplex allele-specific PCR with fluorescent primers for Fya/Fyb, Jka/Jkb, M/N, and S/s. The alleles of a gene were discriminated by the fluorescent color; donor and polymorphism investigated were encoded by product length. Time, cost, and routine performance were collated. Discrepant samples were investigated by sequencing. The association of new alleles with the phenotype was evaluated by a step-wise statistical analysis. Results On validation using 312 samples, for 1.1% of antigens (in 5.4% of samples) no prediction was obtained. 99.96% of predictions were correct. Consumable cost per donor were below EUR 2.00. In routine use, 92.2% of samples were successfully predicted. Discrepancies were most frequently due to technical reasons. A total of 11 previously unknown alleles were detected in the Kell, Lutheran, and Colton blood group systems. In 2017, more than 20% of the RBC units prepared by our institution were from donors with predicted antigen status. A steady supply of Yt(a-), Co(a-) and Lu(b-) RBC units was ensured. Conclusions Pooled capillary electrophoresis offers a suitable alternative to other methods for extended donor DNA typing. Establishing a large cohort of typed donors improved transfusion support for patients.
Collapse
Affiliation(s)
- Franz F Wagner
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| | - Andrea Doescher
- DRK Blutspendedienst NSTOB, Institute Oldenburg, Oldenburg, Germany
| | - Rita Bittner
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| | - Thomas H Müller
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
9
|
Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. LANCET HAEMATOLOGY 2017. [PMID: 26207259 DOI: 10.1016/s2352-3026(15)00090-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND When problems with compatibility arise, transfusion services often use time-consuming serological tests to identify antigen-negative red cell units for safe transfusion. New methods have made red cell genotyping possible for all clinically relevant blood group antigens. We did mass-scale genotyping of donor blood and provided hospitals with access to a large red cell database to meet the demand for antigen-negative red cell units beyond ABO and Rh blood typing. METHODS We established a red cell genotype database at the BloodCenter of Wisconsin on July 17, 2010. All self-declared African American, Asian, Hispanic, and Native American blood donors were eligible irrespective of their ABO and Rh type or history of donation. Additionally, blood donors who were groups O, A, and B, irrespective of their Rh phenotype, were eligible for inclusion only if they had a history of at least three donations in the previous 3 years, with one donation in the previous 12 months at the BloodCenter of Wisconsin. We did red cell genotyping with a nanofluidic microarray system, using 32 single nucleotide polymorphisms to predict 42 blood group antigens. An additional 14 antigens were identified via serological phenotype. We monitored the ability of the red cell genotype database to meet demand for compatible blood during 3 years. In addition to the central database at the BloodCenter of Wisconsin, we gave seven hospitals online access to a web-based antigen query portal on May 1, 2013, to help them to locate antigen-negative red cell units in their own inventories. FINDINGS We analysed genotype data for 43,066 blood donors. Requests were filled for 5661 (99.8%) of 5672 patient encounters in which antigen-negative red cell units were needed. Red cell genotyping met the demand for antigen-negative blood in 5339 (94.1%) of 5672 patient encounters, and the remaining 333 (5.9%) requests were filled by use of serological data. Using the 42 antigens represented in our red cell genotype database, we were able to fill 14,357 (94.8%) of 15,140 requests for antigen-negative red cell units from hospitals served by the BloodCenter of Wisconsin. In the pilot phase, the seven hospitals identified 71 units from 52 antigen-negative red cell unit requests. INTERPRETATION Red cell genotyping has the potential to transform the way antigen-negative red cell units are provided. An antigen query portal could reduce the need for transportation of blood and serological screening. If this wealth of genotype data can be made easily accessible online, it will help with the supply of affordable antigen-negative red cell units to ensure patient safety. FUNDING BloodCenter of Wisconsin Diagnostic Laboratories Strategic Initiative and the NIH Clinical Center Intramural Research Program.
Collapse
|
10
|
Wagner FF, Flegel WA, Bittner R, Döscher A. Molecular typing for blood group antigens within 40 min by direct polymerase chain reaction from plasma or serum. Br J Haematol 2016; 176:814-821. [PMID: 27991657 DOI: 10.1111/bjh.14469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/05/2016] [Indexed: 01/15/2023]
Abstract
Determining blood group antigens by serological methods may be unreliable in certain situations, such as in patients after chronic or massive transfusion. Red cell genotyping offers a complementary approach, but current methods may take much longer than conventional serological typing, limiting their utility in urgent situations. To narrow this gap, we devised a rapid method using direct polymerase chain reaction (PCR) amplification while avoiding the DNA extraction step. DNA was amplified by PCR directly from plasma or serum of blood donors followed by a melting curve analysis in a capillary rapid-cycle PCR assay. We evaluated the single nucleotide polymorphisms underlying the clinically relevant Fya , Fyb , Jka and Jkb antigens, with our analysis being completed within 40 min of receiving a plasma or serum sample. The positive predictive value was 100% and the negative predictive value at least 84%. Direct PCR with melting point analysis allowed faster red cell genotyping to predict blood group antigens than any previous molecular method. Our assay may be used as a screening tool with subsequent confirmatory testing, within the limitations of the false-negative rate. With fast turnaround times, the rapid-cycle PCR assay may eventually be developed and applied to red cell genotyping in the hospital setting.
Collapse
Affiliation(s)
- Franz F Wagner
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| | - Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Rita Bittner
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| | - Andrea Döscher
- DRK Blutspendedienst NSTOB, Institute Bremen-Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Chang HE, Hong YJ, Kim H, Hwang SM, Park JS, Lee SW, Song EY, Park KU, Song J, Han KS. Genotyping of 19 red cell antigens, including RHD , using liquid bead arrays. Clin Chim Acta 2016; 462:111-117. [DOI: 10.1016/j.cca.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/03/2016] [Indexed: 11/27/2022]
|
12
|
Molecular immunohaematology round table discussions at the AABB Annual Meeting, Philadelphia 2014. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 14:425-33. [PMID: 26710354 DOI: 10.2450/2015.0130-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/07/2015] [Indexed: 11/21/2022]
|
13
|
Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion 2015; 55:2610-5; quiz 2609. [PMID: 26094790 DOI: 10.1111/trf.13168] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND When problems with compatibility beyond ABO and D arise, currently transfusion services search their inventories and perform time-consuming serologic testing to locate antigen-negative blood. These clinically important blood group antigens can be detected reliably by red cell genotyping, which is a technology whereby DNA-based techniques are used to evaluate gene polymorphisms that determine the expression of blood group antigens. We introduced mass-scale genotyping and measured availability of genotyped blood. STUDY DESIGN AND METHODS All non-Caucasian donors qualified for genotyping along with donors who had a history of repeat donation. Mass-scale red cell genotyping, performed on an electronic interfaced open array platform, was implemented to screen blood donors for 32 single-nucleotide polymorphisms that predicted 42 blood group antigens. Genotype screening results were confirmed by phenotyping, when needed for antigen-negative transfusion, before release of the red blood cell (RBC) unit. RESULTS Approximately 22,000 donors were red cell genotyped within 4 months and a total of 43,066 donors in 4 years. There were 463 discordances (0.52% of 89,596 genotypes with a phenotype). Among the 307 resolved discordances, approximate equal numbers represented historical serologic or genotyping discrepancies (n = 151 and n = 156, respectively). In the final year of the study, a mean of 29% of the daily inventory had a genotype. CONCLUSIONS Red cell genotyping of blood donors using an electronic interface created a large and stable supply of RBC units with historical genotypes. The database served the needs of antigen-negative blood requests for a large regional blood center and allowed us to abandon screening by serology.
Collapse
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jerome L Gottschall
- Department of Pathology, Medical College of Wisconsin.,Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Gregory A Denomme
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
|
15
|
DNA biosensor/biochip for multiplex blood group genotyping. Methods 2013; 64:241-9. [PMID: 24080420 DOI: 10.1016/j.ymeth.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/20/2022] Open
Abstract
At present, 33 blood groups representing over 300 antigens are listed by the International Society of Blood Transfusion (ISBT). Most of them result from a single nucleotide polymorphism (SNP) in the corresponding DNA sequence, i.e. approx. 200 SNPs. In immunohematology laboratories, blood group determination is classically carried out by serological tests, but these have some limitations, mostly in term of multiplexing and throughput. Yet, there is a growing need of extended blood group typing to prevent alloimmunization in transfused patients and transfusion accidents. The knowledge of the molecular bases of blood groups allows the use of molecular biology methods within immunohematology laboratories. Numerous assays focused on blood group genotyping were developed and described during the last 10 years. Some of them were real biochips or biosensors while others were more characterized by the particular molecular biology techniques they used, but all were intending to produce multiplex analysis. PCR techniques are most of the time used followed by an analytical step involving a DNA biosensor, biochip or analysis system (capillary electrophoresis, mass spectrometry). According to the method used, the test can then be classified as low-, medium- or high-throughput. There are several companies which developed platforms dedicated to blood group genotyping able to analyze simultaneously various SNPs or variants associated with blood group systems. This review summarizes the characteristics of each molecular biology method and medium-/high-throughput platforms dedicated to the blood group genotyping.
Collapse
|
16
|
Abstract
Blood group genotyping is gaining widespread adoption in blood centres and transfusion services. The current interest for a blood centre is its use as a screening tool to accurately predict donor phenotypes. However, not only is blood group genotyping used to screen for uncommon and rare types on a mass-scale, it can be used to optimize the inventory of multiple antigen-negative screened units. In addition, blood group genotyping provides blood types when antisera are not available, it can predict weak and variant antigens, and can aid in the resolution of ABO discrepancies. There are quality improvement benefits in blood group genotyping because it can screen for RHD alleles in Rh-negative blood donors and can be used to confirm that donors are suitable for reagent red cell production. It is possible that blood group genotyping information may be used as a donor recruitment tool. Given that genotyping can convey much more information about the expression of some complex antigens, e.g. hrB, Uvar, and Duffy, clinical trials are probably needed to show that genotyped or 'dry matched' transfusions are superior to phenotyped blood.
Collapse
Affiliation(s)
- Gregory A Denomme
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
The Lombardy Rare Donor Programme. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s249-55. [PMID: 23522888 DOI: 10.2450/2013.0182-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND In 2005, the government of Lombardy, an Italian region with an ethnically varied population of approximately 9.8 million inhabitants including 250,000 blood donors, founded the Lombardy Rare Donor Programme, a regional network of 15 blood transfusion departments coordinated by the Immunohaematology Reference Laboratory of the Ca' Granda Ospedale Maggiore Policlinico in Milan. During 2005 to 2012, Lombardy funded LORD-P with 14.1 million euros. MATERIALS AND METHODS During 2005-2012 the Lombardy Rare Donor Programme members developed a registry of blood donors and a bank of red blood cell units with either rare blood group phenotypes or IgA deficiency. To do this, the Immunohaematology Reference Laboratory performed extensive serological and molecular red blood cell typing in 59,738 group O or A, Rh CCDee, ccdee, ccDEE, ccDee, K- or k- donors aged 18-55 with a record of two or more blood donations, including both Caucasians and ethnic minorities. In parallel, the Immunohaematology Reference Laboratory implemented a 24/7 service of consultation, testing and distribution of rare units for anticipated or emergent transfusion needs in patients developing complex red blood cell alloimmunisation and lacking local compatible red blood cell or showing IgA deficiency. RESULTS Red blood cell typing identified 8,747, 538 and 33 donors rare for a combination of common antigens, negative for high-frequency antigens and with a rare Rh phenotype, respectively. In June 2012, the Lombardy Rare Donor Programme frozen inventory included 1,157 red blood cell units. From March 2010 to June 2012 one IgA-deficient donor was detected among 1,941 screened donors and IgA deficiency was confirmed in four previously identified donors. From 2005 to June 2012, the Immunohaematology Reference Laboratory provided 281 complex red blood cell alloimmunisation consultations and distributed 8,008 Lombardy Rare Donor Programme red blood cell units within and outside the region, which were transfused to 2,365 patients with no untoward effects. DISCUSSION Lombardy Rare Donor Programme, which recently joined the ISBT Working Party on Rare Donors, contributed to increase blood transfusion safety and efficacy inside and outside Lombardy.
Collapse
|
18
|
He YL, Gao HH, Ye LY, Guo ZH, Wang P, Zhu ZY. Multiplex polymerase chain reaction with DNA pooling: a cost-effective strategy of genotyping rare blood types. Transfus Med 2012; 23:42-47. [PMID: 23106135 DOI: 10.1111/j.1365-3148.2012.01198.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/09/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES/AIMS This work aims to develop a multiplex polymerase chain reaction combined with DNA pooling for mass screening for rare blood types. BACKGROUND The differences in most blood group antigens are associated with single-nucleotide polymorphisms (SNPs), which are used in detecting blood antigen expression at the molecular level. However, all existing sequence-specific primers polymerase chain reaction (PCR-SSP) assays for blood typing genotype one or several SNPs individually. DNA pooling is a way that reduces the amount of genotyping required. METHODS A sensitive multiplex PCR-SSP assay testing pooled DNA was established to detect the rare Fy(b) and S alleles. It was applied to screen a total of 4490 donor samples via testing 898 DNA pools. The samples in the positive pools were further tested individually. Then the positive samples, including Fy(a-b+)/Fy(a+b+) and S+s-/S+s+ genotypes, were tested via two PCR-SSP assays for alleles Fy(a) and s. The rare genotypes Fy(a-b+) and S+s- were verified using serologic tests and sequencing analysis. RESULTS Two hundred and fifty-four donors were tested positive for the Fy(b) allele, whereas 101 donors were positive for the S allele. Among the 254 Fy(b+) donors, 5 were Fy(a-b+) and 249 were Fy(a+b+). Among the 101 S+ donors, 3 were S+s- and 98 were S+s+. The rare Fy(b) and S alleles comprised 2·28 and 1·16%, respectively. The PCR-SSP assays were confirmed by sequencing analysis and serological test. CONCLUSION A multiplex PCR assay was combined with DNA pooling to reduce the number of tests required, making large-scale screening feasible.
Collapse
Affiliation(s)
- Y-L He
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
19
|
Fedick A, Su J, Jalas C, Treff NR. High-throughput real-time PCR-based genotyping without DNA purification. BMC Res Notes 2012; 5:573. [PMID: 23083336 PMCID: PMC3505170 DOI: 10.1186/1756-0500-5-573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While improvements in genotyping technology have allowed for increased throughput and reduced time and expense, protocols remain hindered by the slow upstream steps of isolating, purifying, and normalizing DNA. Various methods exist for genotyping samples directly through blood, without having to purify the DNA first. These procedures were designed to be used on smaller throughput systems, however, and have not yet been tested for use on current high-throughput real-time (q)PCR based genotyping platforms. In this paper, a method of quantitative qPCR-based genotyping on blood without DNA purification was developed using a high-throughput qPCR platform. FINDINGS The performances of either DNA purified from blood or the same blood samples without DNA purification were evaluated through qPCR-based genotyping. First, 60 different mutations prevalent in the Ashkenazi Jewish population were genotyped in 12 Ashkenazi Jewish individuals using the QuantStudio™12K Flex Real-Time PCR System. Genotyping directly from blood gave a call rate of 99.21%, and an accuracy of 100%, while the purified DNA gave a call rate of 92.49%, and an accuracy of 99.74%. Although no statistical difference was found for these parameters, an F test comparing the standard deviations of the wild type clusters for the two different methods indicated significantly less variation when genotyping directly from blood instead of after DNA purification. To further establish the ability to perform high-throughput qPCR based genotyping directly from blood, 96 individuals of Ashkenazi Jewish decent were genotyped for the same 60 mutations (5,760 genotypes in 5 hours) and resulted in a call rate of 98.38% and a diagnostic accuracy of 99.77%. CONCLUSION This study shows that accurate qPCR-based high-throughput genotyping can be performed without DNA purification. The direct use of blood may further expedite the entire genotyping process, reduce costs, and avoid tracking errors which can occur during sample DNA purification.
Collapse
Affiliation(s)
- Anastasia Fedick
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | | | |
Collapse
|
20
|
Schmid P, Flegel WA. Codon usage in vertebrates is associated with a low risk of acquiring nonsense mutations. J Transl Med 2011; 9:87. [PMID: 21651781 PMCID: PMC3123582 DOI: 10.1186/1479-5876-9-87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/08/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Codon usage in genomes is biased towards specific subsets of codons. Codon usage bias affects translational speed and accuracy, and it is associated with the tRNA levels and the GC content of the genome. Spontaneous mutations drive genomes to a low GC content. Active cellular processes are needed to maintain a high GC content, which influences the codon usage of a species. Loss-of-function mutations, such as nonsense mutations, are the molecular basis of many recessive alleles, which can greatly affect the genome of an organism and are the cause of many genetic diseases in humans. METHODS We developed an event based model to calculate the risk of acquiring nonsense mutations in coding sequences. Complete coding sequences and genomes of 40 eukaryotes were analyzed for GC and CpG content, codon usage, and the associated risk of acquiring nonsense mutations. We included one species per genus for all eukaryotes with available reference sequence. RESULTS We discovered that the codon usage bias detected in genomes of high GC content decreases the risk of acquiring nonsense mutations (Pearson's r = -0.95; P < 0.0001). In the genomes of all examined vertebrates, including humans, this risk was lower than expected (0.93 ± 0.02; mean ± SD) and lower than the risk in genomes of non-vertebrates (1.02 ± 0.13; P = 0.019). CONCLUSIONS While the maintenance of a high GC content is energetically costly, it is associated with a codon usage bias harboring a low risk of acquiring nonsense mutations. The reduced exposure to this risk may contribute to the fitness of vertebrates.
Collapse
Affiliation(s)
- Pirmin Schmid
- National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Monteiro F, Tavares G, Ferreira M, Amorim A, Bastos P, Rocha C, Araújo F, Cunha-Ribeiro LM. Technologies involved in molecular blood group genotyping. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1751-2824.2011.01425.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Abstract
Blood centers are able to recruit and process large numbers of blood donations to meet the demand for antigen-matched blood. However, there are limitations with the use of hemagglutination that can be circumvented with blood group genotyping. Antisera do not exist for several clinically important blood group antigens and many methods have been developed (direct hemagglutination, indirect antiglobulin-dependent, solid phase, or gel column). There is increasing interest to apply mass-scale red cell genotyping of blood donors to find rare (predicted) phenotypes, rare combinations of antigens and locus haplotypes, and to have access to information on the common clinically relevant blood group antigens. This review outlines technological advances, emerging algorithms, and the future of mass-scale red cell genotyping of blood donors.
Collapse
Affiliation(s)
- Gregory A Denomme
- Immunohematolgy Reference Laboratory, Blood Center of Wisconsin, 638 18th Street, Milwaukee, WI 53201-2178, United States.
| | | | | |
Collapse
|
23
|
Abstract
When one looks at the field of molecular pathology or transplantation, it is evident that molecular biology has made a positive impact on medicine. However, the progress in transfusion medicine has been slower and more cautious than in other areas of the clinical laboratory. To understand where the field may go in the next 10 years requires that the reader understand what technology is available now. Therefore, this article discusses the current state of the art for red-cell genotyping and newer, ever-evolving molecular technologies. Because it is impossible to present all of the molecular techniques and their variations in this article, the author selects a group of methodologies to review and speculates where the field of molecular immunohematology may be in 2020.
Collapse
Affiliation(s)
- Joann M Moulds
- Clinical Immunogenetics, LifeShare Blood Centers, 8910 Linwood Avenue, Shreveport, LA 71106, USA.
| |
Collapse
|
24
|
|
25
|
Abstract
PURPOSE OF REVIEW Since the early 1960s, it was recognized that patients with very complex serology may be limited in the availability of rare blood for transfusion. Over the years, there have been publications about the quest to meet those needs. Although the world's literature on how to find, recruit and maintain rare blood donors is not overwhelming, there are quite a few pearls. This review will seek out those pearls published in 2007-2009 and provides some insight from a perspective of having a responsibility for a nation of patients requiring rare blood for over 15 years. RECENT FINDINGS Most pertinent publications have focused on a particular country and the data gathered by a particular regional area or the national rare donor program. It is clear that the definition of 'rare' varies from country to country. A blood type rare in one country may not be considered rare in another. A few of the publications that will be reviewed are specific to donor recruitment or specific details regarding a particular blood type. Recently, with the advent of semi-automated equipment to assist in DNA analysis, there has been a volley of articles on the use of this equipment.Without effective rare donor programs, there is a risk that transfusion needs may not be met. Hemovigilance concentrates on adverse events related to blood transfusions, and the event that happens when rare blood is not available may be that the patient dies without the transfusion they need. SUMMARY The need for rare blood has been recognized for nearly 50 years, and there are some very effective programs across the world, but not all the areas of the world are equally supplied. The International Society of Blood Transfusion Working Party for Rare Donors is a vital link in the worldwide goal of providing rare blood to the patients who need it.
Collapse
|
26
|
Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high-throughput donor screening. Vox Sang 2009; 97:198-206. [PMID: 19548962 DOI: 10.1111/j.1423-0410.2009.01209.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blood group antigens, present on the cell membrane of red blood cells and platelets, can be defined either serologically or predicted based on the genotypes of genes encoding for blood group antigens. At present, the molecular basis of many antigens of the 30 blood group systems and 17 human platelet antigens is known. In many laboratories, blood group genotyping assays are routinely used for diagnostics in cases where patient red cells cannot be used for serological typing due to the presence of auto-antibodies or after recent transfusions. In addition, DNA genotyping is used to support (un)-expected serological findings. Fetal genotyping is routinely performed when there is a risk of alloimmune-mediated red cell or platelet destruction. In case of patient blood group antigen typing, it is important that a genotyping result is quickly available to support the selection of donor blood, and high-throughput of the genotyping method is not a prerequisite. In addition, genotyping of blood donors will be extremely useful to obtain donor blood with rare phenotypes, for example lacking a high-frequency antigen, and to obtain a fully typed donor database to be used for a better matching between recipient and donor to prevent adverse transfusion reactions. Serological typing of large cohorts of donors is a labour-intensive and expensive exercise and hampered by the lack of sufficient amounts of approved typing reagents for all blood group systems of interest. Currently, high-throughput genotyping based on DNA micro-arrays is a very feasible method to obtain a large pool of well-typed blood donors. Several systems for high-throughput blood group genotyping are developed and will be discussed in this review.
Collapse
Affiliation(s)
- B Veldhuisen
- Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|