1
|
Khan MS, Liu C, Meng F, Yang M, Zhou K, Hu R, Wang X, Dai K. X-rays Stimulate Granular Secretions and Activate Protein Kinase C Signaling in Human Platelets. Curr Issues Mol Biol 2023; 45:6024-6039. [PMID: 37504296 PMCID: PMC10378519 DOI: 10.3390/cimb45070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
X-rays can induce morphological as well as functional changes in cells. Platelets are anuclear cellular fragments originating from megakaryocytes and are the major regulators in hemostasis and thrombosis. Platelet products are irradiated to avoid medical complications associated with platelet transfusion. So far, gamma, UV, and laser radiation have been used for this purpose. However, scientists are divided about the effects of radiation on platelet quality. The present study was designed to explore the possible effects of X-rays in washed human platelets and understand the molecular mechanism behind them. In the present study, we exposed washed human platelets to 10 or 30 Gy X-rays at 0.25 Gy/min. Flow cytometry, aggregometry, and western blot were performed to investigate the effect of X-rays on platelet degranulation, integrin activation, platelet aggregation, and apoptosis. It was found that X-rays immediately induced granular secretions with no effect on GP IIb/IIIa activation. Not surprisingly, due to granule secretions in irradiated platelets, platelet aggregation was significantly reduced. In contrast to granular secretions and platelet aggregation, X-rays induced mitochondrial transmembrane potential depolarization in a time-dependent manner to induce apoptosis and activated protein kinase C (PKC) signaling. This study revealed and explained the molecular mechanism activated by X-rays in washed human platelets. Here we also introduced Gö 6983, a PKC inhibitor, as an agent that counteracts X-ray-induced changes and maintains the integrity of platelets.
Collapse
Affiliation(s)
- Muhammad Shoaib Khan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Chunliang Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Fanbi Meng
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Renping Hu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Xuexiang Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| |
Collapse
|
2
|
Hosseini E, Nodeh FK, Ghasemzadeh M. Gamma irradiation induces a pro-apoptotic state in longer stored platelets, without progressing to an overt apoptosis by day 7 of storage. Apoptosis 2023:10.1007/s10495-023-01841-5. [PMID: 37127837 DOI: 10.1007/s10495-023-01841-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although gamma-irradiation to platelet products is a standard method to prevent the risk of TA-GVHD in vulnerable recipients, it induces some proteomic and redox changes, of which irradiation-induced ROS increments may potentiate platelet mitochondrial dysfunction. However, whether these changes cause platelet apoptosis, or affect their viability during storage, is the main subject of this study. METHODS PLT-rich plasma PC was split into two bags, one kept as control while other was subjected to gamma-irradiation. Within 7-days storage, cytosolic and mitochondrial levels of cytochrome c and pro-apoptotic molecules of Bak and Bax were evaluated by western-blotting. Intraplatelet active caspase (using FAM-DEVD-FMK) and PS-exposure were detected by flowcytometry. Caspase activity in platelet lysate was also confirmed by immunofluorescence detection of Caspase-3/7 Substrate N-Ac-DEVD-N'-MC-R110 while platelet viability was evaluated with MTT assays. RESULTS Cytosolic cytochrome c gradually increased while its mitochondrial content steadily declined during 7 days of storage. In a contrary trend, reverse patterns were observed for Bak and Bax expressions. Gamma-irradiated platelets showed higher release of mitochondrial cytochrome c that reflected by higher cytosolic cytochrome c levels on day 7 of storage. Concurrently mitochondrial pro-apoptotic Bak and Bax proteins increased on day 7 in irradiated products. However, gamma-irradiation didn't significantly increase caspase activity or PS-exposure, nor did it decrease platelet viability. CONCLUSION Here, consistent with studies on "gamma-irradiation-induced oxidative stress", we showed that gamma-ray also increases platelet pro-apoptotic signals during storage, although not strongly enough to affect platelet viability by overt apoptosis induction. Conclusively, whether supplementing ROS scavengers or antioxidants to irradiated platelets can improve their quality during storage may be of interest for future research.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Fatemeh Kiani Nodeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, 14665-1157, Iran.
| |
Collapse
|
3
|
Tsalas S, Petrou E, Tsantes AG, Sokou R, Loukopoulou E, Houhoula D, Mantzios PG, Kriebardis AG, Tsantes AE. Pathogen Reduction Technologies and Their Impact on Metabolic and Functional Properties of Treated Platelet Concentrates: A Systematic Review. Semin Thromb Hemost 2022. [PMID: 36252605 DOI: 10.1055/s-0042-1757897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pathogen reduction technologies (PRTs) such as Mirasol and Intercept were developed to eliminate transfusion-transmitted infections. The impact of PRTs on platelet function during the storage period, their effect on platelet storage lesions, and the optimal storage duration following PRTs have not been clearly defined. The aim of this study was to systematically review the existing literature and investigate the impact of PRTs on functional alterations of PRT-treated platelets during the storage period. The authors identified 68 studies suitable to be included in this review. Despite the high heterogeneity in the literature, the results of the published studies indicate that PRTs may increase platelet metabolic activity, accelerate cell apoptosis, and enhance platelet activation, which can subsequently lead to a late exhaustion of activation potential and reduced aggregation response. However, these effects have a minor impact on platelet function during the early storage period and become more prominent beyond the fifth day of the storage period. Large in vivo trials are required to evaluate the effectiveness of PRT-treated platelets during the storage period and investigate whether their storage can be safely extended to more than 5 days, and up to the traditional 7-day storage period.
Collapse
Affiliation(s)
- Stavros Tsalas
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Petrou
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas G Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Nikea, Piraeus, Greece
| | - Electra Loukopoulou
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Houhoula
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros G Mantzios
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology, Department of Biomedical Science, School of Health and Caring Science, University of West Attica, Athens, Greece
| | - Argirios E Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Malvaux N, Defraigne F, Bartziali S, Bellora C, Mommaerts K, Betsou F, Schuhmacher A. In Vitro Comparative Study of Platelets Treated with Two Pathogen-Inactivation Methods to Extend Shelf Life to 7 Days. Pathogens 2022; 11:pathogens11030343. [PMID: 35335667 PMCID: PMC8949436 DOI: 10.3390/pathogens11030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives: Since 2015, platelet products have been pathogen-inactivated (PI) at the Luxemburgish Red Cross (LRC) using Riboflavin and UV light (RF-PI). As the LRC should respond to hospital needs at any time, platelet production exceeds the demand, generating a discard rate of 18%. To reduce this, we consider the extension of storage time from 5 to 7 days. This study’s objective was to evaluate the in vitro 7-day platelet-storage quality, comparing two PI technologies, RF-PI and amotosalen/UVA light (AM-PI), for platelet pools from whole-blood donations (PPCs) and apheresis platelets collected from single apheresis donation (APCs). Materials and Methods: For each product type, 6 double-platelet concentrates were prepared and divided into 2 units; one was treated with RF-PI and the other by AM-PI. In vitro platelet-quality parameters were tested pre- and post-PI, at days 5 and 7. Results: Treatment and storage lesions were observed in PPCs and APCs with both PI methods. We found a higher rate of lactate increase and glucose depletion, suggesting a stronger stimulation of the glycolytic pathway, a higher Annexin V binding, and a loss of swirling in the RF-PI-treated units from day 5. The platelet loss was significantly higher in the AM-PI compared with the RF-PI units. Conclusions: Results suggest that RF-PI treatment has a higher deleterious impact on in vitro platelet quality compared to AM-PI, but we observed higher loss of platelets with AM-PI due to the post-illumination amotosalen adsorption step. If 7-day storage is needed, it can only be achieved with AM-PI, based on our quality criteria.
Collapse
Affiliation(s)
- Nicolas Malvaux
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
- Correspondence: ; Tel.: +352-2755-4000
| | - Fanette Defraigne
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
| | - Styliani Bartziali
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
| | - Camille Bellora
- Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; (C.B.); (K.M.); (F.B.)
| | - Kathleen Mommaerts
- Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; (C.B.); (K.M.); (F.B.)
- Luxembourg Center for Systems Biomedicine, 6 Av. du Swing, L-4367 Esch-sur-Alzette, Luxembourg
| | - Fay Betsou
- Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; (C.B.); (K.M.); (F.B.)
- Laboratoire National de Sante, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Anne Schuhmacher
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
| |
Collapse
|
5
|
Hosseini E, Kianinodeh F, Ghasemzadeh M. Irradiation of platelets in Transfusion Medicine: risk and benefit judgments. Platelets 2021; 33:666-678. [PMID: 34697994 DOI: 10.1080/09537104.2021.1990250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Irradiation of platelet products is generally used to prevent transfusion-associated graft-versus-host disease (TA-GvHD) as well as transfusion-transmitted infections. As an essential prerequisite, gamma-irradiation of blood products prior to transfusion is required in patients who may develop TA-GVHD. Most studies suggest that gamma irradiation has no significant effect on the quality of platelet products; however, more recent studies have shown that the oxidative effects of gamma irradiation can lead to the induction of platelet storage lesion (PSL) and to some extent reduce the efficiency of transfused platelets. As the second widely used irradiation technique, UV-illumination was primarily introduced to reduce the growth of infectious agents during platelet storage, with the advantage that this method can also prevent TA-GvHD. However, the induction of oxidative conditions and platelet pre-activation that lead to PSL is more pronounced after UV-based methods of pathogen reduction. Since these lesions are large enough to clearly affect the post-transfusion platelet recovery and survival, more studies are needed to improve the safety and effectiveness of pathogen reduction technologies (PRTs). Therefore, pointing to other benefits of PRTs, such as preventing TA-GvHD or prolonging the shelf life of products by eliminating the possibility of pathogen growth during storage, does not yet seem to justify their widespread use due to above-mentioned effects. Even for gamma-irradiated platelets, some researchers have suggested that due to decreased 1-hour post-transfusion increments and increased risk of platelet refractoriness, their use should be limited to the patients who may develop TA-GVHD. It is noteworthy that due to the effect of X-rays in preventing TA-GvHD, some recent studies are underway to examine its effects on the quality and effectiveness of platelet products and determine whether X-rays can be used as a more appropriate and cost-effective alternative to gamma radiation. The review presented here provides a detailed description about irradiation-based technologies for platelet products, including their applications, mechanistic features, advantages, and disadvantages.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Kianinodeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
6
|
Abstract
AbstractThe characterization of platelet concentrates (PCs) in transfusion medicine has been performed with different analytical methods and platelet lesions (from biochemistry to cell biology) have been documented. In routine quality assessment and validation of manufacturing processes of PCs for transfusion purposes, only basic parameters are monitored and the platelet functions are not included. However, PCs undergo several manipulations during the processing and the basic parameters do not provide sensitive analyses to properly picture out the impact of the blood component preparation and storage on platelets. To improve the transfusion supply chain and the platelet functionalities, additional parameters should be used. The present short review will focus on the different techniques to monitor ex vivo platelet lesions from phenotype characterization to advanced omic analyses. Then, the opportunities to use these methods in quality control, process validation, development, and research will be discussed. Functional markers should be considered because they would be an advantage for the future developments in transfusion medicine.
Collapse
|
7
|
New strategies for the control of infectious and parasitic diseases in blood donors: the impact of pathogen inactivation methods. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Around 70 infectious agents are possible threats for blood safety.
The risk for blood recipients is increasing because of new emergent agents like West Nile, Zika and Chikungunya viruses, or parasites such as Plasmodium and Trypanosoma cruzi in non-endemic regions, for instance.
Screening programmes of the donors are more and more implemented in several Countries, but these cannot prevent completely infections, especially when they are caused by new agents.
Pathogen inactivation (PI) methods might overcome the limits of the screening and different technologies have been set up in the last years.
This review aims to describe the most widely used methods focusing on their efficacy as well as on the preservation integrity of blood components.
Collapse
|
8
|
Schubert P, Johnson L, Marks DC, Devine DV. Ultraviolet-Based Pathogen Inactivation Systems: Untangling the Molecular Targets Activated in Platelets. Front Med (Lausanne) 2018; 5:129. [PMID: 29868586 PMCID: PMC5949320 DOI: 10.3389/fmed.2018.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Transfusions of platelets are an important cornerstone of medicine; however, recipients may be subject to risk of adverse events associated with the potential transmission of pathogens, especially bacteria. Pathogen inactivation (PI) technologies based on ultraviolet illumination have been developed in the last decades to mitigate this risk. This review discusses studies of platelet concentrates treated with the current generation of PI technologies to assess their impact on quality, PI capacity, safety, and clinical efficacy. Improved safety seems to come with the cost of reduced platelet functionality, and hence transfusion efficacy. In order to understand these negative impacts in more detail, several molecular analyses have identified signaling pathways linked to platelet function that are altered by PI. Because some of these biochemical alterations are similar to those seen arising in the context of routine platelet storage lesion development occurring during blood bank storage, we lack a complete picture of the contribution of PI treatment to impaired platelet functionality. A model generated using data from currently available publications places the signaling protein kinase p38 as a central player regulating a variety of mechanisms triggered in platelets by PI systems.
Collapse
Affiliation(s)
- Peter Schubert
- Canadian Blood Services, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Dana V Devine
- Canadian Blood Services, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion 2017; 57:2845-2857. [PMID: 28905392 DOI: 10.1111/trf.14310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Room temperature-stored (20-24°C) platelets (PLTs) have a shelf life of 5 days, making it logistically challenging to supply remote medical centers with PLT products. Cryopreservation of PLTs in dimethyl sulfoxide (DMSO) and storage at -80°C enables an extended shelf life up to 2 years. Although cryopreserved PLTs have been widely characterized under resting conditions, their ability to undergo agonist-induced activation is yet to be fully explored. STUDY DESIGN AND METHODS Buffy coat PLTs were cryopreserved at -80°C with 5% to 6% DMSO and sampled before freezing and after thawing. PLTs were analyzed under resting conditions and after agonist stimulation with adenosine diphosphate, collagen, or thrombin receptor-activating peptide-6. The expression of activation markers, microparticle formation, and calcium mobilization were analyzed by flow cytometry. Soluble PLT proteins present in the PLT supernatant were examined by enzyme-linked immunosorbent assay. Protein phosphorylation was investigated with Western blotting. RESULTS After cryopreservation, PLTs displayed increased surface activation markers and higher basal calcium levels. Cryopreserved PLTs demonstrated diminished aggregation responses. Additionally, cryopreserved PLTs showed a limited ability to become activated (as measured by CD62P and phosphatidylserine exposure and cytokine release) after agonist stimulation. A reduction in the abundance and phosphorylation of key signaling proteins (Akt, Src, Lyn, ERK, and p38) was seen in cryopreserved PLTs. CONCLUSIONS Cryopreservation of PLTs induces dramatic changes to the basal PLT phenotype and renders them largely nonresponsive to agonist stimulation, likely due to the alterations in signal transduction. Therefore, further efforts are required to understand how cryopreserved PLTs achieve their hemostatic effect once transfused.
Collapse
Affiliation(s)
- Lauren Waters
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
10
|
Stivala S, Gobbato S, Infanti L, Reiner MF, Bonetti N, Meyer SC, Camici GG, Lüscher TF, Buser A, Beer JH. Amotosalen/ultraviolet A pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance. Haematologica 2017; 102:1650-1660. [PMID: 28729303 PMCID: PMC5622849 DOI: 10.3324/haematol.2017.164137] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023] Open
Abstract
Amotosalen and ultraviolet A (UVA) photochemical-based pathogen reduction using the Intercept™ Blood System (IBS) is an effective and established technology for platelet and plasma components, which is adopted in more than 40 countries worldwide. Several reports point towards a reduced platelet function after Amotosalen/UVA exposure. The study herein was undertaken to identify the mechanisms responsible for the early impairment of platelet function by the IBS. Twenty-five platelet apheresis units were collected from healthy volunteers following standard procedures and split into 2 components, 1 untreated and the other treated with Amotosalen/UVA. Platelet impedance aggregation in response to collagen and thrombin was reduced by 80% and 60%, respectively, in IBS-treated units at day 1 of storage. Glycoprotein Ib (GpIb) levels were significantly lower in IBS samples and soluble glycocalicin correspondingly augmented; furthermore, GpIbα was significantly more desialylated as shown by Erythrina Cristagalli Lectin (ECL) binding. The pro-apoptotic Bak protein was significantly increased, as well as the MAPK p38 phosphorylation and caspase-3 cleavage. Stored IBS-treated platelets injected into immune-deficient nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice showed a faster clearance. We conclude that the IBS induces platelet p38 activation, GpIb shedding and platelet apoptosis through a caspase-dependent mechanism, thus reducing platelet function and survival. These mechanisms are of relevance in transfusion medicine, where the IBS increases patient safety at the expense of platelet function and survival.
Collapse
Affiliation(s)
- Simona Stivala
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Sara Gobbato
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service of the Swiss Red Cross, Basel, Switzerland
| | - Martin F Reiner
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Nicole Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Sara C Meyer
- Division of Hematology and Department of Biomedicine, University Hospital Basel, Switzerland
| | | | - Thomas F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Andreas Buser
- Regional Blood Transfusion Service of the Swiss Red Cross, Basel, Switzerland
| | - Jürg H Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland .,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| |
Collapse
|
11
|
Chen Z, Schubert P, Bakkour S, Culibrk B, Busch MP, Devine DV. p38 mitogen-activated protein kinase regulates mitochondrial function and microvesicle release in riboflavin- and ultraviolet light-treated apheresis platelet concentrates. Transfusion 2017; 57:1199-1207. [DOI: 10.1111/trf.14035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/03/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongming Chen
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Sonia Bakkour
- Blood Systems Research Institute; University of California; San Francisco California
| | - Brankica Culibrk
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Michael P. Busch
- Blood Systems Research Institute; University of California; San Francisco California
- Department of Laboratory Medicine; University of California; San Francisco California
| | - Dana V. Devine
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
12
|
Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion. Int J Mol Sci 2017; 18:ijms18020387. [PMID: 28208668 PMCID: PMC5343922 DOI: 10.3390/ijms18020387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations.
Collapse
|
13
|
Wood B, Padula MP, Marks DC, Johnson L. Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Transfusion 2016; 56:2548-2559. [PMID: 27460096 DOI: 10.1111/trf.13723] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Platelets (PLTs) are currently stored at room temperature (22°C), which limits their shelf life, primarily due to the risk of bacterial growth. Alternatives to room temperature storage include PLT refrigeration (2-6°C), which inhibits bacterial growth, thus potentially allowing an extension of shelf life. Additionally, refrigerated PLTs appear more hemostatically active than conventional PLTs, which may be beneficial in certain clinical situations. However, the mechanisms responsible for this hemostatic function are not well characterized. The aim of this study was to assess the protein profile of refrigerated PLTs in an effort to understand these functional consequences. STUDY DESIGN AND METHODS Buffy coat PLTs were pooled, split, and stored either at room temperature (20-24°C) or under refrigerated (2-6°C) conditions (n = 8 in each group). PLTs were assessed for changes in external receptor expression and actin filamentation using flow cytometry. Intracellular proteomic changes were assessed using two-dimensional gel electrophoresis and Western blotting. RESULTS PLT refrigeration significantly reduced the abundance of glycoproteins (GPIb, GPIX, GPIIb, and GPIV) on the external membrane. However, refrigeration resulted in the increased expression of high-affinity integrins (αIIbβ3 and β1) and activation and apoptosis markers (CD62P, CD63, and phosphatidylserine). PLT refrigeration substantially altered the abundance and localization of several cytoskeletal proteins and resulted in an increase in actin filamentation, as measured by phalloidin staining. CONCLUSION Refrigerated storage of PLTs induces significant changes in the expression and localization of both surface-expressed and intracellular proteins. Understanding these proteomic changes may help to identify the mechanisms resulting in the refrigeration-associated alterations in PLT function and clearance.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.,Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.
| |
Collapse
|
14
|
Klein‐Bosgoed C, Schubert P, Devine DV. Riboflavin and ultraviolet illumination affects selected platelet mRNA transcript amounts differently. Transfusion 2016; 56:2286-95. [DOI: 10.1111/trf.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Christa Klein‐Bosgoed
- Department of Pathology and Laboratory Medicine and Centre for Blood ResearchUniversity of British Columbia
| | - Peter Schubert
- Department of Pathology and Laboratory Medicine and Centre for Blood ResearchUniversity of British Columbia
- Canadian Blood Services Centre for InnovationVancouver BC Canada
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine and Centre for Blood ResearchUniversity of British Columbia
- Canadian Blood Services Centre for InnovationVancouver BC Canada
| |
Collapse
|
15
|
Cicchetti A, Berrino A, Casini M, Codella P, Facco G, Fiore A, Marano G, Marchetti M, Midolo E, Minacori R, Refolo P, Romano F, Ruggeri M, Sacchini D, Spagnolo AG, Urbina I, Vaglio S, Grazzini G, Liumbruno GM. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:287-386. [PMID: 27403740 PMCID: PMC4942318 DOI: 10.2450/2016.0065-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains.Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed.
Collapse
Affiliation(s)
- Americo Cicchetti
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Alexandra Berrino
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Marina Casini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Paola Codella
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppina Facco
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Alessandra Fiore
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Marco Marchetti
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuela Midolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Minacori
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Refolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Federica Romano
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Ruggeri
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Dario Sacchini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio G. Spagnolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Irene Urbina
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Giuliano Grazzini
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | | |
Collapse
|
16
|
Ignatova AA, Karpova OV, Trakhtman PE, Rumiantsev SA, Panteleev MA. Functional characteristics and clinical effectiveness of platelet concentrates treated with riboflavin and ultraviolet light in plasma and in platelet additive solution. Vox Sang 2015; 110:244-52. [DOI: 10.1111/vox.12364] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/27/2022]
Affiliation(s)
- A. A. Ignatova
- Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev Ministry of Health of Russian; Moscow Russian Federation
| | - O. V. Karpova
- Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev Ministry of Health of Russian; Moscow Russian Federation
| | - P. E. Trakhtman
- Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev Ministry of Health of Russian; Moscow Russian Federation
| | - S. A. Rumiantsev
- Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev Ministry of Health of Russian; Moscow Russian Federation
| | - M. A. Panteleev
- Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev Ministry of Health of Russian; Moscow Russian Federation
| |
Collapse
|
17
|
Johnson L, Schubert P, Tan S, Devine DV, Marks DC. Extended storage and glucose exhaustion are associated with apoptotic changes in platelets stored in additive solution. Transfusion 2015; 56:360-8. [DOI: 10.1111/trf.13345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Lacey Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney Australia
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Shereen Tan
- Research and Development; Australian Red Cross Blood Service; Sydney Australia
| | - Dana V. Devine
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Denese C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney Australia
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Platelets are a frequently requested blood product today and are often in limited supply because of a shelf life of 5-7 days, depending on the country. Room temperature storage is associated with an increased risk of transfusion-transmitted infection. Plasma used for platelet storage is unavailable for other uses, and allogeneic plasma carries with it risks for adverse transfusion reactions. This review looks at recent activities evaluating alternative conditions for the storage of platelets. RECENT FINDINGS New-generation platelet additive solutions are being evaluated and applied as a strategy to reduce the volume of allogeneic plasma transfused and to support storage following pathogen reduction treatments. There is a renewed interest in refrigerator temperature and frozen storage of platelets to improve availability, to reduce septic transfusion risk, and to enhance hemostatic efficacy in the bleeding patient. SUMMARY Use of platelet additive solutions has been shown to reduce the incidence of allergic and nonhemolytic febrile transfusion reactions in two large studies. Results of ongoing research and new clinical trials in cold storage methods will be forthcoming and may present solutions for platelet availability problems and new choices for therapeutic transfusion of the bleeding patient.
Collapse
|
19
|
Raynel S, Padula MP, Marks DC, Johnson L. Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles. Transfusion 2015; 55:2422-32. [PMID: 26046916 DOI: 10.1111/trf.13165] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cryopreservation of platelets (PLTs) in dimethyl sulfoxide (DMSO) and storage at -80 °C extends the PLT shelf life to at least 2 years, allowing greater accessibility in military and rural environments. While cryopreserved PLTs have been extensively characterized, the microparticles formed as a result of cryopreservation are yet to be fully described. STUDY DESIGN AND METHODS Apheresis PLTs were cryopreserved at -80 °C with 5% DMSO and sampled before freezing and after thawing. Microparticle number, size, surface receptor phenotype, and function were assessed by microscopy, flow cytometry, dynamic light scattering, and thrombin-generating capacity. Proteomic changes were examined using two-dimensional gel electrophoresis and Western blotting. RESULTS PLT cryopreservation resulted in a 15-fold increase in the number of microparticles compared to fresh PLTs. The surface receptor phenotype of these microparticles differed to microparticles from fresh PLTs, with more microparticles expressing glycoprotein (GP)IV, GPIIb, and the GPIb-V-IX complex. Cryopreservation drastically altered the abundance of many cytoskeletal proteins in the PLT microparticles, including actin, filamin, gelsolin, and tropomyosin. Despite these changes, PLT microparticles were functional and contributed to phosphatidylserine- and tissue factor- induced thrombin generation. CONCLUSION This study demonstrates that PLT microparticles formed by cryopreservation are phenotypically distinct from those present before freezing. These differences may be associated with the procoagulant properties of cryopreserved PLTs.
Collapse
Affiliation(s)
- Sarah Raynel
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.,Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
20
|
Johnson L, Marks D. Treatment of Platelet Concentrates with the Mirasol Pathogen Inactivation System Modulates Platelet Oxidative Stress and NF-κB Activation. Transfus Med Hemother 2015. [PMID: 26195930 DOI: 10.1159/000403245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pathogen inactivation (PI) technologies for platelets aim to improve transfusion safety by preventing the replication of contaminating pathogens. However, as a consequence of treatment, aspects of the platelet storage lesion are amplified. Mirasol treatment also affects platelet signal transduction and apoptotic protein expression. The aim of this study was to examine the effect of Mirasol treatment on the generation of reactive oxygen species (ROS) and subsequent oxidative stress. METHODS Pooled platelet concentrates were prepared in platelet-additive solution (70% SSP+ / 30% plasma). ABO-matched platelets were pooled and split, and treated with the Mirasol system (TerumoBCT) or left untreated as a control. Platelet samples were tested on day 1, 5, and 7 post-collection. RESULTS Mirasol-treated platelets had increased formation of ROS by day 5 of storage. Oxidative damage, in the form of protein carbonylation, was higher in Mirasol-treated platelets, whilst no effect on nitrotyrosine formation or lipid peroxidation was detected. The NF-κB signaling pathway was also activated in Mirasol-treated platelets, with increased expression and phosphorylation of NF-κB p65 and IκBα. CONCLUSION These data demonstrate that Mirasol-treated platelets produce more ROS and display protein alterations consistent with oxidative damage.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Denese Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|
21
|
Chen Z, Schubert P, Culibrk B, Devine DV. p38MAPK is involved in apoptosis development in apheresis platelet concentrates after riboflavin and ultraviolet light treatment. Transfusion 2014; 55:848-57. [PMID: 25385501 DOI: 10.1111/trf.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pathogen inactivation (PI) accelerates the platelet (PLT) storage lesion, including apoptotic-like changes. Proteomic studies have shown that phosphorylation levels of several kinases increase in PLTs after riboflavin and UV light (RF-PI) treatment. Inhibition of p38MAPK improved in vitro PLT quality, but the biochemical basis of this kinase's contribution to PLT damage requires further analysis. STUDY DESIGN AND METHODS In a pool-and-split design, apheresis PLT concentrates were either treated or kept untreated with or without selected kinase inhibitors. Samples were analyzed throughout 7 days of storage, monitoring in vitro quality variables including phosphatidylserine exposure, degranulation, and glucose metabolism. Changes in the protein expression of Bax, Bak, and Bcl-xL and the activities of caspase-3 and -9 were determined by immunoblot analysis and flow cytometry, respectively. RESULTS The expression levels of the proapoptotic proteins Bax and Bak, but not the antiapoptotic protein Bcl-xL, were significantly increased after the RF-PI treatment. This trend was reversed in the presence of p38MAPK inhibitor SB203580. As a result of increasing proapoptotic protein levels, caspase-3 and -9 activities were significantly increased in RF-PI treatment during storage compared with control (p < 0.05). Similarly, p38MAPK inhibition significantly reduced these caspase activities compared with vehicle control after RF-PI treatment (p < 0.05). CONCLUSION These findings revealed that p38MAPK is involved in signaling leading to apoptosis triggered by RF-PI. Elucidation of the biochemical processes influenced by PI is a necessary step in the development of strategies to improve the PLT quality and ameliorate the negative effects of PI treatment.
Collapse
Affiliation(s)
- Zhongming Chen
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Schubert
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brankica Culibrk
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Affiliation(s)
- D. C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney New South Wales Australia
| | - H. M. Faddy
- Research and Development; Australian Red Cross Blood Service; Brisbane Queensland Australia
| | - L. Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney New South Wales Australia
| |
Collapse
|
23
|
Prudent M, D’Alessandro A, Cazenave JP, Devine DV, Gachet C, Greinacher A, Lion N, Schubert P, Steil L, Thiele T, Tissot JD, Völker U, Zolla L. Proteome Changes in Platelets After Pathogen Inactivation—An Interlaboratory Consensus. Transfus Med Rev 2014; 28:72-83. [DOI: 10.1016/j.tmrv.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
24
|
Schubert P, Coupland D, Culibrk B, Goodrich RP, Devine DV. Riboflavin and ultraviolet light treatment of platelets triggers p38MAPK signaling: inhibition significantly improves in vitro platelet quality after pathogen reduction treatment. Transfusion 2013; 53:3164-73. [DOI: 10.1111/trf.12173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Schubert
- Canadian Blood Services; Vancouver BC Canada
- Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- Terumo BCT Biotechnologies; Lakewood Colorado
| | - Danielle Coupland
- Canadian Blood Services; Vancouver BC Canada
- Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- Terumo BCT Biotechnologies; Lakewood Colorado
| | - Brankica Culibrk
- Canadian Blood Services; Vancouver BC Canada
- Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- Terumo BCT Biotechnologies; Lakewood Colorado
| | - Raymond P. Goodrich
- Canadian Blood Services; Vancouver BC Canada
- Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- Terumo BCT Biotechnologies; Lakewood Colorado
| | - Dana V. Devine
- Canadian Blood Services; Vancouver BC Canada
- Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- Terumo BCT Biotechnologies; Lakewood Colorado
| |
Collapse
|
25
|
Neumüller J, Meisslitzer-Ruppitsch C, Ellinger A, Pavelka M, Jungbauer C, Renz R, Leitner G, Wagner T. Monitoring of platelet activation in platelet concentrates using transmission electron microscopy. ACTA ACUST UNITED AC 2013; 40:101-7. [PMID: 23652838 DOI: 10.1159/000350034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The quality of platelet concentrates (PC) is important for the in vivo recovery of thrombostasis in patients suffering from bleeding disorders and in tumor patients after chemotherapy. In this respect, activated platelets (PLT) cannot display their full functionality in the recipient and even can cause adverse effects. Therefore, we developed a transmission electron microscopy (TEM) method for quality assessment of PC. METHODS Score values taken from panorama TEM images describe the progress of PLT activation. To exemplify this method, i) 19 apheresis PC isolated with the Baxter Amicus system (BA) were compared with 14 PC obtained from pooled buffy coats (BC). ii) The score values of 33 PC derived from BA as well from BC were compared with flow-cytometric CD62P determinations by cross correlation. iii) Changes in the score value profiles during storage of a single pathogen-reduced BA PC were monitored over a period of 7 days. RESULTS The TEM evaluation described allows for demonstrating particular PLT activation stages. i) Significant differences between the percentages of the score values 0, 1 and 2 could be demonstrated in both processing groups. No significant differences were found comparing these two groups. ii) A weak correlation could be shown when comparing the percentages of score values 2 plus 3 with the percentage of CD62P-positive PLT. iii) The pathogen reduction affected slightly the score profiles during storage due to an increase of dead PLT. CONCLUSION Our investigations demonstrate the unique detailed quality information of PC obtained by the TEM method. This method can be performed in every routine electron microscopy laboratory.
Collapse
Affiliation(s)
- Josef Neumüller
- Medical University of Vienna, Center for Anatomy and Cell Biology, Department of Cell Biology and Ultrastructure Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Marrocco C, D'Alessandro A, Girelli G, Zolla L. Proteomic analysis of platelets treated with gamma irradiation versus a commercial photochemical pathogen reduction technology. Transfusion 2013; 53:1808-20. [DOI: 10.1111/trf.12060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/20/2012] [Accepted: 10/12/2012] [Indexed: 12/18/2022]
|
27
|
Proteomic analysis of Intercept-treated platelets. J Proteomics 2012; 76 Spec No.:316-28. [PMID: 22813878 DOI: 10.1016/j.jprot.2012.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
28
|
Lohoff FW, Weller AE, Bloch PJ, Buono RJ, Doyle GA, Ferraro TN, Berrettini WH. Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology 2008; 57:55-60. [PMID: 18451639 DOI: 10.1159/000129668] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/02/2008] [Indexed: 11/19/2022]
Abstract
Linkage studies have suggested a susceptibility locus for schizophrenia (SZ) exists on chromosome 8p21-22. The vesicular monoamine transporter 1 gene (VMAT1), also known as SLC18A1, maps to this SZ susceptibility locus. Vesicular monoamine transporters are involved in the presynaptic vesicular packaging of monoamine neurotransmitters, which have been postulated to play a role in the etiology of SZ. Variations in the VMAT1 gene might affect transporter function and/or expression, and might be involved in the etiology of SZ. Genotypes of 62 patients with SZ and 188 control subjects were obtained for 4 missense single nucleotide polymorphisms (Thr4Pro, Thr98Ser, Thr136Ile, Val392Leu) and 2 noncoding single nucleotide polymorphisms (rs988713, rs2279709). All cases and controls were of European descent. The frequency of the minor allele of the Thr4Pro polymorphism was significantly increased in SZ patients when compared to controls (p = 0.0140; d.f. = 1; OR = 1.69; 95% CI = 1.11-2.57). Assuming a recessive mode of inheritance, the frequency of homozygote 4Pro carriers was significantly increased in the SZ patients when compared to controls (24 vs. 8%, respectively; p = 0.0006; d.f. = 1; OR = 3.74; 95% CI = 1.703-8.21). Haplotype analysis showed nominal significance for an individual risk haplotype (p = 0.013); however, after permutation correction, the global p value did not attain a statistically significant level (p = 0.07). Results suggest that variations in the VMAT1 gene may confer susceptibility to SZ in patients of European descent. Further studies are necessary to confirm this effect, and to elucidate the role of VMAT1 in central nervous system physiology and possible involvement in the genetic origins of SZ.
Collapse
Affiliation(s)
- Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|