1
|
Escamilla-Guerrero G, García-Rosales JC. [Genotyping and its applications, a look to the future]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:S37-S45. [PMID: 36378105 PMCID: PMC10396029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The detection of the most significant erythrocyte antigens present in each one of the individuals is fundamental when carrying out a transfusion or a transplant. Detection to date is performed by conventional serological methods through the antigen-antibody reaction. But several drawbacks may arise depending on the pathology under study, limiting the availability of blood components. Molecular methods such as genotyping is a tool that complements sensitivity and specificity and has come to revolutionize immunohematology in the blood bank, allowing not only the detection of erythrocyte antigens but also platelet antigens. These methodologies are applicable in patients and in large-scale donors, starting from the allelic variants present in each of the genes that code for the antigens of clinical interest, using microarray systems or systems based on particles labeled with specific probes or their variants that allow an analysis from the immunohematological point of view.
Collapse
Affiliation(s)
- Guillermo Escamilla-Guerrero
- Limogen, Laboratorio de Innovación Molecular y Genética, Laboratorio de Biología Molecular e Inmunohematología. Tlalnepantla, Estado de México, MéxicoLimogenMéxico
| | - Juan Carlos García-Rosales
- Limogen, Laboratorio de Innovación Molecular y Genética, Laboratorio de Biología Molecular e Inmunohematología. Tlalnepantla, Estado de México, MéxicoLimogenMéxico
| |
Collapse
|
2
|
Yin J, Yamba F, Zheng C, Zhou S, Smith SJ, Wang L, Li H, Xia Z, Xiao N. Molecular Detection of Insecticide Resistance Mutations in Anopheles gambiae from Sierra Leone Using Multiplex SNaPshot and Sequencing. Front Cell Infect Microbiol 2021; 11:666469. [PMID: 34490134 PMCID: PMC8416995 DOI: 10.3389/fcimb.2021.666469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vector control interventions including long-lasting insecticidal nets and indoor residual spraying are important for malaria control and elimination. And effectiveness of these interventions depends entirely on the high level of susceptibility of malaria vectors to insecticides. However, the insecticide resistance in majority of mosquito vector species across African countries is a serious threat to the success of vector control efforts with the extensive use of insecticides, while no data on insecticide resistance was reported from Sierra Leone in the past decade. In the present study, the polymerase chain reaction was applied for the identification of species of 757 dry adult female Anopheles gambiae mosquitoes reared from larvae collected from four districts in Sierra Leone during May and June 2018. And the mutations of kdr, rdl, ace-1 genes in An. gambiae were detected using SNaPshot and sequencing. As a result, one sample from Western Area Rural district belonged to Anopheles melas, and 748 An. gambiae were identified. Furthermore, the rdl mutations, kdr west mutations and ace-1 mutation were found. The overall frequency was 35.7%, 0.3%, 97.6% and 4.5% in A296G rdl, A296S rdl, kdrW and ace-1, respectively. The frequencies of A296G rdl mutation (P < 0.001), kdrW mutation (P = 0.001) and ace-1 mutation (P < 0.001) were unevenly distributed in four districts, respectively, while no statistical significance was found in A296S rdl mutation (P = 0.868). In addition, multiple resistance patterns were also found. In conclusion, multiple mutations involved in insecticide resistance in An. gambiae populations in Sierra Leone were detected in the kdrW, A296G rdl and ace-1 alleles in the present study. It is necessary to monitor vector susceptibility levels to insecticides used in this country, and update the insecticide resistance monitoring and management strategy.
Collapse
Affiliation(s)
- Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Frederick Yamba
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Canjun Zheng
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Samuel Juana Smith
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Lili Wang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongmei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| |
Collapse
|
3
|
Wagner FF, Doescher A, Bittner R, Müller TH. Extended Donor Typing by Pooled Capillary Electrophoresis: Impact in a Routine Setting. Transfus Med Hemother 2018; 45:225-237. [PMID: 30283272 DOI: 10.1159/000490155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
Background PCR with sequence-specific priming using allele-specific fluorescent primers and analysis on a capillary sequencer is a standard technique for DNA typing. We aimed to adapt this method for donor typing in a medium-throughput setting. Methods Using the Extract-N-Amp PCR system, we devised a set of eight multiplex allele-specific PCR with fluorescent primers for Fya/Fyb, Jka/Jkb, M/N, and S/s. The alleles of a gene were discriminated by the fluorescent color; donor and polymorphism investigated were encoded by product length. Time, cost, and routine performance were collated. Discrepant samples were investigated by sequencing. The association of new alleles with the phenotype was evaluated by a step-wise statistical analysis. Results On validation using 312 samples, for 1.1% of antigens (in 5.4% of samples) no prediction was obtained. 99.96% of predictions were correct. Consumable cost per donor were below EUR 2.00. In routine use, 92.2% of samples were successfully predicted. Discrepancies were most frequently due to technical reasons. A total of 11 previously unknown alleles were detected in the Kell, Lutheran, and Colton blood group systems. In 2017, more than 20% of the RBC units prepared by our institution were from donors with predicted antigen status. A steady supply of Yt(a-), Co(a-) and Lu(b-) RBC units was ensured. Conclusions Pooled capillary electrophoresis offers a suitable alternative to other methods for extended donor DNA typing. Establishing a large cohort of typed donors improved transfusion support for patients.
Collapse
Affiliation(s)
- Franz F Wagner
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| | - Andrea Doescher
- DRK Blutspendedienst NSTOB, Institute Oldenburg, Oldenburg, Germany
| | - Rita Bittner
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| | - Thomas H Müller
- DRK Blutspendedienst NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
4
|
Chen DP, Wen YH, Lu JJ, Tseng CP, Wang WT. Rapid rare ABO blood typing using a single PCR based on a multiplex SNaPshot reaction. J Formos Med Assoc 2018; 118:395-400. [PMID: 29970336 DOI: 10.1016/j.jfma.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND ABO subgroups would be considered when discrepancies in ABO grouping occur. Serological methods including adsorption-elution test, salivary ABH inhibition test, and anti-A1 (lectin) saline method could be used. However, these serological methods are laboring and obscure. Therefore, reliable and affordable method to assess the ABO subgroups is of particular interest. METHODS To solve this problem, the multiplex SNaPshot-based assays were designed to determine rare A and B subgroups. Primers used as probes for determination of rare ABO blood groups known in Taiwanese population were designed. Many ABO subtype samples were used to validate the accuracy and reproducibility of our SNaPshot panel. RESULTS A panel of primer probes were successfully designed in determining 8 SNP sites (261, 539, 838, 820, 745, 664, IVS6 +5, and 829 in exon 6 and 7) for A phenotype and 6 SNP sites (261, 796, IVS3 +5, 247, 523, and 502 in exon 2, 6 and 7 and intron 3) for B phenotype. SNaPshot analysis for defining blood group A alleles (A1, A2, A3, Am and Ael) and blood group B alleles (B1, B3, Bw and Bel) was therefore available. CONCLUSION SNaPshot analysis could be used in reference laboratories for typing known rare subgroups of A and B without DNA cloning and traditional sequencing. Moreover, this method would help to construct databases of genotyped blood donors, and it potentially plays a role in determining fetal-maternal ABO incompatibility.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ping Tseng
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
5
|
Gorakshakar A, Gogri H, Ghosh K. Evolution of technology for molecular genotyping in blood group systems. Indian J Med Res 2017; 146:305-315. [PMID: 29355136 PMCID: PMC5793464 DOI: 10.4103/ijmr.ijmr_914_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular basis of the blood group antigens was identified first in the 1980s and 1990s. Since then the importance of molecular biology in transfusion medicine has been described extensively by several investigators. Molecular genotyping of blood group antigens is one of the important aspects and is successfully making its way into transfusion medicine. Low-, medium- and high-throughput techniques have been developed for this purpose. Depending on the requirement of the centre like screening for high- or low-prevalence antigens where antisera are not available, correct typing of multiple transfused patients, screening for antigen-negative donor units to reduce the rate of alloimmunization, etc. a suitable technique can be selected. The present review discusses the evolution of different techniques to detect molecular genotypes of blood group systems and how these approaches can be used in transfusion medicine where haemagglutination is of limited value. Currently, this technology is being used in only a few blood banks in India. Hence, there is a need for understanding this technology with all its variations.
Collapse
Affiliation(s)
- Ajit Gorakshakar
- Department of Transfusion Medicine, ICMR- National Institute of Immunohaematology, Mumbai, India
| | - Harita Gogri
- Department of Transfusion Medicine, ICMR- National Institute of Immunohaematology, Mumbai, India
| | | |
Collapse
|
6
|
Martins ML, da Silva AR, Santos HC, Alves MT, Schmidt LC, Vertchenko SB, Dusse LMS, Silva Malta MCFD. Duffy blood group system: New genotyping method and distribution in a Brazilian extra-Amazonian population. Mol Cell Probes 2017; 35:20-26. [PMID: 28587995 DOI: 10.1016/j.mcp.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
Duffy blood group system is of interest in several fields of science including transfusion medicine, immunology and malariology. Although some methods have been developed for Duffy polymorphism genotyping, not all of them have been sufficiently described and validated, and all present limitations. At the same time, the frequency of Duffy alleles and antigens in some densely populated regions of the world are still missing. In this study we present new tests for genotyping the major alleles of the Duffy blood system and describe Duffy alleles and antigens in blood donors and transfusion-dependent patients in Minas Gerais, Brazil. A simple and reproducible strategy was devised for Duffy genotyping based on real-time PCR that included SNPs rs12075 and rs2814778. No significant differences between the allele frequencies were observed comparing blood donors and patients. Among the blood donors, the phenotype Fy(a-b+) was the most common and the Fy(a-b-) phenotype, associated with populations of African descent, was remarkably less common among subjects who self-identified as black in comparison to other ethnoracial categories. However, the African ancestry estimated by molecular markers was significantly higher in individuals with the allele associated to the Duffy null phenotype. The genotyping method presented may be useful to study Duffy genotypes accurately in different contexts and populations. The results suggest a reduced risk of alloimmunization for Duffy antigens and increased susceptibility for malaria in Minas Gerais, considering the high frequency of Duffy-positive individuals.
Collapse
Affiliation(s)
- Marina Lobato Martins
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais - Hemominas, MG, Brazil
| | - Adão Rogerio da Silva
- Fundação Centro de Hematologia e Hemoterapia de Minas Gerais - Hemominas, MG, Brazil; Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Universidade Federal de Minas Gerais, Brazil
| | - Hadassa Campos Santos
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | | | | | - Luci Maria SantAna Dusse
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Universidade Federal de Minas Gerais, Brazil
| | | |
Collapse
|
7
|
Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review. Int J Legal Med 2016; 131:21-37. [DOI: 10.1007/s00414-016-1490-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
8
|
Cui H, Lin S, Chen X, Gao W, Li X, Zhou H, Du W, Wang S, Zhao R. Correlation Between SNPs in Candidate Genes and VerifyNow-Detected Platelet Responsiveness to Aspirin and Clopidogrel Treatment. Cardiovasc Drugs Ther 2016; 29:137-46. [PMID: 25860557 DOI: 10.1007/s10557-015-6585-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Patients with high on-treatment platelet reactivity (HPR) against aspirin or clopidogrel are at increased risk for adverse cardiovascular events. In this study, we explored the predictive value of common SNPs for the on-treatment platelet reactivity (OPR) against aspirin and clopidogrel assessed by VerifyNow assays. METHODS This study recruited 286 Han Chinese individuals undergoing antiplatelet treatment, including 159 cases with aspirin only (100 mg/day) and 127 cases with dual therapy (aspirin 100 mg/day plus clopidogrel 75 mg/day) for at least 2 weeks. The OPR against aspirin and clopidogrel were assessed by VerifyNow Aspirin (ARU) and P2Y12 assays (PRU), respectively. Genotyping for the selected 25 SNPs within 11 genes and 2 GWAS loci was carried out by ABI multiplex SNaPshot method. RESULTS The results indicated that rs4244285 (CYP2C19) and rs342293 (7q22.3) were significantly associated with PRU value (both P < 0.01). As for the OPR to aspirin, a weak statistical significance was observed in rs5445 (GNB3) (P = 0.049) and rs5758 (TBXA2R) (P = 0.045). After adjusting for the covariates including gender, age and smoking, carriers of allele A of rs4244285 remained as a strong predictor for HPR against clopidogrel. CONCLUSION The current study suggests that common SNPs may predict OPR against clopidogrel as assessed by VerifyNow P2Y12, but are less likely to respond against aspirin as assessed by VerifyNow Aspirin.
Collapse
Affiliation(s)
- Hanbin Cui
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, 315010, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion 2015; 55:2610-5; quiz 2609. [PMID: 26094790 DOI: 10.1111/trf.13168] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND When problems with compatibility beyond ABO and D arise, currently transfusion services search their inventories and perform time-consuming serologic testing to locate antigen-negative blood. These clinically important blood group antigens can be detected reliably by red cell genotyping, which is a technology whereby DNA-based techniques are used to evaluate gene polymorphisms that determine the expression of blood group antigens. We introduced mass-scale genotyping and measured availability of genotyped blood. STUDY DESIGN AND METHODS All non-Caucasian donors qualified for genotyping along with donors who had a history of repeat donation. Mass-scale red cell genotyping, performed on an electronic interfaced open array platform, was implemented to screen blood donors for 32 single-nucleotide polymorphisms that predicted 42 blood group antigens. Genotype screening results were confirmed by phenotyping, when needed for antigen-negative transfusion, before release of the red blood cell (RBC) unit. RESULTS Approximately 22,000 donors were red cell genotyped within 4 months and a total of 43,066 donors in 4 years. There were 463 discordances (0.52% of 89,596 genotypes with a phenotype). Among the 307 resolved discordances, approximate equal numbers represented historical serologic or genotyping discrepancies (n = 151 and n = 156, respectively). In the final year of the study, a mean of 29% of the daily inventory had a genotype. CONCLUSIONS Red cell genotyping of blood donors using an electronic interface created a large and stable supply of RBC units with historical genotypes. The database served the needs of antigen-negative blood requests for a large regional blood center and allowed us to abandon screening by serology.
Collapse
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jerome L Gottschall
- Department of Pathology, Medical College of Wisconsin.,Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Gregory A Denomme
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Affiliation(s)
- T. Peyrard
- Département Centre National de Référence pour les Groupes Sanguins; Institut National de la Transfusion Sanguine (INTS); Paris France
| |
Collapse
|
11
|
Zhou S, Liu M, An W, Liang X, Yu W, Piao F. A New Method for Analyzing the Duffy Blood Group Genotype by TaqMan Minor Groove Binding Probes. J Clin Lab Anal 2014; 29:203-7. [PMID: 24798509 DOI: 10.1002/jcla.21751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Duffy blood group genotyping is useful to ensure transfusion safety and determine the association of Duffy blood group polymorphism with diseases, and therefore has its clinical significance. In order to improve the existing methods for genotyping of Duffy blood group, which normally require post-PCR manipulation, a new method was developed by using 5'-nuclease assay (NA) with TaqMan minor groove binding (MGB) probes. METHODS Primers and TaqMan-MGB probes were designed and synthesized to genotype FY*A and FY*B alleles at Duffy blood group locus on a real-time PCR platform. A total of 120 samples were genotyped by using the new 5'-NA and conventional polymerase chain reaction with allele-specific primers (PCR-ASP). The results obtained by the two methods were compared. RESULTS There was a complete concordance of results for all samples genotyped by 5'-NA and PCR-ASP. The retesting results of 5'-NA were consistent with those of the initial testing. The detection limit of 5'-NA was determined as 100 pg per reaction. The FY*A and FY*B allelic frequencies were 93.3% and 6.7% respectively in the Chinese Han population in Dalian. CONCLUSIONS The 5'-NA for genotyping of Duffy blood group is simple, rapid, reliable, reproducible, sensitive, and high-throughput and is superior to PCR-ASP used in routine genotyping.
Collapse
Affiliation(s)
- Shihang Zhou
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China.,Dalian Blood Center, Dalian, China
| | - Ming Liu
- Department of Cell Biology, Dalian Medical University, Dalian, China
| | | | | | | | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
DNA biosensor/biochip for multiplex blood group genotyping. Methods 2013; 64:241-9. [PMID: 24080420 DOI: 10.1016/j.ymeth.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/20/2022] Open
Abstract
At present, 33 blood groups representing over 300 antigens are listed by the International Society of Blood Transfusion (ISBT). Most of them result from a single nucleotide polymorphism (SNP) in the corresponding DNA sequence, i.e. approx. 200 SNPs. In immunohematology laboratories, blood group determination is classically carried out by serological tests, but these have some limitations, mostly in term of multiplexing and throughput. Yet, there is a growing need of extended blood group typing to prevent alloimmunization in transfused patients and transfusion accidents. The knowledge of the molecular bases of blood groups allows the use of molecular biology methods within immunohematology laboratories. Numerous assays focused on blood group genotyping were developed and described during the last 10 years. Some of them were real biochips or biosensors while others were more characterized by the particular molecular biology techniques they used, but all were intending to produce multiplex analysis. PCR techniques are most of the time used followed by an analytical step involving a DNA biosensor, biochip or analysis system (capillary electrophoresis, mass spectrometry). According to the method used, the test can then be classified as low-, medium- or high-throughput. There are several companies which developed platforms dedicated to blood group genotyping able to analyze simultaneously various SNPs or variants associated with blood group systems. This review summarizes the characteristics of each molecular biology method and medium-/high-throughput platforms dedicated to the blood group genotyping.
Collapse
|
13
|
A new strategy to identify rare blood donors: single polymerase chain reaction multiplex SNaPshot reaction for detection of 16 blood group alleles. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s256-63. [PMID: 23736910 DOI: 10.2450/2013.0242-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/11/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND As an alternative to phenotyping, large-scale DNA-based assays, which are feasible for high-throughput donor red blood cell typing, were developed for determination of blood group polymorphisms. However, high-throughput genotyping platforms based on these technologies are still expensive and the inclusion of single nucleotide polymorphisms and analysis of the alleles depend on the manufacturer's determination. To overcome this limitation and in order to develop an assay to enable the screening of rare donors, we developed a SNaPshot assay for analysis of nine single nucleotide polymorphisms related to antigens that are difficult to assess using conventional serology. MATERIALS AND METHODS The single polymerase chain reaction multiplex SNaPshot reaction was optimized to identify nine single nucleotide polymorphisms determining 16 alleles: KEL*3/KEL*4, KEL*6/KEL*7, DI*1/DI*2, DI*3/DI*4, YT*1/YT*2, CO*1/CO*2, DO*1/DO*2, DO*4, DO*5. We designed a single multiplex PCR with primers encompassing the blood group single nucleotide polymorphisms and performed an internal reaction with probe primers able to discriminate the alleles after fragment analysis. The SNaPshot assay was validated with 140 known alleles previously determined by PCR restriction fragment length polymorphism. RESULTS We were able to simultaneous detect nine single nucleotide polymorphisms defining 16 blood group alleles on an assay based on a multiplex PCR combined with a single base extension using genomic DNA. DISCUSSION This study demonstrates a robust genotyping strategy for conducting rare donor screening which can be applied in blood centers and could be an important tool for identifying antigen-negative donors and, therefore, for providing rare blood.
Collapse
|
14
|
Monteiro F, Tavares G, Ferreira M, Amorim A, Bastos P, Rocha C, Araújo F, Cunha-Ribeiro LM. Technologies involved in molecular blood group genotyping. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1751-2824.2011.01425.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Cheng HL, Chiou SS, Liao YM, Chen YL, Wu SM. Genotyping of single nucleotide polymorphism in γ-glutamyl hydrolase gene by capillary electrophoresis. Electrophoresis 2011; 32:2021-7. [DOI: 10.1002/elps.201000422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 12/14/2022]
|
16
|
Shehata N, Denomme GA, Hannach B, Banning N, Freedman J. Mass-scale high-throughput multiplex polymerase chain reaction for human platelet antigen single-nucleotide polymorphisms screening of apheresis platelet donors. Transfusion 2011; 51:2028-33. [DOI: 10.1111/j.1537-2995.2011.03082.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Di Cristofaro J, Julie DC, Buhler S, Frassati C, Basire A, Galicher V, Baier C, Essautier A, Regnier A, Granier T, Lepfoundzou AD, Chiaroni J, Picard C. Linkage disequilibrium between HLA-G*0104 and HLA-E*0103 alleles in Tswa Pygmies. TISSUE ANTIGENS 2011; 77:193-200. [PMID: 21299523 DOI: 10.1111/j.1399-0039.2010.01599.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonclassical human leukocyte antigen (HLA)-G and -E loci are separated by approximately 660 kb on the short arm of chromosome 6. Interestingly, some functional and expression characteristics are relatively identical or associated for both molecules. For example, expression of HLA-E on the cell surface has been linked to preferential binding of nonameric leader peptides derived from the signal sequence of HLA-G. It has been suggested that these two molecules act synergistically in modulating susceptibility to infectious or chronic inflammatory diseases. A possible explanation for these observations is that HLA-E and HLA-G are evolving under analogous selective pressures and have functions that place them under selective regimes differing from classical HLA genes. The purpose of this study was to investigate the consistency of this hypothesis based on the characterization of the molecular polymorphism of these two genes and their linkage disequilibrium (LD) in three populations, i.e. Southeastern French (n = 57), Teke Congolese (n = 84) and Tswa Pygmies (n = 74). Allelic frequencies observed for HLA-G and HLA-E and for 14-bp ins/del polymorphism in the three populations were similar to those observed in the literature for populations from corresponding geographic areas. Only one of the recently described HLA-G polymorphisms (HLA-G*01:07-01:16) was found, i.e. HLA-G*01:15 in one individual from Congo. We showed that two haplotypes in Tswa Pygmies, i.e. HLA-G*01:04-E*01:03:01 and G*01:04-E*01:01, exhibited highly significant positive and negative D' values respectively. Although these LD could have functional implications, it is more likely because of the genetic drift as the two other populations did not display any significant LD.
Collapse
Affiliation(s)
- J Di Cristofaro
- UMR 6578 (Anthropobiologie Bioculturelle), Université de la Méditerranée, CNRS, EFS, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Blood centers are able to recruit and process large numbers of blood donations to meet the demand for antigen-matched blood. However, there are limitations with the use of hemagglutination that can be circumvented with blood group genotyping. Antisera do not exist for several clinically important blood group antigens and many methods have been developed (direct hemagglutination, indirect antiglobulin-dependent, solid phase, or gel column). There is increasing interest to apply mass-scale red cell genotyping of blood donors to find rare (predicted) phenotypes, rare combinations of antigens and locus haplotypes, and to have access to information on the common clinically relevant blood group antigens. This review outlines technological advances, emerging algorithms, and the future of mass-scale red cell genotyping of blood donors.
Collapse
Affiliation(s)
- Gregory A Denomme
- Immunohematolgy Reference Laboratory, Blood Center of Wisconsin, 638 18th Street, Milwaukee, WI 53201-2178, United States.
| | | | | |
Collapse
|
19
|
Abstract
Although hemagglutination serves the immunohematology reference laboratory well, when used alone, it has limited capability to resolve complex problems. This overview discusses how molecular approaches can be used in the immunohematology reference laboratory. In order to apply molecular approaches to immunohematology, knowledge of genes, DNA-based methods, and the molecular bases of blood groups are required. When applied correctly, DNA-based methods can predict blood groups to resolve ABO/Rh discrepancies, identify variant alleles, and screen donors for antigen-negative units. DNA-based testing in immunohematology is a valuable tool used to resolve blood group incompatibilities and to support patients in their transfusion needs.
Collapse
Affiliation(s)
- Marion E Reid
- New York Blood Center, 310 East 67th Street, New York, NY 10065, Telephone: 212-570-3294 / Fax: 212-737-4935,
| | - Gregory A Denomme
- Blood Center of Wisconsin, 638 18 Street, Milwaukee, WI, 53201-2178, Telephone: 414-937-6440 / Fax: 414-937-6404,
| |
Collapse
|
20
|
Abstract
When one looks at the field of molecular pathology or transplantation, it is evident that molecular biology has made a positive impact on medicine. However, the progress in transfusion medicine has been slower and more cautious than in other areas of the clinical laboratory. To understand where the field may go in the next 10 years requires that the reader understand what technology is available now. Therefore, this article discusses the current state of the art for red-cell genotyping and newer, ever-evolving molecular technologies. Because it is impossible to present all of the molecular techniques and their variations in this article, the author selects a group of methodologies to review and speculates where the field of molecular immunohematology may be in 2020.
Collapse
Affiliation(s)
- Joann M Moulds
- Clinical Immunogenetics, LifeShare Blood Centers, 8910 Linwood Avenue, Shreveport, LA 71106, USA.
| |
Collapse
|
21
|
Silvy M, Simon S, Gouvitsos J, Di Cristofaro J, Ferrera V, Chiaroni J, Bailly P. Weak D and DEL alleles detected by routine SNaPshot genotyping: identification of four novel RHD alleles. Transfusion 2010; 51:401-11. [DOI: 10.1111/j.1537-2995.2010.02830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
|
23
|
Di Cristofaro J, Silvy M, Chiaroni J, Bailly P. Single PCR multiplex SNaPshot reaction for detection of eleven blood group nucleotide polymorphisms: optimization, validation, and one year of routine clinical use. J Mol Diagn 2010; 12:453-60. [PMID: 20431033 DOI: 10.2353/jmoldx.2010.090222] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemagglutination-based assays have several clinical shortcomings. To overcome this difficulty, we have developed a multiplex-PCR SNaPshot assay adapted to the Southern French population, which includes individuals from sub-Saharan Africa and the Comoros archipelago. Single nucleotide polymorphisms (SNPs) associated with clinically relevant blood antigens as well as with null phenotypes were profiled (i.e., K/k, Fy(a)/Fy(b)/Fy(bw)/Fy(null), S/s/U-/U+(var), Jk(a)/Jk(b), Do(a)/Do(b), Yt(a)/Yt(b), and Co(a)/Co(b)). A single multiplex-PCR reaction was used to amplify nine gene regions encompassing 11 SNPs. Identification was obtained by incorporation of the complementary dye-conjugated single base at the 3' end of each probe primer annealed proximal to the target SNP. After optimization, the SNaPshot assay was validated with 265 known allele or phenotype pairs. Results were found fully concordant with those of hemagglutination, allele-specific PCR, and/or sequencing. The assay was then evaluated on 227 blood samples in a clinical context. A total of 203 derived-phenotypes were generated, including 82 atypical phenotypes [i.e., Fy(b+(w)) (n = 32); K(+) (n = 22); Co(b+) (n = 8); Yt(b+) (n = 18); S-s+U+(var) (n = 2), 105 null phenotypes, i.e., Fy(a-b-) (n = 97); S-s-U- (n = 6); S-s-U+(var) (n = 2)] and sixteen Fy-positive samples carried a FY*Fy allele. The findings show that this assay can provide a low-cost and fast genotyping tool well adapted to local ethnically mixed populations.
Collapse
Affiliation(s)
- Julie Di Cristofaro
- Etablissement Français du Sang Alpes Méditerranée, UMR 6578, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
24
|
Identification and genotyping of Mycobacterium tuberculosis complex species by use of a SNaPshot Minisequencing-based assay. J Clin Microbiol 2010; 48:1758-66. [PMID: 20220173 DOI: 10.1128/jcm.02255-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to investigate the use of the SNaPshot minisequencing method for the identification of Mycobacterium tuberculosis complex (MTBC) isolates to the species level and for further genotyping of M. tuberculosis isolates. We developed an innovative strategy based on two multiplex allele-specific minisequencing assays that allowed detection of eight species-specific and eight lineage-specific single nucleotide polymorphisms (SNPs). Each assay consisted of an eightplex PCR amplification, followed by an eightplex minisequencing reaction with the SNaPshot multiplex kit (Applied Biosystems) and, finally, analysis of the extension products by capillary electrophoresis. The whole strategy was developed with a panel of 56 MTBC strains and 15 negative controls. All MTBC strains tested except one M. africanum clinical isolate were accurately identified to the species level, and all M. tuberculosis isolates were successfully further genotyped. This two-step strategy based on SNaPshot minisequencing allows the simultaneous differentiation of closely related members of the MTBC, the distinction between principal genetic groups, and the characterization of M. tuberculosis isolates into one of the seven prominent SNP cluster groups (SCGs) and could be a useful tool for diagnostic and epidemiological purposes.
Collapse
|
25
|
Hopp K, Weber K, Bellissimo D, Johnson ST, Pietz B. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion 2010; 50:40-6. [PMID: 19761548 DOI: 10.1111/j.1537-2995.2009.02377.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Serologic testing of donors to obtain antigen-negative blood for transfusion is limited by availability and quality of reagents. Where sequence variant information is available, molecular typing platforms can be used to determine the presence of a variant allele and offer a high-throughput format correlated to the blood group antigen. We have investigated a flexible high-throughput platform to screen blood donors for antigen genotypes in the African American population. STUDY DESIGN AND METHODS Genomic DNA from 427 African American donors was analyzed for single-nucleotide polymorphisms responsible for red blood cell (RBC) antigens E/e, Fy(a)/Fy(b), Fy gene promoter, Jk(a)/Jk(b), Lu(a)/Lu(b), K/k, Js(a)/Js(b), Do(a)/Do(b), Jo(a), and Hy using primer/probe sets (Taqman, Applied Biosystems) on a high-throughput genotyping platform (OpenArray, BioTrove). Where available, the phenotype obtained by serologic testing was compared to genotype data. RESULTS Serologic antigen types were available for 2037 of the 4270 genotypes generated. There were five discordant results. Three resolved with repeat serologic typing, one resolved after repeat genotyping, and one discordance was clarified by confirmation of the BioTrove genotype by Sanger sequencing. Triplicate determinations were made for each sample genotype and the results were identical more than 99% of the time. CONCLUSIONS The nanofluidic genotyping platform described here provides an accurate method for predicting blood group phenotypes. The user-specified array layout provides flexibility of target selection and number of replicate determinations and is suitable for screening antigen types.
Collapse
Affiliation(s)
- Kathleen Hopp
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53233, USA
| | | | | | | | | |
Collapse
|
26
|
Reid ME. Transfusion in the age of molecular diagnostics. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:171-177. [PMID: 20008196 PMCID: PMC2906784 DOI: 10.1182/asheducation-2009.1.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA-based tests are increasingly being used to predict a blood group phenotype to improve transfusion medicine. This is possible because genes encoding 29 of the 30 blood group systems have been cloned and sequenced, and the molecular bases associated with most antigens have been determined. RBCs carrying a particular antigen, if introduced into the circulation of an individual who lacks that antigen (through transfusion or pregnancy), can elicit an immune response. It is the antibody from such an immune response that causes problems in clinical practice and the reason why antigen-negative blood is required for safe transfusion. The classical method of testing for blood group antigens and antibodies is hemagglutination; however, it has certain limitations, some of which can be overcome by testing DNA. Such testing allows conservation of antibodies for confirmation by hemagglutination of predicted antigen-negativity. High-throughput platforms provide a means to test relatively large numbers of donors, thereby opening the door to change the way antigen-negative blood is provided to patients and to prevent immunization. This review summarizes how molecular approaches, in conjunction with conventional hemagglutination, can be applied in transfusion medicine.
Collapse
|
27
|
Reid ME. Applications and Experience with PCR-Based Assays to Predict Blood Group Antigens. ACTA ACUST UNITED AC 2009; 36:168-178. [PMID: 20729996 DOI: 10.1159/000212062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DNA-based tests are increasingly being used to predict a blood group phenotype. This is possible because genes encoding 29 of the 30 blood group systems have been cloned and sequenced, and the molecular bases associated with most antigens have been determined. RBCs carrying a particular antigen, if introduced into the circulation of an individual who lacks that antigen, can elicit an immune response. It is the antibody from such an immune response that causes problems in clinical practice and the reason why antigen-negative blood is required for safe transfusion. The classical method of testing for blood group antigens and antibodies is hemagglutination; however, it has certain limitations, some of which can be overcome by testing DNA. Such testing allows conservation of antibodies for confirmation by hemagglutination of predicted antigen-negativity. High-throughput platforms provide a means to test relatively large numbers of donors, thereby opening the door to change the way antigen-negative blood is provided to patients. This chapter discusses how molecular approaches can be applied in transfusion medicine, and summarizes experiences of using laboratory developed tests and DNA arrays at the New York Blood Center.
Collapse
Affiliation(s)
- Marion E Reid
- Director Immunohematology, New York Blood Center, 310 East 67 Street, New York, NY 10065, Telephone: 212 570 3294, ,
| |
Collapse
|