1
|
Mayani H. Umbilical Cord Blood Hematopoietic Cells: From Biology to Hematopoietic Transplants and Cellular Therapies. Arch Med Res 2024; 55:103042. [PMID: 39003965 DOI: 10.1016/j.arcmed.2024.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic stem and progenitor cells that are biologically superior to their adult counterparts. UCB cells can be stored for several years without compromising their numbers or function. Today, public and private UCB banks have been established in several countries around the world. After 35 years since the first UCB transplant (UCBT), more than 50,000 UCBTs have been performed worldwide. In pediatric patients, UCBT is comparable to or superior to bone marrow transplantation. In adult patients, UCB can be an alternative source of hematopoietic cells when an HLA-matched unrelated adult donor is not available and when a transplant is urgently needed. Delayed engraftment (due to reduced absolute numbers of hematopoietic cells) and higher costs have led many medical institutions not to consider UCB as a first-line cell source for hematopoietic transplants. As a result, the use of UCB as a source of hematopoietic stem and progenitor cells for transplantation has declined over the past decade. Several approaches are being investigated to make UCBTs more efficient, including improving the homing capabilities of primitive UCB cells and increasing the number of hematopoietic cells to be infused. Several of these approaches have already been applied in the clinic with promising results. UCB also contains immune effector cells, including monocytes and various lymphocyte subsets, which, together with stem and progenitor cells, are excellent candidates for the development of cellular therapies for hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
2
|
Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A. Current status in cellular-based therapies for prevention and treatment of COVID-19. Crit Rev Clin Lab Sci 2023:1-25. [PMID: 36825325 DOI: 10.1080/10408363.2023.2177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Zavvar M, Yahyapoor A, Baghdadi H, Zargaran S, Assadiasl S, Abdolmohammadi K, Hossein Abooei A, Reza Sattarian M, JalaliFarahani M, Zarei N, Farahvash A, Fatahi Y, Deniz G, Zarebavani M, Nicknam MH. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches. Int Immunopharmacol 2022; 107:108655. [PMID: 35248946 PMCID: PMC8872837 DOI: 10.1016/j.intimp.2022.108655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Multiple efforts are currently underway to control and treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) worldwide. Despite all efforts, the virus that emerged in Wuhan city has rapidly spread globally and led to a public health emergency of international concern (PHEIC) due to the lack of approved antiviral therapy. Nevertheless, SARS-CoV-2 has had a significant influence on the evolution of cellular therapeutic approaches. Adoptive immune cell therapy is innovative and offers either promising prophylactic or therapy for patients with moderate-to-severe COVID-19. This approach is aimed at developing safety and providing secure and effective therapy in combination with standard therapy for all COVID-19 infected individuals. Based on the effective results of previous studies on both inflammatory and autoimmune diseases, various immune cell therapies against COVID-19 have been reviewed and discussed. It must be considered that the application of cell therapy for treatment and to eliminate infected respiratory cells could result in excessive inflammation, so this treatment must be used in combination with other treatments, despite its many beneficial efforts.
Collapse
|
4
|
Αn optimized, simplified and clinically approved culture system to produce, in large scale, dendritic cells capable of priming specific T cells. Differentiation 2022; 125:54-61. [DOI: 10.1016/j.diff.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
|
5
|
Koukoulias K, Papadopoulou A, Kouimtzidis A, Papayanni PG, Papaloizou A, Sotiropoulos D, Yiangou M, Costeas P, Anagnostopoulos A, Yannaki E, Kaloyannidis P. Non-transplantable cord blood units as a source for adoptive immunotherapy of leukaemia and a paradigm of circular economy in medicine. Br J Haematol 2021; 194:158-167. [PMID: 34036576 DOI: 10.1111/bjh.17464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Advances in immunotherapy with T cells armed with chimeric antigen receptors (CAR-Ts), opened up new horizons for the treatment of B-cell lymphoid malignancies. However, the lack of appropriate targetable antigens on the malignant myeloid cell deprives patients with refractory acute myeloid leukaemia of effective CAR-T therapies. Although non-engineered T cells targeting multiple leukaemia-associated antigens [i.e. leukaemia-specific T cells (Leuk-STs)] represent an alternative approach, the prerequisite challenge to obtain high numbers of dendritic cells (DCs) for large-scale Leuk-ST generation, limits their clinical implementation. We explored the feasibility of generating bivalent-Leuk-STs directed against Wilms tumour 1 (WT1) and preferentially expressed antigen in melanoma (PRAME) from umbilical cord blood units (UCBUs) disqualified for allogeneic haematopoietic stem cell transplantation. By repurposing non-transplantable UCBUs and optimising culture conditions, we consistently produced at clinical scale, both cluster of differentiation (CD)34+ cell-derived myeloid DCs and subsequently polyclonal bivalent-Leuk-STs. Those bivalent-Leuk-STs contained CD8+ and CD4+ T cell subsets predominantly of effector memory phenotype and presented high specificity and cytotoxicity against both WT1 and PRAME. In the present study, we provide a paradigm of circular economy by repurposing unusable UCBUs and a platform for future banking of Leuk-STs, as a 'third-party', 'off-the-shelf' T-cell product for the treatment of acute leukaemias.
Collapse
Affiliation(s)
- Kiriakos Koukoulias
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Anastasios Kouimtzidis
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope-Georgia Papayanni
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Damianos Sotiropoulos
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Panayotis Kaloyannidis
- Adult Hematology and Stem cell Transplantation Department, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Han J, Sun J, Zhang G, Chen H. DCs-based therapies: potential strategies in severe SARS-CoV-2 infection. Int J Med Sci 2021; 18:406-418. [PMID: 33390810 PMCID: PMC7757148 DOI: 10.7150/ijms.47706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is spreading globally. There have been strenuous efforts to reveal the mechanisms that the host defends itself against invasion by this virus. The immune system could play a crucial role in virus infection. Dendritic cell as sentinel of the immune system plays an irreplaceable role. Dendritic cells-based therapeutic approach may be a potential strategy for SARS-CoV-2 infection. In this review, the characteristics of coronavirus are described briefly. We focus on the essential functions of dendritic cell in severe SARS-CoV-2 infection. Basis of treatment based dendritic cells to combat coronavirus infections is summarized. Finally, we propose that the combination of DCs based vaccine and other therapy is worth further study.
Collapse
Affiliation(s)
- Jian Han
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
- Department of Pharmaceutical Sciences USF Health, Taneja College of Pharmacy University of South Florida, Tampa, FL, USA
| | - Jiazhi Sun
- Department of Pharmaceutical Sciences USF Health, Taneja College of Pharmacy University of South Florida, Tampa, FL, USA
| | - Guixin Zhang
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
| | - Hailong Chen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
| |
Collapse
|
7
|
Luo XL, Dalod M. The quest for faithful in vitro models of human dendritic cells types. Mol Immunol 2020; 123:40-59. [PMID: 32413788 DOI: 10.1016/j.molimm.2020.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are mononuclear phagocytes that are specialized in the induction and functional polarization of effector lymphocytes, thus orchestrating immune defenses against infections and cancer. The population of DC encompasses distinct cell types that vary in their efficacy for complementary functions and are thus likely involved in defending the body against different threats. Plasmacytoid DCs specialize in the production of high levels of the antiviral cytokines type I interferons. Type 1 conventional DCs (cDC1s) excel in the activation of cytotoxic CD8+ T cells (CTLs) which are critical for defense against cancer and infections by intracellular pathogens. Type 2 conventional DCs (cDC2s) prime helper CD4+ T cells for the production of type 2 cytokines underpinning immune defenses against worms or of IL-17 promoting control of infections by extracellular bacteria or fungi. Hence, clinically manipulating the development and functions of DC types could have a major impact for improving treatments against many diseases. However, the rarity and fragility of human DC types is impeding advancement towards this goal. To overcome this roadblock, major efforts are ongoing to generate in vitro large numbers of distinct human DC types. We review here the current state of this research field, emphasizing recent breakthrough and proposing future priorities. We also pinpoint the necessity to develop a consensus nomenclature and rigorous methodologies to ensure proper identification and characterization of human DC types. Finally, we elaborate on how faithful in vitro models of human DC types can accelerate our understanding of the biology of these cells and the engineering of next generation vaccines or immunotherapies against viral infections or cancer.
Collapse
Affiliation(s)
- Xin-Long Luo
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
8
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
9
|
Bedke N, Swindle EJ, Molnar C, Holt PG, Strickland DH, Roberts GC, Morris R, Holgate ST, Davies DE, Blume C. A method for the generation of large numbers of dendritic cells from CD34+ hematopoietic stem cells from cord blood. J Immunol Methods 2019; 477:112703. [PMID: 31711888 PMCID: PMC6983936 DOI: 10.1016/j.jim.2019.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) play a central role in regulating innate and adaptive immune responses. It is well accepted that their regulatory functions change over the life course. In order to study DCs function during early life it is important to characterize the function of neonatal DCs. However, the availability of neonatal DCs is limited due to ethical reasons or relative small samples of cord blood making it difficult to perform large-scale experiments. Our aim was to establish a robust protocol for the generation of neonatal DCs from cord blood derived CD34+ hematopoietic stem cells. For the expansion of DC precursor cells we used a cytokine cocktail containing Flt-3 L, SCF, TPO, IL-3 and IL-6. The presence of IL-3 and IL-6 in the first 2 weeks of expansion culture was essential for the proliferation of DC precursor cells expressing CD14. After 4 weeks in culture, CD14+ precursor cells were selected and functional DCs were generated in the presence of GM-CSF and IL-4. Neonatal DCs were then stimulated with Poly(I:C) and LPS to mimic viral or bacterial infections, respectively. Poly(I:C) induced a higher expression of the maturation markers CD80, CD86 and CD40 compared to LPS. In line with literature data using cord blood DCs, our Poly(I:C) matured neonatal DCs cells showed a higher release of IL-12p70 compared to LPS matured neonatal DCs. Additionally, we demonstrated a higher release of IFN-γ, TNF-α, IL-1β and IL-6, but lower release of IL-10 in Poly(I:C) matured compared to LPS matured neonatal DCs derived from cord blood CD34+ hematopoietic stem cells. In summary, we established a robust protocol for the generation of large numbers of functional neonatal DCs. In line with previous studies, we showed that neonatal DCs generated form CD34+ cord blood progenitors have a higher inflammatory potential when exposed to viral than bacterial related stimuli. A robust protocol for the generation of high numbers of neonatal dendritic cells. IL-3 and IL-6 are crucial for the proliferation of cord blood CD34+ progenitors. Neonatal DCs have a higher inflammatory potential when exposed to viral stimuli. LPS induces higher release of IL-10 in neonatal DCs compared to Poly(I:C).
Collapse
Affiliation(s)
- Nicole Bedke
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Camelia Molnar
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick G Holt
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Deborah H Strickland
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Graham C Roberts
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruth Morris
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Donna E Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
10
|
Diversity of dendritic cells generated from umbilical cord or adult peripheral blood precursors. Cent Eur J Immunol 2018; 43:306-313. [PMID: 30588175 PMCID: PMC6305608 DOI: 10.5114/ceji.2018.80050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Following the discovery of methods to generate large numbers of specific dendritic cells (DCs) ex vivo, the possibility of exploiting these cells in immunotherapeutic strategies will become a reality. It seems to be rationally to analyse the influence of the precursor source for further features and applications. For the needs of the given project DCs were derived from precursors derived from adult peripheral blood (APB) and umbilical cord blood (UCB). During some expansions of UCB CD34+ cells were separated giving non-adherent DCs (NA-DCs) or adherent DCs (A-DCs), whereas DCs derived from UCB precursors without separation gave rise to All-DCs. DC subpopulations were stimulated by lipopolysaccharides (LPS) or interferon-γ (IFN-γ), and afterwards the morphology, phenotype, and stimulatory properties were analysed. Our findings demonstrated that DCs generated from APB and UCB precursors were not equivalent and exhibited opposite features when expanded in comparable conditions. Additionally, all three subpopulations of UCB-derived DCs presented functional dissimilarities. Based on our results we concluded that the precursor source and the composition of media must be considered as crucial to the success of potential therapeutic application.
Collapse
|
11
|
Generation of mouse and human dendritic cells in vitro. J Immunol Methods 2016; 432:24-9. [PMID: 26876301 DOI: 10.1016/j.jim.2016.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DC) that can orchestrate immune responses and maintain host homeostasis, are indispensable components of the immune system. Although distributed widely in many lymphoid and non-lymphoid tissues, their rarity in number has become a limiting factor for DC related research and therapies. Therefore, methods for efficiently generating large numbers of DC resembling their in vivo counterparts are urgently needed for DC related research and therapies. Herein we summarize the current methods for generating mouse and human DC in vitro and hope that these will facilitate both studies of DC biology and their clinical applications.
Collapse
|
12
|
Kumar J, Kale V, Limaye L. Umbilical cord blood-derived CD11c(+) dendritic cells could serve as an alternative allogeneic source of dendritic cells for cancer immunotherapy. Stem Cell Res Ther 2015; 6:184. [PMID: 26407613 PMCID: PMC4583174 DOI: 10.1186/s13287-015-0160-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Allogenic dendritic cells (DCs) generated from healthy donors, who are complete or partially HLA-matched, have been used for clinical trials. One of the sources for allogenic DCs is umbilical cord blood (UCB) cells. However, as far as cord blood cells are concerned, looking at their naïve nature, there is a concern as to whether the DCs generated from them will have enough potential to elicit a proper T cell response. For this, we compared CD11c+ UCB-DCs/ Cytotoxic T lymphocytes (CTLs) with the conventional source, i.e. peripheral blood (PBL) monocyte DCs/CTLs, using various parameters. Methods CD11c+ DCs generated from the two sources were compared morphologically, phenotypically and functionally. Functional assays included antigen uptake, chemotactic migration and MLR (mixed lymphocyte reaction). The CTLs generated were examined for the activation markers, granzyme A & granzyme B, and IFN-γ secretion. MUC1 (STAPPVHNV) peptide-specific CTLs were quantified by Streptamer staining. In vitro CTL activity was assessed by their efficiency in killing MCF-7 cells. For in vivo CTL assay, a xenograft of MCF-7-luc-F5 cells in female NOD/SCID mice was employed. Regression of tumors in mice was monitored using an in vivo imaging system before and after ten days of CTL infusion. Statistical analysis of all the experiments between the two groups was evaluated by one-way ANOVA. Results The CD11c+ DCs from the two sources were morphologically and phenotypically similar. Their capacity to uptake antigen, migration towards CCL-19 and MLR activity were equivalent. UCB-CTLs had significantly higher levels of activation markers, number of MUC1 specific CTLs, IFN-γ secretion and IL-12p70/IL-10 ratio than that of PBL-CTLs. Hematoxylin and Eosin-stained tumor sections showed T cell infiltration, which was further confirmed by immunofluorescence staining. In vivo CTL activity was found to be similar with the two sources. Conclusions Our data demonstrate that CD11c+ UCB-DCs/CTLs are as potent as standard CD11c+ PBL-DC/CTLs and could therefore be used as an allogenic source for therapeutic purposes. The findings of this study could help in taking us one step closer towards the personalized therapy using DC based cancer vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0160-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeetendra Kumar
- Stem Cell Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Vaijayanti Kale
- Stem Cell Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Lalita Limaye
- Stem Cell Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
13
|
Amodio G, Annoni A, Gregori S. Dendritic Cell Immune Therapy to Break or Induce Tolerance. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
de Haar C, Plantinga M, Blokland NJ, van Til NP, Flinsenberg TW, Van Tendeloo VF, Smits EL, Boon L, Spel L, Boes M, Boelens JJ, Nierkens S. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncoimmunology 2015; 4:e1023973. [PMID: 26451309 DOI: 10.1080/2162402x.2015.1023973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
The poor survival rates of refractory/relapsed acute myeloid leukemia (AML) patients after haematopoietic cell transplantation (HCT) requires the development of additional immune therapeutic strategies. As the elicitation of tumor-antigen specific cytotoxic T lymphocytes (CTLs) is associated with reduced relapses and enhanced survival, enhanced priming of these CTLs using an anti-AML vaccine may result in long-term immunity against AML. Cord blood (CB), as allogeneic HCT source, may provide a unique setting for such post-HCT vaccination, considering its enhanced graft-versus-leukemia (GvL) effects and population of highly responsive naïve T cells. It is our goal to develop a powerful and safe immune therapeutic strategy composed of CB-HCT followed by vaccination with CB CD34+-derived dendritic cells (DCs) presenting the oncoprotein Wilms Tumor-1 (WT1), which is expressed in AML-blasts in the majority of patients. Here, we describe the optimization of a clinically applicable DC culture protocol. This two-step protocol consisting of an expansion phase followed by the differentiation toward DCs, enables us to generate sufficient cord blood-derived DCs (CBDCs) in the clinical setting. At the end of the culture, the CBDCs exhibit a mature surface phenotype, are able to migrate, express tumor antigen (WT1) after electroporation with mRNA encoding the full-length WT1 protein, and stimulate WT1-specific T cells.
Collapse
Affiliation(s)
- Colin de Haar
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Maud Plantinga
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Nina Jg Blokland
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Niek P van Til
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Thijs Wh Flinsenberg
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute; University of Antwerp ; Wilrijk, Antwerp, Belgium
| | - Evelien L Smits
- Center for Oncological Research (CORE); University of Antwerp ; Wilrijk, Antwerp, Belgium ; Center for Cell Therapy and Regenerative Medicine; Antwerp University Hospital ; Wilrijk, Belgium
| | - Louis Boon
- Bioceros B.V. ; Utrecht, The Netherlands
| | - Lotte Spel
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Marianne Boes
- Clinical Immunology Section; LTI; UMC Utrecht ; Utrecht, The Netherlands
| | - Jaap Jan Boelens
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands ; Department Pediatrics; Blood and Marrow Transplantation Program; UMC Utrecht ; Utrecht, The Netherlands
| | - Stefan Nierkens
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands ; U-DAIR; LTI; UMC Utrecht ; Utrecht, The Netherlands
| |
Collapse
|
15
|
Cany J, Dolstra H, Shah N. Umbilical cord blood-derived cellular products for cancer immunotherapy. Cytotherapy 2015; 17:739-748. [PMID: 25795272 DOI: 10.1016/j.jcyt.2015.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 11/16/2022]
Abstract
Although the vast majority of experience with umbilical cord blood (CB) centers on hematopoietic reconstitution, a recent surge in the knowledge of CB cell subpopulations as well as advances in ex vivo culture technology have expanded the potential of this rich resource. Because CB has the capacity to generate the entire hematopoietic system, we now have a new source for natural killer, dendritic and T cells for therapeutic use against malignancies. This Review will focus on cellular immunotherapies derived from CB. Expansion techniques, ongoing clinical trials and future directions for this new dimension of CB application are also discussed.
Collapse
Affiliation(s)
- Jeannette Cany
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina Shah
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
16
|
Kumar J, Gurav R, Kale V, Limaye L. Exogenous addition of arachidonic acid to the culture media enhances the functionality of dendritic cells for their possible use in cancer immunotherapy. PLoS One 2014; 9:e111759. [PMID: 25369453 PMCID: PMC4219773 DOI: 10.1371/journal.pone.0111759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022] Open
Abstract
The development of dendritic cell based vaccines is a promising approach in cancer immunotherapy. For their successful use in the clinics, the propagation and functionality of DCs is crucial. We earlier established a two-step method for the large scale generation of DCs from umbilical cord blood derived MNCs/CD34+ cells. This work aims at improving their functionality based on the following observations: in vitro generated DCs can be less efficient in migration and other functional activities due to lower eicosanoid levels. The production of eicosanoids from Arachidonic Acid (AA) can be hampered due to suppression of the enzyme phospholipase A2 by IL-4, an essential cytokine required for the differentiation of DCs. We hypothesized that exogenous addition of AA to the culture media during DC generation may result in DCs with improved functionality. DCs were generated with and without AA. The two DC sets were compared by phenotypic analysis, morphology and functional assays like antigen uptake, MLR, CTL assay and in vitro and in vivo migration. Though there were no differences between the two types of DCs in terms of morphology, phenotype and antigen uptake, AA+ DCs exhibited an enhanced in vitro and in vivo migration, T cell stimulatory capacity, CTL activity and significantly higher transcript levels of COX-2. AA+ DCs also show a favorable Th1 cytokine profile than AA- DCs. Thus addition of AA to the culture media is skewing the DCs towards the secretion of more IL-12 and less of IL-10 along with the restoration of eicosanoids levels in a COX-2 mediated pathway thereby enhancing the functionality of these cells to be used as a potent cellular vaccine. Taken together, these findings will be helpful in the better contriving of DC based vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Jeetendra Kumar
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Rupali Gurav
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Vaijayanti Kale
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Lalita Limaye
- Stem Cell Lab., National Centre for Cell Science, Ganeshkhind, Pune, India
- * E-mail:
| |
Collapse
|
17
|
Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond) 2014; 9:2187-2202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine may play an important role in improving the clinical efficacy of dendritic cell-based immunotherapy against GI tract malignancies. Dendritic cell-based vaccines have proven their effectiveness against different established GI tract tumors, yet their success is mainly hindered by the strong tumor-induced suppressive microenvironment. The sustained and targeted release of tumor antigens to dendritic cells using different nanoengineered approaches would be an efficient strategy to overcome established immune tolerance. Encapsulation would result in low diffusivity, restricted movement, effective crosspresentation and enhanced T-cell responses. These nanotherapy-based approaches will certainly help with the designing of clinically translatable dendritic cell-based therapeutic vaccines and facilitate the selective removal of residual disease in gastrointestinal cancer patients following standard treatments.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr H. S. Gour Central University, Sagar, India
| | | | | | | | | |
Collapse
|
18
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research. J Drug Target 2013; 21:126-136. [PMID: 23061479 DOI: 10.3109/1061186x.2012.731069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrointestinal (GI) malignancies are one of the most frequently occurring tumors found worldwide. Surgery remains the primary treatment for most solid tumors and adjuvant chemotherapy and radiotherapy are limited by lack of specificity and toxicity. In view of the poor survival rate, there is a great need to introduce new and effective therapeutic modalities. Recently, dendritic cells (DCs)-based vaccines are being explored as a promising therapeutic strategy but their success is limited by the tumor-induced immune escape mechanisms. This article provides a comprehensive analysis of clinical trials conducted using this approach. It also showcases the necessity of exploring nano-engineered strategies for improving the clinical utility of DC-vaccination for GI tract malignancies to overcome immune tolerance.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi, Mumbai, India
| | | | | | | |
Collapse
|
19
|
Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol 2012; 42:45-57. [PMID: 22134956 DOI: 10.1007/s12016-011-8289-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because of its easier accessibility and less severe graft-versus-host disease, umbilical cord blood (UCB) has been increasingly used as an alternative to bone marrow for hematopoietic stem cell transplantation. Naiveté of UCB lymphocytes, however, results in delayed immune reconstitution and infection-related mortality in transplant recipients. This review updates the phenotypic and functional deficiencies of various immune cell populations in UCB compared with their adult counterparts and discusses clinical implications and possible therapeutic strategies to improve the outcome of stem cell transplantation.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 2012; 4:703-718. [PMID: 22853757 DOI: 10.2217/imt.12.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the most potent APCs, with the ability to orchestrate a repertoire of immune responses. DCs play a pivotal role in the initiation, programming and regulation of tumor-specific immune responses, as they are poised to take up, process and present tumor antigens to naive or effector T lymphocytes. Although, to an extent, DC-based immunotherapeutic strategies have successfully induced specific anti-tumor responses in animal models, their clinical efficacy has rarely been translated into the clinic. This article attempts to present a complete picture of recent developments of DC-based therapeutic strategies addressing multiple components of tumor immunoenvironment. It also showcases certain practical intricacies in order to explore novel strategies for providing new impetus to DC-based cancer vaccination.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, India
| | | | | | | |
Collapse
|
21
|
Harada Y, Okada-Nakanishi Y, Ueda Y, Tsujitani S, Saito S, Fuji-Ogawa T, Iida A, Hasegawa M, Ichikawa T, Yonemitsu Y. Cytokine-based high log-scale expansion of functional human dendritic cells from cord-blood CD34-positive cells. Sci Rep 2011; 1:174. [PMID: 22355689 PMCID: PMC3240956 DOI: 10.1038/srep00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/14/2011] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in maintaining the immune system. Though DC-based cancer immunotherapy has been suggested as a potential treatment for various kinds of malignancies, its clinical efficacies are still insufficient in many human trials. Issues that limit the clinical efficacy of DC-based immunotherapy, as well as the difficulty of the industrial production of DCs, are largely due to the limited number of autologous DCs available from each patient. We here established a possible breakthrough, a simple cytokine-based culture method to expand the log-scale order of functional human DCs. Floating cultivation of cord-blood CD34(+) cells under an optimized cytokine cocktail led these progenitor cells to stable log-scale proliferation and to DC differentiation. The expanded DCs had typical features of conventional myeloid DCs in vitro. Therefore, the concept of DC expansion should contribute significantly to the progress of DC immunotherapy.
Collapse
Affiliation(s)
- Yui Harada
- Department of Urology, Chiba University Graduate School ofMedicine, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Balan S, Kale VP, Limaye LS. A large number of mature and functional dendritic cells can be efficiently generated from umbilical cord blood-derived mononuclear cells by a simple two-step culture method. Transfusion 2011; 50:2413-23. [PMID: 20497510 DOI: 10.1111/j.1537-2995.2010.02706.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Advances in the past two decades in dendritic cell (DC) biology paved the way to exploit them as a promising tool in cancer immunotherapy. The prerequisite for DC vaccine preparations is large-scale in vitro generations of homogeneous, mature, and functional DCs. Frequent improvements are being made in the existing in vitro DC production protocols to achieve this goal. In our previous study we reported a large-scale generation of mature, functional DCs from umbilical cord blood (UCB) CD34+ cells. Here we report that this method can be used for the efficient generation of DCs from UCB mononuclear cells (MNCs) and thus the hematopoietic stem cell isolation step is not essential. STUDY DESIGN AND METHODS MNCs or CD34+ cells isolated from the same cord blood (CB) samples were used for the generation of DCs. DCs were characterized for morphology, phenotype, and functional assays including antigen uptake, chemotaxis, and mixed leukocyte reaction. Similarly DCs generated from the MNCs of same fresh and frozen CB units were compared. RESULTS The morphologic, phenotypic, and functional characterization of the DCs generated from various sets show that they were comparable in nature irrespective of the starting population used. CONCLUSION We conclude that the CD34+ isolation step is not essential for the generation of mature, functional DCs and thus can be eliminated. More importantly, we show that DCs can be generated with equal efficiency from the MNCs of frozen CB units. Our culture method will be useful for exploiting the potential of UCB as an additional source for allogeneic DCs in the clinical settings.
Collapse
Affiliation(s)
- Sreekumar Balan
- National Centre for Cell Science, Pune University Campus, Pune, India
| | | | | |
Collapse
|
23
|
Optimization of leukocyte collection and monocyte isolation for dendritic cell culture. Transfus Med Rev 2010; 24:130-9. [PMID: 20303036 DOI: 10.1016/j.tmrv.2009.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Leukapheresis is the method of choice to collect monocytes for dendritic cell (DC) culture. Improvement of cell separators and cell collection software have enabled the collection of 10(9) monocytes for the generation of monocyte-derived DCs, which is sufficient to prepare a DC vaccine series. However, leukapheresis works with the technique of differential centrifugation which is not applicable to selectively collect mononuclear cells of similar density. After leukapheresis, thus, additional preparation steps are required to isolate and enrich the desired monocyte population. The cell isolation and cultivation techniques depend on the quality of the original leukocyte harvest due to the monocyte yield and the content of residual erythrocytes and platelets. Monocyte elutriation from the leukapheresis product shows a high monocyte recovery of 80%. However, only 30% of the isolated monocytes can be developed into mature DCs. The factors responsible for DC maturation and the development of different DC subsets are the subject of current research.
Collapse
|