1
|
Abstract
Red blood cell (RBC) transfusion is one of the most frequently performed clinical procedures and therapies to improve tissue oxygen delivery in hospitalized patients worldwide. Generally, the cross-match is the mandatory test in place to meet the clinical needs of RBC transfusion by examining donor-recipient compatibility with antigens and antibodies of blood groups. Blood groups are usually an individual's combination of antigens on the surface of RBCs, typically of the ABO blood group system and the RH blood group system. Accurate and reliable blood group typing is critical before blood transfusion. Serological testing is the routine method for blood group typing based on hemagglutination reactions with RBC antigens against specific antibodies. Nevertheless, emerging technologies for blood group testing may be alternative and supplemental approaches when serological methods cannot determine blood groups. Moreover, some new technologies, such as the evolving applications of blood group genotyping, can precisely identify variant antigens for clinical significance. Therefore, this review mainly presents a clinical overview and perspective of emerging technologies in blood group testing based on the literature. Collectively, this may highlight the most promising strategies and promote blood group typing development to ensure blood transfusion safety.
Collapse
Affiliation(s)
- Hong-Yang Li
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Kai Guo
| |
Collapse
|
2
|
Al-Riyami AZ, Al Hinai D, Al-Rawahi M, Al-Hosni S, Al-Zadjali S, Al-Marhoobi A, Al-Khabori M, Al-Riyami H, Denomme GA. Molecular blood group screening in Omani blood donors. Vox Sang 2021; 117:424-430. [PMID: 34647328 DOI: 10.1111/vox.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Blood group genotyping has been used in different populations. This study aims at evaluating the genotypes of common blood group antigens in the Omani blood donors and to assess the concordance rate with obtained phenotypes. MATERIAL AND METHODS Blood samples from 180 Omani donors were evaluated. Samples were typed by serological methods for the five blood group systems MNS, RH (RHD/RHCE), KEL, FY and JK. Samples were genotyped using RBC-FluoGene vERYfy eXtend kit (inno-train©). Predicted phenotypic variants for 70 red blood cell antigens among the MNS, RH (RHD/RHCE), KEL, FY, JK, DO, LU, YT, DI, VEL, CO and KN blood group systems were assessed. RESULTS Simultaneous phenotype and genotype results were available in 130 subjects. Concordance rate was >95% in all blood group systems with exception of Fy(b+) (87%). Homozygous GATA-1 mutation leading to erythroid silencing FY*02N.01 (resulting in the Fy(b-)ES phenotype) was detected in 81/112 (72%) of genotyped samples. In addition, discrepant Fyb phenotype/genotype result was obtained in 14/112 samples; 13 of which has a heterozygous GATA-1 mutation and one sample with a wild GATA genotype. D and partial e c.733C>G variants expressing the V+VS+ phenotype were found in 22/121 (18.2%) and 14/120 (11.7%) of the samples, respectively. Di(a-b+), Js(a-b+), Yt(a+b-) and Kn(a+b-) genotype frequencies were 99.4%, 95.8%, 91.9% and 97.7%, respectively. CONCLUSION In conclusion, we report a high frequency of FY*02N.01 allele due to homozygous c.-67T>C GATA-1 single-nucleotide variation. This is the first study reporting the detailed distribution of common and rare red cell genotypes in Omani blood donors.
Collapse
Affiliation(s)
- Arwa Z Al-Riyami
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Dina Al Hinai
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Al-Rawahi
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Saif Al-Hosni
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Ali Al-Marhoobi
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Murtadha Al-Khabori
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Hamad Al-Riyami
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Gregory A Denomme
- Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Roulis E, Schoeman E, Hobbs M, Jones G, Burton M, Pahn G, Liew YW, Flower R, Hyland C. Targeted exome sequencing designed for blood group, platelet, and neutrophil antigen investigations: Proof-of-principle study for a customized single-test system. Transfusion 2020; 60:2108-2120. [PMID: 32687227 DOI: 10.1111/trf.15945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Immunohematology reference laboratories provide red blood cell (RBC), platelet (PLT), and neutrophil typing to resolve complex cases, using serology and commercial DNA tests that define clinically important antigens. Broad-range exome sequencing panels that include blood group targets provide accurate blood group antigen predictions beyond those defined by serology and commercial typing systems and identify rare and novel variants. The aim of this study was to design and assess a panel for targeted exome sequencing of RBC, PLT, and neutrophil antigen-associated genes to provide a comprehensive profile in a single test, excluding unrelated gene targets. STUDY DESIGN AND METHODS An overlapping probe panel was designed for the coding regions of 64 genes and loci involved in gene expression. Sequencing was performed on 34 RBC and 17 PLT/neutrophil reference samples. Variant call outputs were analyzed using software to predict star allele diplotypes. Results were compared with serology and previous sequence genotyping data. RESULTS Average coverage exceeded 250×, with more than 94% of targets at Q30 quality or greater. Increased coverage revealed a variant in the Scianna system that was previously undetected. The software correctly predicted allele diplotypes for 99.5% of RBC blood groups tested and 100% of PLT and HNA antigens excepting HNA-2. Optimal throughput was 12 to 14 samples per run. CONCLUSION This single-test system demonstrates high coverage and quality, allowing for the detection of previously overlooked variants and increased sample throughput. This system has the potential to integrate genomic testing across laboratories within hematologic reference settings.
Collapse
Affiliation(s)
- Eileen Roulis
- Australian Red Cross Lifeblood Research and Development, Kelvin Grove, Queensland, Australia
| | - Elizna Schoeman
- Australian Red Cross Lifeblood Research and Development, Kelvin Grove, Queensland, Australia
| | - Matthew Hobbs
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Greg Jones
- Australian Red Cross Lifeblood Platelet and Granulocyte Reference Laboratory, Kelvin Grove, Queensland, Australia
| | - Mark Burton
- Australian Red Cross Lifeblood Platelet and Granulocyte Reference Laboratory, Kelvin Grove, Queensland, Australia
| | - Gail Pahn
- Australian Red Cross Lifeblood Platelet and Granulocyte Reference Laboratory, Kelvin Grove, Queensland, Australia
| | - Yew-Wah Liew
- Australian Red Cross Lifeblood Red Cell Reference Laboratory, Kelvin Grove, Queensland, Australia
| | - Robert Flower
- Australian Red Cross Lifeblood Research and Development, Kelvin Grove, Queensland, Australia
| | - Catherine Hyland
- Australian Red Cross Lifeblood Research and Development, Kelvin Grove, Queensland, Australia
| |
Collapse
|
4
|
Gassner C, Denomme GA, Portmann C, Bensing KM, Mattle-Greminger MP, Meyer S, Trost N, Song YL, Engström C, Jungbauer C, Just B, Storry JR, Forster M, Franke A, Frey BM. Two Prevalent ∼100-kb GYPB Deletions Causative of the GPB-Deficient Blood Group MNS Phenotype S-s-U- in Black Africans. Transfus Med Hemother 2020; 47:326-336. [PMID: 32884505 PMCID: PMC7443675 DOI: 10.1159/000504946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023] Open
Abstract
The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24- and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+var alleles, known to cause strongly reduced GPB expression. The 110- and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo- and hemizygous transmission.
Collapse
Affiliation(s)
- Christoph Gassner
- Independent at www.c-gassner.bio, Zurich, Switzerland
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | | | - Claudia Portmann
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | | | - Maja P. Mattle-Greminger
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Stefan Meyer
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Nadine Trost
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Young-Lan Song
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Charlotte Engström
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria, and Burgenland, Austrian Red Cross, Vienna, Austria
| | - Burkhard Just
- German Red Cross Blood Donation Service West, Hagen, Germany
| | - Jill R. Storry
- Division of Laboratory Medicine, Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Beat M. Frey
- Head Office, Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| |
Collapse
|
5
|
Shih AW, Yan MTS, Elahie AL, Barty RL, Liu Y, Berardi P, Azzam M, Siddiqui R, Parvizian MK, Mcdougall T, Heddle NM, Al-Habsi KS, Goldman M, Cote J, Athale U, Verhovsek MM. Utilising red cell antigen genotyping and serological phenotyping in sickle cell disease patients to risk-stratify patients for alloimmunisation risk. Transfus Med 2020; 30:263-274. [PMID: 32432400 DOI: 10.1111/tme.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Alloimmunisation and haemolytic transfusion reactions (HTRs) can occur in patients with sickle cell disease (SCD) despite providing phenotype-matched red blood cell (RBC) transfusions. Variant RBC antigen gene alleles/polymorphisms can lead to discrepancies in serological phenotyping. We evaluated differences between RBC antigen genotyping and phenotyping methods and retrospectively assessed if partial antigen expression may lead to increased risk of alloimmunisation and HTRs in SCD patients at a tertiary centre in Canada. METHODS RBC antigen phenotyping and genotyping were performed by a reference laboratory on consenting SCD patients. Patient demographic, clinical and transfusion-related data were obtained from a local transfusion registry and chart review after research ethics board approval. RESULTS A total of 106 SCD patients were enrolled, and 91% (n = 96) showed additional clinically relevant genotyping information when compared to serological phenotyping alone. FY*02N.01 (FY*B GATA-1) (n = 95; 90%) and RH variant alleles (n = 52, 49%; majority accompanied by FY*02N.01) were common, the latter with putative partial antigen expression in 25 patients. Variability in genotype-phenotype antigen prediction occurred mostly in the Rh system, notably with the e antigen (kappa: 0.17). Fifteen (14.2%) patients had a history of alloimmunisation, with five having HTR documented; no differences in clinical outcomes were found in patients with partial antigen expression. Genotype/extended-phenotype matching strategies may have prevented alloimmunisation events. CONCLUSION We show a high frequency of variant alleles/polymorphisms in the SCD population, where genotyping may complement serological phenotyping. Genotyping SCD patients before transfusion may prevent alloimmunisation and HTRs, and knowledge of the FY*02N.01 variant allele increases feasibility of finding compatible blood.
Collapse
Affiliation(s)
- Andrew W Shih
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew T S Yan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Medical Services and Hospital Relations, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Allahna L Elahie
- Hamilton Regional Laboratory Medicine Program, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca L Barty
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Philip Berardi
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Mona Azzam
- Department of Pediatrics, Suez Canal University, Ismailia, Egypt
| | - Reda Siddiqui
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael K Parvizian
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Tara Mcdougall
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nancy M Heddle
- Hamilton Regional Laboratory Medicine Program, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, Ontario, Canada
| | - Khalid S Al-Habsi
- Department of Blood Banks Services, Directorate General of Specialized Medical Care, Ministry of Health, Muscat, Oman
| | - Mindy Goldman
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Jacqueline Cote
- National Immunohematology Reference Laboratory, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Uma Athale
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Madeleine M Verhovsek
- Hamilton Regional Laboratory Medicine Program, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Bonet Bub C, Castilho L. ID CORE XT as a tool for molecular red blood cell typing. Expert Rev Mol Diagn 2019; 19:777-783. [DOI: 10.1080/14737159.2019.1656529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Carolina Bonet Bub
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Lilian Castilho
- Departamento de Hemoterapia e Terapia Celular, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Krog GR, Rieneck K, Clausen FB, Steffensen R, Dziegiel MH. Blood group genotyping of blood donors: validation of a highly accurate routine method. Transfusion 2019; 59:3264-3274. [DOI: 10.1111/trf.15474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Grethe Risum Krog
- Laboratory of Blood Genetics, Blood Bank, Department of Clinical ImmunologyCopenhagen University Hospital, (Rigshospitalet) Copenhagen Denmark
| | - Klaus Rieneck
- Laboratory of Blood Genetics, Blood Bank, Department of Clinical ImmunologyCopenhagen University Hospital, (Rigshospitalet) Copenhagen Denmark
| | - Frederik Banch Clausen
- Laboratory of Blood Genetics, Blood Bank, Department of Clinical ImmunologyCopenhagen University Hospital, (Rigshospitalet) Copenhagen Denmark
| | - Rudi Steffensen
- Department of Clinical ImmunologyAalborg University Hospital Aalborg Denmark
| | - Morten Hanefeld Dziegiel
- Laboratory of Blood Genetics, Blood Bank, Department of Clinical ImmunologyCopenhagen University Hospital, (Rigshospitalet) Copenhagen Denmark
| |
Collapse
|
8
|
Denomme GA, Anani WQ. Mass‐scale red cell genotyping of blood donors: from data visualization to historical antigen labeling and donor recruitment. Transfusion 2019; 59:2768-2770. [DOI: 10.1111/trf.15419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Gregory A. Denomme
- Diagnostic LaboratoriesVersiti Wisconsin Milwaukee Wisconsin
- Blood Research InstituteVersiti Wisconsin Wauwatosa Wisconsin
| | - Waseem Q. Anani
- Diagnostic LaboratoriesVersiti Wisconsin Milwaukee Wisconsin
- Blood Research InstituteVersiti Wisconsin Wauwatosa Wisconsin
- Department of PathologyMedical College of Wisconsin Milwaukee Wisconsin
| |
Collapse
|
9
|
Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. LANCET HAEMATOLOGY 2017. [PMID: 26207259 DOI: 10.1016/s2352-3026(15)00090-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND When problems with compatibility arise, transfusion services often use time-consuming serological tests to identify antigen-negative red cell units for safe transfusion. New methods have made red cell genotyping possible for all clinically relevant blood group antigens. We did mass-scale genotyping of donor blood and provided hospitals with access to a large red cell database to meet the demand for antigen-negative red cell units beyond ABO and Rh blood typing. METHODS We established a red cell genotype database at the BloodCenter of Wisconsin on July 17, 2010. All self-declared African American, Asian, Hispanic, and Native American blood donors were eligible irrespective of their ABO and Rh type or history of donation. Additionally, blood donors who were groups O, A, and B, irrespective of their Rh phenotype, were eligible for inclusion only if they had a history of at least three donations in the previous 3 years, with one donation in the previous 12 months at the BloodCenter of Wisconsin. We did red cell genotyping with a nanofluidic microarray system, using 32 single nucleotide polymorphisms to predict 42 blood group antigens. An additional 14 antigens were identified via serological phenotype. We monitored the ability of the red cell genotype database to meet demand for compatible blood during 3 years. In addition to the central database at the BloodCenter of Wisconsin, we gave seven hospitals online access to a web-based antigen query portal on May 1, 2013, to help them to locate antigen-negative red cell units in their own inventories. FINDINGS We analysed genotype data for 43,066 blood donors. Requests were filled for 5661 (99.8%) of 5672 patient encounters in which antigen-negative red cell units were needed. Red cell genotyping met the demand for antigen-negative blood in 5339 (94.1%) of 5672 patient encounters, and the remaining 333 (5.9%) requests were filled by use of serological data. Using the 42 antigens represented in our red cell genotype database, we were able to fill 14,357 (94.8%) of 15,140 requests for antigen-negative red cell units from hospitals served by the BloodCenter of Wisconsin. In the pilot phase, the seven hospitals identified 71 units from 52 antigen-negative red cell unit requests. INTERPRETATION Red cell genotyping has the potential to transform the way antigen-negative red cell units are provided. An antigen query portal could reduce the need for transportation of blood and serological screening. If this wealth of genotype data can be made easily accessible online, it will help with the supply of affordable antigen-negative red cell units to ensure patient safety. FUNDING BloodCenter of Wisconsin Diagnostic Laboratories Strategic Initiative and the NIH Clinical Center Intramural Research Program.
Collapse
|
10
|
Gorakshakar A, Gogri H, Ghosh K. Evolution of technology for molecular genotyping in blood group systems. Indian J Med Res 2017; 146:305-315. [PMID: 29355136 PMCID: PMC5793464 DOI: 10.4103/ijmr.ijmr_914_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular basis of the blood group antigens was identified first in the 1980s and 1990s. Since then the importance of molecular biology in transfusion medicine has been described extensively by several investigators. Molecular genotyping of blood group antigens is one of the important aspects and is successfully making its way into transfusion medicine. Low-, medium- and high-throughput techniques have been developed for this purpose. Depending on the requirement of the centre like screening for high- or low-prevalence antigens where antisera are not available, correct typing of multiple transfused patients, screening for antigen-negative donor units to reduce the rate of alloimmunization, etc. a suitable technique can be selected. The present review discusses the evolution of different techniques to detect molecular genotypes of blood group systems and how these approaches can be used in transfusion medicine where haemagglutination is of limited value. Currently, this technology is being used in only a few blood banks in India. Hence, there is a need for understanding this technology with all its variations.
Collapse
Affiliation(s)
- Ajit Gorakshakar
- Department of Transfusion Medicine, ICMR- National Institute of Immunohaematology, Mumbai, India
| | - Harita Gogri
- Department of Transfusion Medicine, ICMR- National Institute of Immunohaematology, Mumbai, India
| | | |
Collapse
|
11
|
Ji YL, Luo H, Wen JZ, Haer-Wigman L, Veldhuisen B, Wei L, Wang Z, Ligthart P, Lodén-van Straaten M, Fu YS, van der Schoot CE, Luo GP. RHDgenotype and zygosity analysis in the Chinese Southern Han D+, D− and D variant donors using the multiplex ligation-dependent probe amplification assay. Vox Sang 2017; 112:660-670. [DOI: 10.1111/vox.12554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Y. L. Ji
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
- Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam The Netherlands
| | - H. Luo
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
| | - J. Z. Wen
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
| | - L. Haer-Wigman
- Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam The Netherlands
| | - B. Veldhuisen
- Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam The Netherlands
- The Department of Immunohematology Diagnostics; Sanquin Diagnostic Services; Amsterdam The Netherlands
| | - L. Wei
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
| | - Z. Wang
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
| | - P. Ligthart
- The Department of Immunohematology Diagnostics; Sanquin Diagnostic Services; Amsterdam The Netherlands
| | | | - Y. S. Fu
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
| | - C. E. van der Schoot
- Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam The Netherlands
| | - G. P. Luo
- Guangzhou Blood Center; Institute of Clinical Blood Transfusion; Guangzhou China
| |
Collapse
|
12
|
Xu T, Zhang Q, Fan YH, Li RQ, Lu H, Zhao SM, Jiang TL. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay. Int J Nanomedicine 2017; 12:3347-3356. [PMID: 28490874 PMCID: PMC5413539 DOI: 10.2147/ijn.s133247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. Methods In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Results Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 105 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. Conclusion In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.
Collapse
Affiliation(s)
- Ting Xu
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qiang Zhang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ya-Han Fan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ru-Qing Li
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Lu
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Shu-Ming Zhao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tian-Lun Jiang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Ji Y, Wen J, Veldhuisen B, Haer-Wigman L, Wang Z, Lodén-van Straaten M, Wei L, Luo G, Fu Y, van der Schoot CE. Validation of the multiplex ligation-dependent probe amplification assay and its application on the distribution study of the major alleles of 17 blood group systems in Chinese donors from Guangzhou. Transfusion 2016; 57:423-432. [DOI: 10.1111/trf.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Yanli Ji
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center; Guangzhou People's Republic of China
- Sanquin Research and Landsteiner Laboratory; Academic Medical Center, University of Amsterdam; Amsterdam The Netherlands
| | - Jizhi Wen
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center; Guangzhou People's Republic of China
| | - Barbera Veldhuisen
- Sanquin Research and Landsteiner Laboratory; Academic Medical Center, University of Amsterdam; Amsterdam The Netherlands
| | - Lonneke Haer-Wigman
- Sanquin Research and Landsteiner Laboratory; Academic Medical Center, University of Amsterdam; Amsterdam The Netherlands
| | - Zhen Wang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center; Guangzhou People's Republic of China
| | | | - Ling Wei
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center; Guangzhou People's Republic of China
| | - Guangping Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center; Guangzhou People's Republic of China
| | - Yongshui Fu
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center; Guangzhou People's Republic of China
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory; Academic Medical Center, University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
14
|
Nydegger U, Lung T, Risch L, Risch M, Medina Escobar P, Bodmer T. Inflammation Thread Runs across Medical Laboratory Specialities. Mediators Inflamm 2016; 2016:4121837. [PMID: 27493451 PMCID: PMC4963559 DOI: 10.1155/2016/4121837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022] Open
Abstract
We work on the assumption that four major specialities or sectors of medical laboratory assays, comprising clinical chemistry, haematology, immunology, and microbiology, embraced by genome sequencing techniques, are routinely in use. Medical laboratory markers for inflammation serve as model: they are allotted to most fields of medical lab assays including genomics. Incessant coding of assays aligns each of them in the long lists of big data. As exemplified with the complement gene family, containing C2, C3, C8A, C8B, CFH, CFI, and ITGB2, heritability patterns/risk factors associated with diseases with genetic glitch of complement components are unfolding. The C4 component serum levels depend on sufficient vitamin D whilst low vitamin D is inversely related to IgG1, IgA, and C3 linking vitamin sufficiency to innate immunity. Whole genome sequencing of microbial organisms may distinguish virulent from nonvirulent and antibiotic resistant from nonresistant varieties of the same species and thus can be listed in personal big data banks including microbiological pathology; the big data warehouse continues to grow.
Collapse
Affiliation(s)
- Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch and Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Thomas Lung
- Labormedizinisches Zentrum Dr. Risch and Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch and Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Martin Risch
- Labormedizinisches Zentrum Dr. Risch and Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Pedro Medina Escobar
- Labormedizinisches Zentrum Dr. Risch and Kantonsspital Graubünden, 7000 Chur, Switzerland
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch and Kantonsspital Graubünden, 7000 Chur, Switzerland
| |
Collapse
|
15
|
Meyer S, Vollmert C, Trost N, Sigurdardottir S, Portmann C, Gottschalk J, Ries J, Markovic A, Infanti L, Buser A, Amar el Dusouqui S, Rigal E, Castelli D, Weingand B, Maier A, Mauvais SM, Sarraj A, Braisch MC, Thierbach J, Hustinx H, Frey BM, Gassner C. MNSs genotyping by MALDI-TOF MS shows high concordance with serology, allows gene copy number testing and reveals new St(a) alleles. Br J Haematol 2016; 174:624-36. [DOI: 10.1111/bjh.14095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Meyer
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | | | - Nadine Trost
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | - Sonja Sigurdardottir
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | - Claudia Portmann
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | | | - Judith Ries
- Blood Transfusion Service Zürich; SRC; Schlieren Switzerland
| | | | - Laura Infanti
- Blood Transfusion Service beider Basel; SRC; Basel Switzerland
| | - Andreas Buser
- Blood Transfusion Service beider Basel; SRC; Basel Switzerland
| | | | - Emmanuel Rigal
- Blood Transfusion Service Genève; SRC; Geneva Switzerland
| | - Damiano Castelli
- Blood Transfusion Service Svizzera Italiana; SRC; Lugano Switzerland
| | - Bettina Weingand
- Blood Transfusion Service Zentralschweiz; SRC; Lucerne Switzerland
| | - Andreas Maier
- Blood Transfusion Service Zentralschweiz; SRC; Lucerne Switzerland
| | - Simon M. Mauvais
- Blood Transfusion Service Neuchâtel-Jura; SRC; Neuchâtel Switzerland
| | - Amira Sarraj
- Blood Transfusion Service Neuchâtel-Jura; SRC; Neuchâtel Switzerland
| | | | - Jutta Thierbach
- Blood Transfusion Service Ostschweiz; SRC; St. Gallen Switzerland
| | - Hein Hustinx
- Interregional Blood Transfusion; SRC, Ltd.; Bern Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zürich; SRC; Schlieren Switzerland
| | - Christoph Gassner
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| |
Collapse
|
16
|
Ba A, Bagayoko S, Chiaroni J, Baiily P, Silvy M. Genotyping of 28 blood group alleles in blood donors from Mali: Prediction of rare phenotypes. Transfus Apher Sci 2016; 54:289-95. [DOI: 10.1016/j.transci.2015.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022]
|
17
|
Abstract
The clinical importance of blood group antigens relates to their ability to evoke immune antibodies that are capable of causing hemolysis. The most important antigens for safe transfusion are ABO and D (Rh), and typing for these antigens is routinely performed for patients awaiting transfusion, prenatal patients, and blood donors. Typing for other blood group antigens, typically of the Kell, Duffy, Kidd, and MNS blood groups, is sometimes necessary, for patients who have, or are likely to develop antibodies to these antigens. The most commonly used typing method is serological typing, based on hemagglutination reactions against specific antisera. This method is generally reliable and practical for routine use, but it has certain drawbacks. In recent years, molecular typing has emerged as an alternative or supplemental typing method. It is based on detecting the polymorphisms and mutations that control the expression of blood group antigens, and using this information to predict the probable antigen type. Molecular typing methods are useful when traditional serological typing methods cannot be used, as when a patient has been transfused and the sample is contaminated with red blood cells from the transfused blood component. Moreover, molecular typing methods can precisely identify clinically significant variant antigens that cannot be distinguished by serological typing; this capability has been exploited for the resolution of typing discrepancies and shows promise for the improved transfusion management of patients with sickle cell anemia. Despite its advantages, molecular typing has certain limitations, and it should be used in conjunction with serological methods.
Collapse
|
18
|
Fichou Y, Le Maréchal C, Scotet V, Jamet D, Férec C. Insights into RHCE Molecular Analysis in Samples with Partial D Variants: the Experience of Western France. Transfus Med Hemother 2015; 42:372-7. [PMID: 26733768 DOI: 10.1159/000382086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/05/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although systematic blood group genotyping of patients/donors is virtually possible, serological studies remain the gold standard to identify samples of clinical interest that may be further genotyped. In this context, we sought to identify variant D alleles that are likely to be clinically relevant in terms of other Rh antigens in a subset of population genotyped in Western France. METHODS Samples presenting with the RHD*weak D type 4.2.2 allele (n = 47) were selected for the study. RHCE exons 1-7 were directly sequenced, and expression of Rh antigens was predicted on the basis of the molecular data. RESULTS Of the 47 samples tested, 19 (40.4%) were predicted to be of potential clinical interest. Moreover, we could show that selecting the samples to be genotyped by the nature of their variant D allele (i.e., RHD*weak D type 4.2.2 allele) rather than by their Duffy-null status appears to increase significantly the likelihood of identifying clinically relevant individuals for Rh status. CONCLUSION On the basis of our findings we suggest that all individuals genotyped as weak D type 4.2.2 should be systematically screened for RHCE variants by molecular analysis on a routine basis.
Collapse
Affiliation(s)
- Yann Fichou
- French Blood Institute (EFS-Bretagne), Brest, France; National Institute of Health and Medical Research (Inserm, UMR1078), Brest, France
| | - Cédric Le Maréchal
- French Blood Institute (EFS-Bretagne), Brest, France; National Institute of Health and Medical Research (Inserm, UMR1078), Brest, France; Faculty of Medicine and Health Sciences, University of Western Brittany, Brest, France; Molecular Genetics and Histocompatibility Laboratory, Regional University Hospital (CHRU), Morvan Hospital, Brest, France
| | - Virginie Scotet
- French Blood Institute (EFS-Bretagne), Brest, France; National Institute of Health and Medical Research (Inserm, UMR1078), Brest, France
| | - Déborah Jamet
- French Blood Institute (EFS-Bretagne), Brest, France
| | - Claude Férec
- French Blood Institute (EFS-Bretagne), Brest, France; National Institute of Health and Medical Research (Inserm, UMR1078), Brest, France; Faculty of Medicine and Health Sciences, University of Western Brittany, Brest, France; Molecular Genetics and Histocompatibility Laboratory, Regional University Hospital (CHRU), Morvan Hospital, Brest, France
| |
Collapse
|
19
|
Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion 2015; 55:2610-5; quiz 2609. [PMID: 26094790 DOI: 10.1111/trf.13168] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND When problems with compatibility beyond ABO and D arise, currently transfusion services search their inventories and perform time-consuming serologic testing to locate antigen-negative blood. These clinically important blood group antigens can be detected reliably by red cell genotyping, which is a technology whereby DNA-based techniques are used to evaluate gene polymorphisms that determine the expression of blood group antigens. We introduced mass-scale genotyping and measured availability of genotyped blood. STUDY DESIGN AND METHODS All non-Caucasian donors qualified for genotyping along with donors who had a history of repeat donation. Mass-scale red cell genotyping, performed on an electronic interfaced open array platform, was implemented to screen blood donors for 32 single-nucleotide polymorphisms that predicted 42 blood group antigens. Genotype screening results were confirmed by phenotyping, when needed for antigen-negative transfusion, before release of the red blood cell (RBC) unit. RESULTS Approximately 22,000 donors were red cell genotyped within 4 months and a total of 43,066 donors in 4 years. There were 463 discordances (0.52% of 89,596 genotypes with a phenotype). Among the 307 resolved discordances, approximate equal numbers represented historical serologic or genotyping discrepancies (n = 151 and n = 156, respectively). In the final year of the study, a mean of 29% of the daily inventory had a genotype. CONCLUSIONS Red cell genotyping of blood donors using an electronic interface created a large and stable supply of RBC units with historical genotypes. The database served the needs of antigen-negative blood requests for a large regional blood center and allowed us to abandon screening by serology.
Collapse
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jerome L Gottschall
- Department of Pathology, Medical College of Wisconsin.,Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Gregory A Denomme
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
20
|
Affiliation(s)
- T. Peyrard
- Département Centre National de Référence pour les Groupes Sanguins; Institut National de la Transfusion Sanguine (INTS); Paris France
| |
Collapse
|
21
|
Silvy M, Brès JC, Grimaldi A, Movia C, Muriel V, Roubinet F, Chiaroni J, Bailly P. A simple genotyping procedure without DNA extraction to identify rare blood donors. Vox Sang 2015; 109:173-80. [PMID: 25854538 DOI: 10.1111/vox.12261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Transfusion-induced alloimmunization has severe clinical consequences including haemolytic transfusion reactions, impaired transfused RBCs longevity and greater difficulty in finding compatible blood. Molecular analysis of genomic DNA now permits prediction of blood group phenotypes based on identification of single nucleotide polymorphisms. Implementation of molecular technologies in donor centres would be helpful in finding RBC units for special patient populations, but DNA extraction remains an obstacle to donor genotyping. MATERIALS AND METHODS We propose a simple method compatible with high throughput that allows blood group genotyping using a multiplex commercial kit without the need for DNA extraction. The principle relies on pre-PCR treatment of whole blood using heating/cooling procedure in association with a recombinant hotstart polymerase. RESULTS In a prospective analysis, we yielded 5628 alleles identification and designated 63 donors with rare blood, that is either negative for a high-frequency antigen or with a rare combination of common antigens. CONCLUSION The procedure was optimized for simplicity of use in genotyping platform and would allow not only to supply antigen-matched products to recipients but also to find rare phenotypes. This methodology could also be useful for establishing a donor repository for human platelet antigens (HPA)-matched platelets since the same issues are involved for patients with neonatal alloimmune thrombocytopenia or post-transfusion purpura.
Collapse
Affiliation(s)
- M Silvy
- Établissement Français du Sang, Blood Cell Grand Sud, Montpellier-Marseille, France.,UMR 7268 ADÉS Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - J-C Brès
- Établissement Français du Sang, Blood Cell Grand Sud, Montpellier-Marseille, France
| | - A Grimaldi
- UMR 7268 ADÉS Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - C Movia
- UMR 7268 ADÉS Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - V Muriel
- UMR 7268 ADÉS Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - F Roubinet
- Établissement Français du Sang, Blood Cell Grand Sud, Montpellier-Marseille, France
| | - J Chiaroni
- Établissement Français du Sang, Blood Cell Grand Sud, Montpellier-Marseille, France.,UMR 7268 ADÉS Aix-Marseille Université-EFS-CNRS, Marseille, France
| | - P Bailly
- Établissement Français du Sang, Blood Cell Grand Sud, Montpellier-Marseille, France.,UMR 7268 ADÉS Aix-Marseille Université-EFS-CNRS, Marseille, France
| |
Collapse
|
22
|
Karafin MS, Field JJ, Gottschall JL, Denomme GA. Barriers to using molecularly typed minority red blood cell donors in support of chronically transfused adult patients with sickle cell disease. Transfusion 2015; 55:1399-406. [DOI: 10.1111/trf.13037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Jerome L. Gottschall
- Medical Sciences Institute
- Medical College of Wisconsin
- Diagnostic Laboratories; BloodCenter of Wisconsin; Milwaukee Wisconsin
| | | |
Collapse
|
23
|
Brouard D, Ratelle O, Perreault J, Boudreau D, St-Louis M. PCR-free blood group genotyping using a nanobiosensor. Vox Sang 2014; 108:197-204. [PMID: 25469570 DOI: 10.1111/vox.12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/21/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVES The last two decades have seen major developments in genotyping assays to facilitate the procurement of red blood cell units to alloimmunized patients. To make genotyping faster, simpler and less costly, a nanotechnology approach based on metal/silica fluorescent nanoparticles and a polymer-based hybridization optical transducer was designed. The objectives of this study were (1) to verify whether this nanobiosensor has the ability to discriminate single nucleotide polymorphisms in non-amplified genomic DNA and (2) to establish whether the signal generated by the nanobiosensor is sufficiently intense to be detected by standard flow cytometry. MATERIALS AND METHODS Silver-core silica-shell fluorescent nanoparticles (Ag@SiO₂) were prepared, and amine-modified DNA probes were grafted to their surface. A cationic conjugated polymer was electrostatically bound to the surface probes to become optically active upon hybridization with a target. Two nanobiosensor formulations specific to DO*01 and DO*02 alleles were prepared. DNA was extracted from whole blood and mixed with the nanobiosensor for hybridization. The nanobiosensor fluorescence was measured by flow cytometry. RESULTS Nine volunteers were typed for Dombrock blood group antigens DO*01 and DO*02. A statistically significant increase in the optical transduction signal was observed for sequence-specific samples. All nine genotypes were correctly identified when compared to standardized PCR assays. CONCLUSION The nanobiosensor provides rapid and simple genotyping of blood group antigens from unamplified genomic DNA and can be measured using standard flow cytometers. This PCR-free approach could be applied to any known genetic polymorphism.
Collapse
Affiliation(s)
- D Brouard
- Recherche et développement, Héma-Québec, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
24
|
Liu Z, Liu M, Mercado T, Illoh O, Davey R. Extended blood group molecular typing and next-generation sequencing. Transfus Med Rev 2014; 28:177-86. [PMID: 25280589 DOI: 10.1016/j.tmrv.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/11/2014] [Accepted: 08/25/2014] [Indexed: 02/09/2023]
Abstract
Several high-throughput multiplex blood group molecular typing platforms have been developed to predict blood group antigen phenotypes. These molecular systems support extended donor/patient matching by detecting commonly encountered blood group polymorphisms as well as rare alleles that determine the expression of blood group antigens. Extended molecular typing of a large number of blood donors by high-throughput platforms can increase the likelihood of identifying donor red blood cells that match those of recipients. This is especially important in the management of multiply-transfused patients who may have developed several alloantibodies. Nevertheless, current molecular techniques have limitations. For example, they detect only predefined genetic variants. In contrast, target enrichment next-generation sequencing (NGS) is an emerging technology that provides comprehensive sequence information, focusing on specified genomic regions. Target enrichment NGS is able to assess genetic variations that cannot be achieved by traditional Sanger sequencing or other genotyping platforms. Target enrichment NGS has been used to detect both known and de novo genetic polymorphisms, including single-nucleotide polymorphisms, indels (insertions/deletions), and structural variations. This review discusses the methodology, advantages, and limitations of the current blood group genotyping techniques and describes various target enrichment NGS approaches that can be used to develop an extended blood group genotyping assay system.
Collapse
Affiliation(s)
- Zhugong Liu
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD.
| | - Meihong Liu
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Teresita Mercado
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Orieji Illoh
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Richard Davey
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
25
|
Meyer S, Vollmert C, Trost N, Brönnimann C, Gottschalk J, Buser A, Frey BM, Gassner C. High-throughput Kell, Kidd, and Duffy matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry-based blood group genotyping of 4000 donors shows close to full concordance with serotyping and detects new alleles. Transfusion 2014; 54:3198-207. [DOI: 10.1111/trf.12715] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/05/2014] [Accepted: 04/06/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Stefan Meyer
- Department of Molecular Diagnostics & Cytometry (MOC); Swiss Red Cross; Schlieren Switzerland
| | | | - Nadine Trost
- Department of Molecular Diagnostics & Cytometry (MOC); Swiss Red Cross; Schlieren Switzerland
| | - Chantal Brönnimann
- Department of Molecular Diagnostics & Cytometry (MOC); Swiss Red Cross; Schlieren Switzerland
| | - Jochen Gottschalk
- Blood Transfusion Service Zurich; Swiss Red Cross; Schlieren Switzerland
| | - Andreas Buser
- Blood Transfusion Center Basel; Swiss Red Cross; Basel Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zurich; Swiss Red Cross; Schlieren Switzerland
| | - Christoph Gassner
- Department of Molecular Diagnostics & Cytometry (MOC); Swiss Red Cross; Schlieren Switzerland
| |
Collapse
|
26
|
Peterson JA, Gitter M, Bougie DW, Pechauer S, Hopp KA, Pietz B, Szabo A, Curtis BR, McFarland J, Aster RH. Low-frequency human platelet antigens as triggers for neonatal alloimmune thrombocytopenia. Transfusion 2014; 54:1286-93. [PMID: 24128174 PMCID: PMC3989475 DOI: 10.1111/trf.12450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/05/2013] [Accepted: 08/27/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Twenty-four low-frequency human platelet antigens (LFHPAs) have been implicated as immunogens in neonatal alloimmune thrombocytopenia (NAIT). We performed studies to define more fully how often these antigens trigger maternal immunization leading to NAIT. STUDY DESIGN AND METHODS In a Phase 1 study, fathers of selected NAIT cases not resolved by serologic testing but thought to have a high likelihood of NAIT on clinical and serologic grounds were typed for LFHPAs by DNA sequencing. In a Phase 2 study, high-throughput methods were used to type fathers of 1067 consecutive unresolved NAIT cases for LFHPAs. Mothers of 1338 unresolved cases were also typed to assess the prevalence of LFHPAs in a population racially/ethnically similar to the fathers. RESULTS In Phase 1, LFHPAs were identified in 16 of 244 fathers (6.55%). In Phase 2, LFPAs were found in only 28 of 1067 fathers (2.62%). LFHPAs were identified in 27 of 1338 maternal samples (2.01%). HPA-9bw was by far the most common LFHPA identified in the populations studied and was the only LFHPA that was significantly more common in fathers than in mothers of affected infants (p = 0.02). CONCLUSIONS Maternal immunization against recognized LFHPAs accounts for only a small fraction of the cases of apparent NAIT not resolved by standard serologic testing. Typing of the fathers of such cases for LFHPAs is likely to be rewarding only when a maternal antibody specific for a paternal platelet glycoprotein is demonstrated and/or there is compelling clinical evidence for NAIT.
Collapse
Affiliation(s)
- Julie A Peterson
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Paris S, Rigal D, Barlet V, Verdier M, Coudurier N, Bailly P, Brès JC. Flexible automated platform for blood group genotyping on DNA microarrays. J Mol Diagn 2014; 16:335-42. [PMID: 24726279 DOI: 10.1016/j.jmoldx.2014.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 11/17/2022] Open
Abstract
The poor suitability of standard hemagglutination-based assay techniques for large-scale automated screening of red blood cell antigens severely limits the ability of blood banks to supply extensively phenotype-matched blood. With better understanding of the molecular basis of blood antigens, it is now possible to predict blood group phenotype by identifying single-nucleotide polymorphisms in genomic DNA. Development of DNA-typing assays for antigen screening in blood donation qualification laboratories promises to enable blood banks to provide optimally matched donations. We have designed an automated genotyping system using 96-well DNA microarrays for blood donation screening and a first panel of eight single-nucleotide polymorphisms to identify 16 alleles in four blood group systems (KEL, KIDD, DUFFY, and MNS). Our aim was to evaluate this system on 960 blood donor samples with known phenotype. Study data revealed a high concordance rate (99.92%; 95% CI, 99.77%-99.97%) between predicted and serologic phenotypes. These findings demonstrate that our assay using a simple protocol allows accurate, relatively low-cost phenotype prediction at the DNA level. This system could easily be configured with other blood group markers for identification of donors with rare blood types or blood units for IH panels or antigens from other systems.
Collapse
Affiliation(s)
- Sandra Paris
- Établissement Français du Sang Rhône Alpes, Lyon, France
| | | | - Valérie Barlet
- Établissement Français du Sang Rhône Alpes, Lyon, France
| | | | | | - Pascal Bailly
- Établissement Français du Sang Alpes Méditerranée, Marseille, France
| | - Jean-Charles Brès
- Établissement Français du Sang Rhône Alpes, Lyon, France; Établissement Français du Sang Pyrénées Méditerranée, Montpellier, France.
| |
Collapse
|
28
|
|
29
|
Abstract
Blood group genotyping has many advantages over conventional phenotyping for both blood donors and patients, and a number of high-throughput methods have now been developed. However, these are limited by a requirement for existing knowledge of the relevant blood group gene polymorphisms, and rare or novel mutations will not be detected. These mutations could be successfully identified by DNA sequencing of the blood group genes, and such an approach has been made feasible by the introduction of Next Generation Sequencing (NGS) technology. NGS enables many genes from multiple samples to be sequenced in parallel, resulting in sequencing information that could be used to obtain accurate blood group phenotype predictions in both blood donors and patients.
Collapse
Affiliation(s)
- Louise Tilley
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK.
| | - Shane Grimsley
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
| |
Collapse
|
30
|
DNA biosensor/biochip for multiplex blood group genotyping. Methods 2013; 64:241-9. [PMID: 24080420 DOI: 10.1016/j.ymeth.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/20/2022] Open
Abstract
At present, 33 blood groups representing over 300 antigens are listed by the International Society of Blood Transfusion (ISBT). Most of them result from a single nucleotide polymorphism (SNP) in the corresponding DNA sequence, i.e. approx. 200 SNPs. In immunohematology laboratories, blood group determination is classically carried out by serological tests, but these have some limitations, mostly in term of multiplexing and throughput. Yet, there is a growing need of extended blood group typing to prevent alloimmunization in transfused patients and transfusion accidents. The knowledge of the molecular bases of blood groups allows the use of molecular biology methods within immunohematology laboratories. Numerous assays focused on blood group genotyping were developed and described during the last 10 years. Some of them were real biochips or biosensors while others were more characterized by the particular molecular biology techniques they used, but all were intending to produce multiplex analysis. PCR techniques are most of the time used followed by an analytical step involving a DNA biosensor, biochip or analysis system (capillary electrophoresis, mass spectrometry). According to the method used, the test can then be classified as low-, medium- or high-throughput. There are several companies which developed platforms dedicated to blood group genotyping able to analyze simultaneously various SNPs or variants associated with blood group systems. This review summarizes the characteristics of each molecular biology method and medium-/high-throughput platforms dedicated to the blood group genotyping.
Collapse
|
31
|
Haer-Wigman L, Ji Y, Lodén M, de Haas M, van der Schoot CE, Veldhuisen B. Comprehensive genotyping for 18 blood group systems using a multiplex ligation-dependent probe amplification assay shows a high degree of accuracy. Transfusion 2013; 53:2899-909. [PMID: 23992446 DOI: 10.1111/trf.12410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years genotyping methods have been implemented in blood banks as alternative to comprehensive serologic typing. We evaluated a newly developed assay for convenient and comprehensive genotyping of blood group alleles based on multiplex ligation-dependent probe amplification (MLPA) technology. STUDY DESIGN AND METHODS We analyzed 103 random and 150 selected samples to validate the specificity of the blood-MLPA assay that is able to determine the presence, absence, and copy number of 48 blood group and 112 variant alleles of 18 blood group systems. A total of 4038 serologic typing results, including 52 different antigens, were available for these samples. RESULTS In 4018 (99.5%) of the 4038 serologic typing results the predicted phenotypes by the blood-MLPA were in concordance with serologic typing. Twenty discordant results were due to false-positive serologic results (n = 2), false-negative serologic results (n = 1), inability of routine serologic typing to detect variant antigens (n = 14), or false-positive prediction from the blood-MLPA due to the presence of a null allele (n = 3). CONCLUSION The blood-MLPA reliably predicts the presence or absence of blood group antigens, including almost all clinically relevant blood group antigens, except ABO, in patients and donors. Furthermore, it is the first assay that determines copy numbers of blood group alleles in the same test. It even provides more detailed and accurate information than serologic typing, because most variant alleles are immediately recognized. Since only standard laboratory equipment is needed, this assay finally offers the possibility to comprehensively type recipients and makes extensive matching for selected patients groups more feasible.
Collapse
Affiliation(s)
- Lonneke Haer-Wigman
- Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Blood group genotyping is gaining widespread adoption in blood centres and transfusion services. The current interest for a blood centre is its use as a screening tool to accurately predict donor phenotypes. However, not only is blood group genotyping used to screen for uncommon and rare types on a mass-scale, it can be used to optimize the inventory of multiple antigen-negative screened units. In addition, blood group genotyping provides blood types when antisera are not available, it can predict weak and variant antigens, and can aid in the resolution of ABO discrepancies. There are quality improvement benefits in blood group genotyping because it can screen for RHD alleles in Rh-negative blood donors and can be used to confirm that donors are suitable for reagent red cell production. It is possible that blood group genotyping information may be used as a donor recruitment tool. Given that genotyping can convey much more information about the expression of some complex antigens, e.g. hrB, Uvar, and Duffy, clinical trials are probably needed to show that genotyped or 'dry matched' transfusions are superior to phenotyped blood.
Collapse
Affiliation(s)
- Gregory A Denomme
- Diagnostic Laboratories, BloodCenter of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
33
|
|
34
|
Flegel WA. ABO genotyping: the quest for clinical applications. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 11:6-9. [PMID: 23245718 PMCID: PMC3557469 DOI: 10.2450/2012.0250-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022]
Affiliation(s)
- Willy A. Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
35
|
Anasagasti A, Irigoyen C, Barandika O, López de Munain A, Ruiz-Ederra J. Current mutation discovery approaches in Retinitis Pigmentosa. Vision Res 2012; 75:117-29. [PMID: 23022136 DOI: 10.1016/j.visres.2012.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/08/2012] [Accepted: 09/13/2012] [Indexed: 12/22/2022]
Abstract
With a worldwide prevalence of about 1 in 3500-5000 individuals, Retinitis Pigmentosa (RP) is the most common form of hereditary retinal degeneration. It is an extremely heterogeneous group of genetically determined retinal diseases leading to progressive loss of vision due to impairment of rod and cone photoreceptors. RP can be inherited as an autosomal-recessive, autosomal-dominant, or X-linked trait. Non-Mendelian inheritance patterns such as digenic, maternal (mitochondrial) or compound heterozygosity have also been reported. To date, more than 65 genes have been implicated in syndromic and non-syndromic forms of RP, which account for only about 60% of all RP cases. Due to this high heterogeneity and diversity of inheritance patterns, the molecular diagnosis of syndromic and non-syndromic RP is very challenging, and the heritability of 40% of total RP cases worldwide remains unknown. However new sequencing methodologies, boosted by the human genome project, have contributed to exponential plummeting in sequencing costs, thereby making it feasible to include molecular testing for RP patients in routine clinical practice within the coming years. Here, we summarize the most widely used state-of-the-art technologies currently applied for the molecular diagnosis of RP, and address their strengths and weaknesses for the molecular diagnosis of such a complex genetic disease.
Collapse
Affiliation(s)
- Ander Anasagasti
- Division of Neurosciences, Instituto Biodonostia, San Sebastián, Gipuzkoa, Spain
| | | | | | | | | |
Collapse
|
36
|
Lim C, Manage DP, Atrazhev A, Denomme G, Backhouse CJ, Acker JP. Microfluidic approach to genotyping human platelet antigens. IET Nanobiotechnol 2012; 6:33-9. [PMID: 22559704 DOI: 10.1049/iet-nbt.2011.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centralised laboratories routinely determine blood types by serological and molecular methods. Current practices have limitations in terms of cost, time and accessibility. Miniaturised microfluidic platforms offer an alternative to conventional genotyping methods, since they consume fewer reagents, provide faster analysis and allow for complete integration and automation. As these 'lab-on-a-chip' devices have been used for bacterial and viral detection, the authors investigated blood group genotyping as a novel application of microfluidic technology. To demonstrate the feasibility of microfluidic chip-based genotyping, the authors compared human platelet antigen 1 (HPA-1) genotype results from conventional and chip-based analysis for 19 blood donor specimens. DNA purification was performed with ChargeSwitch™ magnetic beads, DNA amplification (PCR), restriction length polymorphism (RFLP) and capillary electrophoresis (CE) for identification of the DNA on microfluidic chips. It was found that nine donors were HPA-1a/1a and ten were HPA-1a/1b. Concordance between the conventional and on-chip methods was achieved for all but one sample. All the steps were demonstrated for complete blood group genotyping analysis of patient whole blood specimens on separate microfluidic chips. Future work will focus on integration of all the genotyping protocols on a single microfluidic chip.
Collapse
Affiliation(s)
- C Lim
- Canadian Blood Services, Research and Development, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Taly V, Pekin D, Abed AE, Laurent-Puig P. Detecting biomarkers with microdroplet technology. Trends Mol Med 2012; 18:405-16. [DOI: 10.1016/j.molmed.2012.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
|
38
|
Peterson JA, Pechauer SM, Gitter ML, Kanack A, Curtis BR, Reese J, Kamath VM, McFarland JG, Aster RH. New platelet glycoprotein polymorphisms causing maternal immunization and neonatal alloimmune thrombocytopenia. Transfusion 2011; 52:1117-24. [PMID: 22070736 DOI: 10.1111/j.1537-2995.2011.03428.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Maternal immunization against low-frequency, platelet (PLT)-specific antigens is being recognized with increasing frequency as a cause of neonatal alloimmune thrombocytopenia (NAIT). STUDY DESIGN AND METHODS Serologic and molecular studies were performed on PLTs and DNA from two families in which an infant was born with severe thrombocytopenia not attributable to maternal immunization against known PLT-specific alloantigens. RESULTS Antibodies reactive only with paternal PLTs were identified in each mother using flow cytometry and solid-phase assays. Unique mutations encoding amino acid substitutions K164T in glycoprotein (GP)IIb (Case 1) and R622W in GPIIIa (Case 2) were identified in paternal DNA and in DNA from the affected infants. Each maternal antibody recognized recombinant GPIIb/IIIa mutated to contain the polymorphisms identified in the corresponding father. None of 100 unselected normal subjects possessed these paternal mutations. CONCLUSIONS Severe NAIT observed in the affected infants was caused by maternal immunization against previously unrecognized, low-frequency antigens created by amino acid substitutions in GPIIb/IIIa (α(IIb) /β(3) integrin). A search should be conducted for novel paternal antigens in cases of apparent NAIT not explained on the basis of maternal-fetal incompatibility for known human PLT antigens.
Collapse
Affiliation(s)
- Julie A Peterson
- Blood Research Institute and Platelet & Neutrophil Immunology Laboratory, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee,WI 53226-3548, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
During the last decade a number of blood establishments started using molecular methods for typing a subset of their blood donors for minor red cell antigens as a part of their routine work. It can be expected that this development will continue and that DNA testing will take a significant role in future. A sufficient number of antigen-typing in the donor-database allows for the efficient supply of red cell units for patients who carry irregular antibodies directed to red cell antigens. Therefore blood centres often operate antigen typing programs for a subset of their repeat donors. Large-scale donor typing programs are labour-intensive and costly. DNA testing is a feasible alternative to standard serological assays. The most important advantage is the easy access to a spectrum of hundreds of antigens independent of the availability of serological reagents. Besides, that there are both positive, but also less favourable aspects, which are related to the different particular methods and platforms available for molecular testing. Several of them enable medium- and high-throughput applications and some are more cost-efficient than serology.
Collapse
Affiliation(s)
- Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna Blood Centre, Wiedner Hauptstraße 32, 1040 Vienna, Austria.
| |
Collapse
|
40
|
Monteiro F, Tavares G, Ferreira M, Amorim A, Bastos P, Rocha C, Araújo F, Cunha-Ribeiro LM. Technologies involved in molecular blood group genotyping. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1751-2824.2011.01425.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Conant EK, Juras R, Cothran EG. Incidence of the mask phenotype M264V mutation in Labrador Retrievers. Res Vet Sci 2011; 91:e98-9. [PMID: 21353269 DOI: 10.1016/j.rvsc.2011.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/26/2011] [Accepted: 02/01/2011] [Indexed: 11/19/2022]
Abstract
The introduction of SNP (Single Nucleotide Polymorphism) chips allows for the rapid typing of multiple markers for many individuals at one time. Our lab routinely types dogs using a custom designed combined panel of SNPs for parentage verification and a number of genes for diagnostic tests using an OpenArray platform manufactured by BioTrove (Woburn, MA, USA). By utilizing the same SNP panel across a wide array of canine breeds it is possible to detect trait-associated SNPs in breeds not thought to carry those traits. We genotyped 245 Labrador Retrievers on the canine SNP chip and found 13 animals heterozygous for the M264V mutation associated with autosomal dominant mask trait, and one animal homozygous for this trait. The color genotypes for these animals were further examined. In standard colored Labradors (black, chocolate, and yellow), the mask phenotype would never be distinguishable. As illustrated by this example, we feel this SNP panel is a valuable method for discovering traits not known to exist in a breed.
Collapse
Affiliation(s)
- E K Conant
- Texas A&M University, Department of Veterinary Integrative Biosciences, CVM, TAMU 4458, College Station, TX 77843-4458, USA.
| | | | | |
Collapse
|
42
|
Abstract
Blood centers are able to recruit and process large numbers of blood donations to meet the demand for antigen-matched blood. However, there are limitations with the use of hemagglutination that can be circumvented with blood group genotyping. Antisera do not exist for several clinically important blood group antigens and many methods have been developed (direct hemagglutination, indirect antiglobulin-dependent, solid phase, or gel column). There is increasing interest to apply mass-scale red cell genotyping of blood donors to find rare (predicted) phenotypes, rare combinations of antigens and locus haplotypes, and to have access to information on the common clinically relevant blood group antigens. This review outlines technological advances, emerging algorithms, and the future of mass-scale red cell genotyping of blood donors.
Collapse
Affiliation(s)
- Gregory A Denomme
- Immunohematolgy Reference Laboratory, Blood Center of Wisconsin, 638 18th Street, Milwaukee, WI 53201-2178, United States.
| | | | | |
Collapse
|
43
|
Abstract
Although hemagglutination serves the immunohematology reference laboratory well, when used alone, it has limited capability to resolve complex problems. This overview discusses how molecular approaches can be used in the immunohematology reference laboratory. In order to apply molecular approaches to immunohematology, knowledge of genes, DNA-based methods, and the molecular bases of blood groups are required. When applied correctly, DNA-based methods can predict blood groups to resolve ABO/Rh discrepancies, identify variant alleles, and screen donors for antigen-negative units. DNA-based testing in immunohematology is a valuable tool used to resolve blood group incompatibilities and to support patients in their transfusion needs.
Collapse
Affiliation(s)
- Marion E Reid
- New York Blood Center, 310 East 67th Street, New York, NY 10065, Telephone: 212-570-3294 / Fax: 212-737-4935,
| | - Gregory A Denomme
- Blood Center of Wisconsin, 638 18 Street, Milwaukee, WI, 53201-2178, Telephone: 414-937-6440 / Fax: 414-937-6404,
| |
Collapse
|
44
|
Stabentheiner S, Danzer M, Niklas N, Atzmüller S, Pröll J, Hackl C, Polin H, Hofer K, Gabriel C. Overcoming methodical limits of standard RHD genotyping by next-generation sequencing. Vox Sang 2010; 100:381-8. [PMID: 21133932 DOI: 10.1111/j.1423-0410.2010.01444.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Molecular variations of the RHD gene may result in the reduced expression of the D antigen and altered Rh phenotypes. In many occasions, they cannot be typed reliably by standard serological methods. Sequence-based typing is the gold standard to determine rare and unknown RHD genotypes. For this pilot study, sequence-based typing by standard Sanger sequencing was compared to a newly established next-generation sequencing approach based on pyrosequencing. MATERIALS AND METHODS Twenty-six DNA samples were selected after primary serological testing exhibiting a weak reaction in Rh phenotype. Parallel sequence analysis of the complete coding sequence including adjacent intronic sequences allowed a comparison of the methodical potency in mutation detection of Sanger with next-generation sequencing. RESULTS Sanger sequencing revealed 39 RHD polymorphisms in 21 of 26 samples in the RHD coding region, while pyrosequencing detected all but two alterations resulting in a concordance rate of 94·9% and clearly revealed a heterozygous compound mutation in one sample with RHDψ and Weak D type 4 alleles. The resolution of cis/trans linkage of polymorphisms and exact characterization of a 37 bp duplication was achieved by next-generation sequencing. CONCLUSION Our data suggest that next-generation sequencing offers a new development for high-throughput and clonal sequencing for molecular RHD genotyping. However, further attempts in the methodical set-up have to be undertaken prior to validation and introduction as a routine service.
Collapse
Affiliation(s)
- S Stabentheiner
- Red Cross Transfusion Service for Upper Austria, Krankenhausstrasse 7, Linz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
When one looks at the field of molecular pathology or transplantation, it is evident that molecular biology has made a positive impact on medicine. However, the progress in transfusion medicine has been slower and more cautious than in other areas of the clinical laboratory. To understand where the field may go in the next 10 years requires that the reader understand what technology is available now. Therefore, this article discusses the current state of the art for red-cell genotyping and newer, ever-evolving molecular technologies. Because it is impossible to present all of the molecular techniques and their variations in this article, the author selects a group of methodologies to review and speculates where the field of molecular immunohematology may be in 2020.
Collapse
Affiliation(s)
- Joann M Moulds
- Clinical Immunogenetics, LifeShare Blood Centers, 8910 Linwood Avenue, Shreveport, LA 71106, USA.
| |
Collapse
|
46
|
Kappler-Gratias S, Peyrard T, Beolet M, Amiranoff D, Menanteau C, Dubeaux I, Rouger P, Cartron JP, Le Pennec PY, Pham BN. Blood group genotyping by high-throughput DNA analysis applied to 356 reagent red blood cell samples. Transfusion 2010; 51:36-42. [PMID: 20707859 DOI: 10.1111/j.1537-2995.2010.02802.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandrine Kappler-Gratias
- Institut National de la Transfusion Sanguine, Centre National de Référence sur les Groupes Sanguins-INSERM U665, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
The relative contribution of founder effects and natural selection to the observed distribution of human blood groups has been debated since blood group frequencies were shown to differ between populations almost a century ago. Advances in our understanding of the migration patterns of early humans from Africa to populate the rest of the world obtained through the use of Y chromosome and mtDNA markers do much to inform this debate. There are clear examples of protection against infectious diseases from inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions particularly in respect of Helicobacter pylori, norovirus, and cholera infections. However, available evidence suggests surviving malaria is the most significant selective force affecting the expression of blood groups. Red cells lacking or having altered forms of blood group-active molecules are commonly found in regions of the world in which malaria is endemic, notably the Fy(a-b-) phenotype and the S-s- phenotype in Africa and the Ge- and SAO phenotypes in South East Asia. Founder effects provide a more convincing explanation for the distribution of the D- phenotype and the occurrence of hemolytic disease of the fetus and newborn in Europe and Central Asia.
Collapse
|