1
|
Fager AM, Ellsworth P, Key NS, Monroe DM, Hoffman M. Emicizumab promotes factor Xa generation on endothelial cells. J Thromb Haemost 2024; 22:1605-1615. [PMID: 38460838 DOI: 10.1016/j.jtha.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients. However, the use of an activated prothrombin complex concentrate [FEIBA (Takeda)] to treat breakthrough bleeding in patients on emicizumab has been associated with thrombotic complications including a unique microangiopathy. OBJECTIVES We hypothesized that the thrombotic complications observed with the combination of emicizumab and FEIBA might be due to excessive expression of procoagulant activity on the surface of endothelial cells. METHODS We examined the ability of emicizumab to promote FX activation on endothelial cells using 2 cell culture models. RESULTS We found that endothelial cells readily support emicizumab-mediated activation of FX by FIXa. The level of FXa generation depends on the concentration of available FIXa. The addition of FEIBA to emicizumab increased FXa generation in a dose-dependent manner on endothelial cells in both models. The rate of FXa generation was further enhanced by endothelial cell activation. However, unlike emicizumab, we found limited FXa generation in the presence of FVIII(a), which followed a significant lag time and was not dependent on FIXa concentration under these conditions. CONCLUSION Emicizumab promotes FXa generation on the surface of endothelial cells, which is markedly enhanced in the presence of FEIBA. These findings demonstrate a potential mechanism for the thrombotic complications seen with the combined use of emicizumab and FEIBA.
Collapse
Affiliation(s)
- Ammon M Fager
- Hematology/Oncology Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Patrick Ellsworth
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel S Key
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dougald M Monroe
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maureane Hoffman
- Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Valla DC. Hepatic vein thrombosis and PVT: A personal view on the contemporary development of ideas. Clin Liver Dis (Hoboken) 2024; 23:e0246. [PMID: 38988821 PMCID: PMC11236412 DOI: 10.1097/cld.0000000000000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/10/2024] [Indexed: 07/12/2024] Open
|
3
|
Chooklin S, Chuklin S. PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS. FIZIOLOHICHNYĬ ZHURNAL 2023; 69:133-144. [DOI: 10.15407/fz69.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Deep venous thrombosis is a frequent multifactorial disease and most of the time is triggered by the interaction between acquired risk factors, particularly immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis has been determined. Alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells, monocytes, eosinophils, lymphocytes. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are described.
Collapse
|
4
|
Urriago-Osorio GA, Melo-Burbano LÁ, López-Van Den Berghe J, Muñoz-Córdoba AM, Daza-Arana JE, Contreras-Zúñiga E. Pulmonary Thromboembolism in Pregnancy: A Case Report and Literature Review. Open Access Emerg Med 2023; 15:217-225. [PMID: 37292453 PMCID: PMC10246571 DOI: 10.2147/oaem.s404941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023] Open
Abstract
Data on the optimal diagnostic management of pregnant women with suspected pulmonary embolism are limited. Despite a lack of compelling evidence in some practices, clinical practice guidelines focus on the management of these patients. We present the case of a 24-year-old patient at 36 weeks of pregnancy in whom pulmonary thromboembolism (PTE) was diagnosed in a timely manner also with hemodynamic instability and echocardiographic images with clear involvement of the right cavities. She received thrombolytic therapy with alteplase 100 mg intravenously over 2 hours, which resulted in excellent outcomes for both the pregnant woman and fetus. Understanding the acute approach and management of these patients will improve our clinical practice; therefore, we reviewed a case report of a pregnant patient with high-risk PTE and compared it with current evidence. In conclusion, PE is a common disease with a high mortality rate during pregnancy. Therefore, having made a timely diagnosis using the relevant diagnostic aids and performing thrombolysis with rtPA increase the probability of survival in our patient, leading to successful results for both her and the fetus.
Collapse
Affiliation(s)
- Gustavo Andrés Urriago-Osorio
- Department of Health, Internal Medicine Specialization Program, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Emergency Department, Clínica de Occidente S.A, Santiago de Cali, Colombia
| | - Luis Álvaro Melo-Burbano
- Department of Health, Internal Medicine Specialization Program, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Emergency Department, Clínica de Occidente S.A, Santiago de Cali, Colombia
| | | | | | - Jorge Enrique Daza-Arana
- Department of Health, Internal Medicine Specialization Program, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Health and Movement Research Group, Universidad Santiago de Cali, Santiago de Cali, Colombia
| | | |
Collapse
|
5
|
Nishimiya K, Poduval RK, Tearney GJ. OCT Emerging Technologies: Coronary Micro-optical Coherence Tomography. Interv Cardiol Clin 2023; 12:237-244. [PMID: 36922064 DOI: 10.1016/j.iccl.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Optical coherence tomography (OCT) is an imaging modality that is used in a significant number of interventional cardiology procedures. Key structural changes occurring within the vessel wall, including presence of neutrophils, macrophages, monocytes, and vascular smooth muscle cells, are below the resolution of clinical intracoronary OCT. To address this challenge, a new form of OCT with 1 to 2 μm resolution, termed micro-OCT (μOCT), has been developed. This review article summarizes the ability of μOCT technology to visualize coronary microstructures and discusses its clinical implications.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Radhika K Poduval
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology Division, Cambridge, MA, USA.
| |
Collapse
|
6
|
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023; 12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 12/14/2022]
Abstract
A thrombus is a blood clot that forms in the lumen of an artery or vein, restricting blood flow and causing clinical symptoms. Thrombosis is associated with many life-threatening cardiovascular diseases. However, current clinical therapeutic technologies still have many problems in targeting, enrichment, penetration, and safety to meet the thrombosis treatment needs. Therefore, researchers devote themselves to developing nanosystems loaded with antithrombotic drugs to address this paradox in recent years. Herein, the existing thrombosis treatment technologies are first reviewed; and then, their advantages and disadvantages are outlined based on a brief discussion of thrombosis's definition and formation mechanism. Furthermore, the need and application cases for introducing nanotechnology are discussed, focusing on thrombus-specific targeted ligand modification technology and microenvironment-triggered responsive drug release technology. Then, nanomaterials that can be used to design antithrombotic nanotherapeutic systems are summarized. Moreover, a variety of drug delivery technologies driven by nanomotors in thrombosis therapy is also introduced. Last of all, a prospective discussion on the future development of nanotechnology for thrombosis therapy is highlighted.
Collapse
Affiliation(s)
- Shuyin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
7
|
Jacintho BC, Mazetto Fonseca BDM, Hounkpe BW, Oliveira JD, dos Santos APR, Vaz CDO, de Paula EV, Orsi FA. Evaluation of a gene signature related to thrombotic manifestations in antiphospholipid syndrome. Front Med (Lausanne) 2023; 10:1139906. [PMID: 37035297 PMCID: PMC10076702 DOI: 10.3389/fmed.2023.1139906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Thrombotic primary antiphospholipid syndrome (t-PAPS) is an acquired condition characterized by heterogeneous thrombotic manifestations, which is intriguing since venous and arterial thrombosis appear to have distinct pathogenesis. Gene expression analysis may constitute a new approach to evaluate potential similarities or differences between the clinical manifestations of t-PAPS. Recently, dysregulation of the ANXA3, TNFAIP6, TXK, BACH2, and SERPINB2 genes has been associated with both arterial and venous thrombosis in the general population. Therefore, the aim of this study was to examine whether ANXA3, TNFAIP6, TXK, BACH2, and SERPINB2 expression was associated with t-PAPS. Gene expression was quantified by qPCR of total leukocyte mRNA. In this case-control study, 102 t-PAPS patients, 17 asymptomatic antiphospholipid (aPL) carriers and 100 controls were evaluated. Increased expression of ANXA3 (P = 0.008) and TNFAIP6 (P = 0.001) and decreased expression of the TXK gene (P = 0.0001) were associated with an increased risk of t-PAPS compared to the control. ANXA3 upregulation was more evident in cases of arterial thrombosis and multiple thrombotic events. There was no difference in the expression of these genes between triple and non-triple aPL positivity. ANXA3, TNFAIP6, TXK, BACH2, and SERPINB2 expression levels were also similar between aPL carriers and controls (P = 0.77; P = 0.48; P = 0.08; P = 0.73, and P = 0.13, respectively). In conclusion, our results showed that genes related to hemostasis (ANXA3) and immunity (TNFAIP6, TXK) are dysregulated in t-PAPS compared to controls. Gene dysregulation was not detected in aPL carriers and was not related to the aPL profile, suggesting that this gene signature is related to thrombotic manifestations rather than to aPL burden. Our results suggest that innate immunity and hemostasis pathways are associated with t-PAPS at a molecular level and may play a role in disease severity.
Collapse
Affiliation(s)
| | - Bruna de Moraes Mazetto Fonseca
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Jose Diogo Oliveira
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Erich Vinicius de Paula
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Andrade Orsi
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Fernanda Andrade Orsi,
| |
Collapse
|
8
|
Kocan H, Ozdemir E. Independent risk factors affecting hemorrhage in percutaneous nephrolithotomy: Retrospective study. Actas Urol Esp 2022; 46:544-549. [PMID: 36216767 DOI: 10.1016/j.acuroe.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The perioperative and postoperative concern in percutaneous nephrolithotomy (PNL) is bleeding. Disease-related conditions (such as stone size, stone HU, tract number, and diameter) affecting this situation were determined. To determine independent risk factors that may affect the amount of hemorrhage in PNL. MATERIAL AND METHOD A total of 308 adult patients (211 men, 97 women) undergoing the PNL procedure were included in the study. Renal anatomy and stone size were evaluated using non-contrast thin-section computed tomography (NCCT). NCCT was used to assess Hounsfield unit (HU) values of kidney stones, presence of atheroma plaque and obesity. The difference between preoperative hemoglobin (Hgb) values and postoperative 1st day Hgb values was recorded. This variation was evaluated for the effect of gender, age, atherosclerotic vein disease, urine pH and density, leukocyte count, lymphocyte count, neutrophil count (NEU), platelet count, mean platelet volume (MPV), neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), stone volume, HU, and obesity. RESULTS The mean Hgb variation was identified as 2.1 (standard deviation: 1.6). There were positive, significant, and weak correlations between the Hgb variation with NEU (P=0.019), MPV (P=0.000), NLR (P=0.005), stone volume (P=0.041) and HU (P=0.024) values. There was a negative significant and weak correlation between Hgb variation and PLT (P=0.022). No effects at significant levels were identified for gender (P=0.078), presence of atheroma plaque (P=0.949), obesity (P=0.869), age (P=0.686), urine pH (P=0.746), urine density (P=0.421), and PLR (P=0.855) on Hgb variations. CONCLUSION In addition to HU and stone volume, NEU count, MPV, NLR and PLT count may be used as independent risk factors to predict blood loss during PNL.
Collapse
Affiliation(s)
- H Kocan
- Health Sciences University, Gaziosmanpaşa Education and Research Hospital, Urology Clinic, Estambul, Turkey.
| | - E Ozdemir
- Health Sciences University, Gaziosmanpaşa Education and Research Hospital, Urology Clinic, Estambul, Turkey
| |
Collapse
|
9
|
Reagan WJ, Brooks MB, Grozovsky R, Pittman D, Vitsky A, Brenneman K. To Clot or Not to Clot: Deepening Our Understanding of Alterations in the Hemostatic System. Toxicol Pathol 2022; 50:890-894. [DOI: 10.1177/01926233221125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The session on the hemostatic system focused on new developments in coagulation and platelet biology as well as how therapeutic agents may affect hemostasis. The classic cascade model of coagulation was compared with the more recent models of cell-based and vascular-based coagulation, which may provide better insight on how the coagulation cascade works in vivo. A review of platelet biology highlighted that, as platelets age, desialylated platelets form and are recognized by Ashwell-Morell receptor (AMR), leading to hepatic uptake and subsequent increase in thrombopoietin (TPO) production. Administration of therapeutics that induce thrombocytopenia was also discussed, including Mylotarg, which is an antibody-drug conjugate that was shown to decrease human megakaryocyte development but had no effect on platelet aggregation. An acetyl co-A carboxylase inhibitor was shown to cause thrombocytopenia by inhibiting de novo lipogenesis, which is critical for the formation of the megakaryocyte demarcation membrane system responsible for platelet production. It was also illustrated how preclinical translation models have been very helpful in the development of adeno-associated virus (AAV) hemophilia B gene therapy and what old and new preclinical tools we have that can predict the risk of a prothrombotic state in people.
Collapse
|
10
|
Factores de riesgo independientes asociados al sangrado en la nefrolitotomía percutánea: estudio retrospectivo. Actas Urol Esp 2022. [DOI: 10.1016/j.acuro.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med 2022:10.1007/s10238-022-00829-w. [PMID: 35471714 DOI: 10.1007/s10238-022-00829-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Deep venous thrombosis is a frequent, multifactorial disease and a leading cause of morbidity and mortality. Most of the time deep venous thrombosis is triggered by the interaction between acquired risk factors, such as hip fracture, pregnancy, and immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years, important advances have shed light on the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis. It has been described that the alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells. Thus, the concerted interaction of these phenomena allows the formation and growth of the thrombus. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis will be described.
Collapse
Affiliation(s)
- Simón Navarrete
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Carla Solar
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | | | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile.
| |
Collapse
|
12
|
Elevated Risk of Venous Thromboembolism in People Living with HIV. Viruses 2022; 14:v14030590. [PMID: 35336997 PMCID: PMC8955815 DOI: 10.3390/v14030590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) has been generally considered as a highly adaptive and rapidly evolving virus. It still constitutes a major public health problem all over the world despite an effective outcome in the prevention and reversal of the development and prognosis by using antiretroviral therapy. The salient question lies in the more frequent emergence of a series of comorbidities along with the prolongation of the life, which deeply affects the survival in such group. Venous thromboembolism (VTE) has been recognized to be the third most common cardiovascular condition within people living with HIV (PWH). In terms of its mechanism of action, the occurrence of VTE is quite multifactorial and complex in HIV. Prior exploration concerning the etiology of VTE in PWH identifies general, disease-specific, and miscellaneous factors for explaining its occurrence and development. VTE has constituted an important role in PWH and may increase its all-cause mortality. Therefore, it is quite necessary to understand VTE from the following aspects of epidemiology, pathophysiology, molecular mechanisms, and therapeutic interventions so as to balance the risks and benefits of anticoagulation and optimize corresponding treatment.
Collapse
|
13
|
Tsai MC, Fleuriot L, Janel S, Gonzalez-Rodriguez D, Morel C, Mettouchi A, Debayle D, Dallongeville S, Olivo-Marin JC, Antonny B, Lafont F, Lemichez E, Barelli H. DHA-phospholipids control membrane fusion and transcellular tunnel dynamics. J Cell Sci 2021; 135:273659. [PMID: 34878112 DOI: 10.1242/jcs.259119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses show that human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold enrichment in DHA-PLs at plasma membrane (PM) at the expense of monounsaturated OA-PLs. Consequently, DHA-PLs enrichment at the PM induces a reduction of cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM leads to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PLs levels in membranes affect cell biomechanical properties.
Collapse
Affiliation(s)
- Meng-Chen Tsai
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France.,Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Lucile Fleuriot
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Camille Morel
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Amel Mettouchi
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | | | | | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Frank Lafont
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| |
Collapse
|
14
|
Abstract
This work proposes a model of particle agglomeration in elastic valves replicating the geometry and the fluid dynamics of a venous valve. The fluid dynamics is simulated with Smooth Particle Hydrodynamics, the elastic leaflets of the valve with the Lattice Spring Model, while agglomeration is modelled with a 4-2 Lennard-Jones potential. All the models are combined together within a single Discrete Multiphysics framework. The results show that particle agglomeration occurs near the leaflets, supporting the hypothesis, proposed in previous experimental work, that clot formation in deep venous thrombosis is driven by the fluid dynamics in the valve.
Collapse
|
15
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|
16
|
Cao Y, Geng C, Li Y, Zhang Y. In situ Pulmonary Artery Thrombosis: A Previously Overlooked Disease. Front Pharmacol 2021; 12:671589. [PMID: 34305592 PMCID: PMC8296465 DOI: 10.3389/fphar.2021.671589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary thromboembolism (PTE) is the third leading cause of death in cardiovascular diseases. PTE is believed to be caused by thrombi detached from deep veins of lower extremities. The thrombi travel with systemic circulation to the lung and block pulmonary arteries, leading to sudden disruption of hemodynamics and blood gas exchange. However, this concept has recently been challenged by accumulating evidence demonstrating that de novo thrombosis may be formed in pulmonary arteries without deep venous thrombosis. On the other hand, chronic thromboembolic pulmonary hypertension (CTEPH), a subtype of pulmonary hypertension, could have different pathogenesis than traditional PTE. Therefore, this article summarized and compared the risk factors, the common and specific pathogenic mechanisms underlying PTE, in situ pulmonary artery thrombosis, and CTEPH at molecular and cellular levels, and suggested the therapeutic strategies to these diseases, aiming to facilitate understanding of pathogenesis, differential diagnosis, and precision therapeutics of the three pulmonary artery thrombotic diseases.
Collapse
Affiliation(s)
- Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Chao Geng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yahong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
17
|
Sedhom WG, Stein BL. Anticoagulation for Splanchnic Vein Thrombosis in Myeloproliferative Neoplasms: The Drug and the Duration. HEMATO 2021; 2:255-263. [DOI: 10.3390/hemato2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Myeloproliferative neoplasms are a common cause of splanchnic vein thrombosis, which causes significant morbidity and mortality. Indefinite anticoagulation is the mainstay of therapy, and vitamin K antagonists (VKAs) are routinely used since hematologists have the most experience with this drug class. The role of direct oral anticoagulants (DOACs) is promising, but still undergoing evaluation. Cytoreduction with hydroxyurea or pegylated interferon is often used when cytosis is present, but their roles are yet to be defined when the complete blood count is normal. Janus kinase (JAK) inhibition may have a complementary role in reducing splenomegaly and portal hypertension.
Collapse
Affiliation(s)
- Wafik G. Sedhom
- Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2130, Chicago, IL 60611, USA
| | - Brady Lee Stein
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Avenue, Suite 1020, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Venous Malformations and Blood Coagulation in Children. CHILDREN-BASEL 2021; 8:children8040312. [PMID: 33924092 PMCID: PMC8074292 DOI: 10.3390/children8040312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Introduction: Venous malformations (VMs) are congenital low-flow lesions with a wide spectrum of clinical manifestations. An increasing number of studies link VMs to coagulation abnormalities, especially to elevated D-dimer and decreased fibrinogen. This condition, termed localized intravascular coagulopathy (LIC), may pose a risk for hemostatic complications. However, detailed data on the laboratory variables for coagulation and fibrinolytic activity in VM patients are limited. We addressed this question by systematically analyzing the coagulation parameters in pediatric VM patients. Methods: We included 62 patients (median age 11.9 years) with detailed laboratory tests for coagulation and fibrinolytic activity at a clinically steady phase. We assessed clinical and imaging features of VMs and their correlations with coagulation and fibrinolysis variables using patient records and MRI. Results: D-dimer was elevated in 39% and FXIII decreased in 20% of the patients, as a sign of LIC. Elevated D-dimer and decreased FXIII were associated with large size, deep location, and diffuse and multifocal VMs. FVIII was elevated in 17% of the patients and was associated with small VM size, superficial and confined location, discrete morphology, and less pain. Surprisingly, antithrombin was elevated in 55% of the patients but without associations with clinical or other laboratory variables. Conclusions: LIC was common in pediatric patients with VMs. Our results provide a basis for when evaluating the risks of hemostatic complications in children with VMs. Further research is warranted to explore the mechanisms behind coagulation disturbances and their relation to clinical complications.
Collapse
|
19
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
20
|
Schofield Z, Baksamawi HA, Campos J, Alexiadis A, Nash GB, Brill A, Vigolo D. The role of valve stiffness in the insurgence of deep vein thrombosis. COMMUNICATIONS MATERIALS 2020; 1:65. [PMID: 32999999 PMCID: PMC7497694 DOI: 10.1038/s43246-020-00066-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/18/2020] [Indexed: 05/28/2023]
Abstract
Deep vein thrombosis is a life-threatening development of blood clots in deep veins. Immobility and blood flow stagnancy are typical risk factors indicating that fluid dynamics play an important role in the initiation of venous clots. However, the roles of physical parameters of the valves and flow conditions in deep vein thrombosis initiation have not been fully understood. Here, we describe a microfluidics in vitro method that enabled us to explore the role of valve elasticity using in situ fabrication and characterisation. In our experimental model the stiffness of each valve leaflet can be controlled independently, and various flow conditions were tested. The resulting complex flow patterns were detected using ghost particle velocimetry and linked to localised thrombus formation using whole blood and an aqueous suspension of polystyrene particles. In particular, valves with leaflets of similar stiffness had clot formation on the valve tips whereas valves with leaflets of different stiffness had clot formation in the valve pocket.
Collapse
Affiliation(s)
- Zoe Schofield
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT UK
- Physical Sciences for Health, University of Birmingham, Birmingham, B15 2TT UK
| | | | - Joana Campos
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Alessio Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT UK
| | - Gerard B. Nash
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT UK
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
21
|
Pfaff A, de Laforcade AM, Rozanski EA. The Use of Antithrombotics in Critical Illness. Vet Clin North Am Small Anim Pract 2020; 50:1351-1370. [PMID: 32893002 DOI: 10.1016/j.cvsm.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypercoagulable tendencies may develop in critically ill dogs and to a less known extent, cats. Although the use of antithrombotics is well-established in critically ill people, the indications and approach are far less well-known in dogs and cats. The goal of this article was to review the relevant CURATIVE guidelines, as well as other sources, and to provide recommendations for critically ill patients with directions for future investigation.
Collapse
Affiliation(s)
- Alexandra Pfaff
- Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Armelle M de Laforcade
- Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Elizabeth A Rozanski
- Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
22
|
TRPC and TRPV Channels' Role in Vascular Remodeling and Disease. Int J Mol Sci 2020; 21:ijms21176125. [PMID: 32854408 PMCID: PMC7503586 DOI: 10.3390/ijms21176125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. In this review, we provide an overview of the current knowledge on the implication of TRPC and TRPV in the physiological and pathological processes of some frequent vascular diseases.
Collapse
|
23
|
Congiusta DV, Amer KM, Thomson J, Ippolito J, Beebe KS, Benevenia J. Risk factors of venous thromboembolism in patients with benign and malignant musculoskeletal tumors: a dual database analysis. INTERNATIONAL ORTHOPAEDICS 2020; 44:2147-2153. [PMID: 32654057 DOI: 10.1007/s00264-020-04707-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Venous thromboembolism (VTE) is a potentially life-threatening condition associated with both orthopaedic surgery and tumour growth. In this study, we identify risk factors associated with VTE in patients with musculoskeletal tumours using two national datasets. METHODS The ACS-NSQIP and NIS databases were queried for patients undergoing surgery with a diagnosis of benign or malignant musculoskeletal tumours. Chi-square and binary logistic regression analyses were used to determine risk factors for VTE. RESULTS The incidence of VTE was 2% in both databases. Patients with malignant tumours, those with tumours of the pelvis, sacrum, or coccyx, obesity, arrhythmias, paralysis, metastatic disease, coagulopathy, and recent weight loss were at increased risk for VTE. In patients with benign tumours, those who were African American, those with tumours of the pelvis, sacrum, or coccyx, diabetes, anaemia, and coagulopathy were at increased risk of VTE. CONCLUSIONS Patients with malignant or benign lesion are at greater risk of VTE if they are age 30 and over, of the African American population, or with tumors of the pelvis/sacrum/coccyx, or any of the following comorbidities: pulmonary disease, paralysis, other neurological disorders, or coagulopathy.
Collapse
Affiliation(s)
- Dominick V Congiusta
- Department of Orthopaedics, Rutgers New Jersey Medical School, 140 Bergen Street, ACC D1610, Newark, NJ, 07103, USA.
| | - Kamil M Amer
- Department of Orthopaedics, Rutgers New Jersey Medical School, 140 Bergen Street, ACC D1610, Newark, NJ, 07103, USA
| | - Jennifer Thomson
- Department of Orthopaedics, Rutgers New Jersey Medical School, 140 Bergen Street, ACC D1610, Newark, NJ, 07103, USA
| | - Joseph Ippolito
- Department of Orthopaedics, Rutgers New Jersey Medical School, 140 Bergen Street, ACC D1610, Newark, NJ, 07103, USA
| | - Kathleen S Beebe
- Department of Orthopaedics, Rutgers New Jersey Medical School, 140 Bergen Street, ACC D1610, Newark, NJ, 07103, USA
| | - Joseph Benevenia
- Department of Orthopaedics, Rutgers New Jersey Medical School, 140 Bergen Street, ACC D1610, Newark, NJ, 07103, USA
| |
Collapse
|
24
|
Expression profiles of the internal jugular and saphenous veins: Focus on hemostasis genes. Thromb Res 2020; 191:113-124. [PMID: 32438216 DOI: 10.1016/j.thromres.2020.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/15/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Venous bed specificity could contribute to differential vulnerability to thrombus formation, and is potentially reflected in mRNA profiles. MATERIALS AND METHODS Microarray-based transcriptome analysis in wall and valve specimens from internal jugular (IJV) and saphenous (SV) veins collected during IJV surgical reconstruction in patients with impaired brain outflow. Multiplex antigenic assay in paired jugular and peripheral plasma samples. RESULTS Most of the top differentially expressed transcripts have been previously associated with both vascular and neurological disorders. Large expression differences of HOX genes, organ patterning regulators, pinpointed the vein positional identity. The "complement and coagulation cascade" emerged among enriched pathways. In IJV, upregulation of genes for coagulation inhibitors (TFPI, PROS1), activated protein C pathway receptors (THBD, PROCR), fibrinolysis activators (PLAT, PLAUR), and downregulation of the fibrinolysis inhibitor (SERPINE1) and of contact/amplification pathway genes (F11, F12), would be compatible with a thromboprotective profile in respect to SV. Further, in SV valve the prothrombinase complex genes (F5, F2) were up-regulated and the VWF showed the highest expression. Differential expression of several VWF regulators (ABO, ST3GAL4, SCARA5, CLEC4M) was also observed. Among other differentially expressed hemostasis-related genes, heparanase (HPSE)/heparanase inhibitor (HPSE2) were up-/down-regulated in IJV, which might support procoagulant features and disease conditions. The jugular plasma levels of several proteins, encoded by differentially expressed genes, were lower and highly correlated with peripheral levels. CONCLUSIONS The IJV and SV rely on differential expression of many hemostasis and hemostasis-related genes to balance local hemostasis, potentially related to differences in vulnerability to thrombosis.
Collapse
|
25
|
Saliba W, Mishchenko E, Cohen S, Rennert G, Preis M. Association between myelofibrosis and thromboembolism: A population-based retrospective cohort study. J Thromb Haemost 2020; 18:916-925. [PMID: 32017387 DOI: 10.1111/jth.14754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The risk of thromboembolism in myelofibrosis remains incompletely understood. OBJECTIVES To examine the association between myelofibrosis and each of venous and arterial thromboembolism. METHODS A cohort of 1 469 790 adults without a diagnosis of myelofibrosis was identified on 1 January 2007, from the electronic medical records of the largest health-care provider in Israel. Participants were followed until 31 December 2016 for the occurrence of myelofibrosis. Four randomly selected controls (without myelofibrosis) were matched to each case of myelofibrosis on age, sex, religious identification, and index date. The two groups were followed from the index date until 31 December 2017 for the occurrence of venous and arterial thromboembolism. RESULTS The study included 642 patients with myelofibrosis and 2568 matched controls. Myelofibrosis was independently associated with increased risk of venous thromboembolism but not with arterial thromboembolism. The propensity score adjusted hazard ratios (HRs) were 6.88 (95% confidence interval [CI], 2.02-23.45) for venous thromboembolism, and 0.94 (0.49-1.77) for arterial thromboembolism. Atypical sites of venous thromboembolism occurred almost exclusively in patients with myelofibrosis (four events of Budd Chiari versus none, and two mesenteric vein thrombosis events versus one) and were more likely to occur around the time of myelofibrosis diagnosis. No significant association was found between JAK2 inhibitor treatment (ruxolitinib) and the risk of venous HR 0.97 (0.30-3.12) or arterial thromboembolism 1.68 (0.78-3.62). CONCLUSIONS Myelofibrosis is associated with increased risk of venous thromboembolism but not of arterial thromboembolism. Atypical sites of venous thromboembolism are more frequent in myelofibrosis and are more likely to occur shortly after diagnosis.
Collapse
Affiliation(s)
- Walid Saliba
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elena Mishchenko
- Institute of Hematology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Shai Cohen
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Internal Medicine B, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Preis
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Hematology, Lady Davis Carmel Medical Center, Haifa, Israel
| |
Collapse
|
26
|
Jafarzadeh-Esfehani R, Mostafa Parizadeh S, Sabeti Aghabozorgi A, Yavari N, Sadr-Nabavi A, Alireza Parizadeh S, Ghandehari M, Javanbakht A, Rezaei-Kalat A, Mahdi Hassanian S, Vojdanparast M, Ferns GA, Khazaei M, Avan A. Circulating and tissue microRNAs as a potential diagnostic biomarker in patients with thrombotic events. J Cell Physiol 2020; 235:6393-6403. [PMID: 32198752 DOI: 10.1002/jcp.29639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Venous and arterial thrombosis are conditions that have a considerable burden if left untreated. The hypoxia-induced by the occluded vessel can disrupt the circulation of any organ, the cornerstone of treating thrombosis is rapid diagnosis and appropriate treatment. Diagnosis of thrombosis may be made by using laboratory tests or imaging techniques in individuals who have clinical manifestations of a thrombotic event. The use of serum micro ribonucleic acids (RNAs) has recently been applied to the diagnosis of thrombosis. These small RNA molecules are emerging as new diagnostic markers but have had very limited applications in vascular disease. Most of the articles provided various microRNAs with different levels of accuracy. However, there remains a lack of an appropriate panel of the most specific microRNA in the literature. The purpose of the present review was to summarize the existing data on the use of microRNAs as a diagnostic biomarker for venous thrombosis.
Collapse
Affiliation(s)
- Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mostafa Parizadeh
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negar Yavari
- Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Parizadeh
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Javanbakht
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Vojdanparast
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Khazaei
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Physiology, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Management of coagulation disorders in severe inflammation. Hemasphere 2019; 3:HemaSphere-2019-0050. [PMID: 35309793 PMCID: PMC8925685 DOI: 10.1097/hs9.0000000000000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023] Open
|
28
|
Swann JW, Garden OA, Fellman CL, Glanemann B, Goggs R, LeVine DN, Mackin AJ, Whitley NT. ACVIM consensus statement on the treatment of immune-mediated hemolytic anemia in dogs. J Vet Intern Med 2019; 33:1141-1172. [PMID: 30847984 PMCID: PMC6524099 DOI: 10.1111/jvim.15463] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 01/07/2023] Open
Abstract
Immune‐mediated hemolytic anemia (IMHA) causes severe anemia in dogs and is associated with considerable morbidity and mortality. Treatment with various immunosuppressive and antithrombotic drugs has been described anecdotally and in previous studies, but little consensus exists among veterinarians as to the optimal regimen to employ and maintain after diagnosis of the disease. To address this inconsistency and provide evidence‐based guidelines for treatment of IMHA in dogs, we identified and extracted data from studies published in the veterinary literature. We developed a novel tool for evaluation of evidence quality, using it to assess study design, diagnostic criteria, explanation of treatment regimens, and validity of statistical methods. In combination with our clinical experience and comparable guidelines for humans afflicted with autoimmune hemolytic anemia, we used the conclusions of this process to make a set of clinical recommendations regarding treatment of IMHA in dogs, which we refined subsequently by conducting several iterations of Delphi review. Additionally, we considered emerging treatments for IMHA in dogs and highlighted areas deserving of future research. Comments were solicited from several professional bodies to maximize clinical applicability before the recommendations were submitted for publication. The resulting document is intended to provide clinical guidelines for management of IMHA in dogs. These guidelines should be implemented pragmatically, with consideration of animal, owner, and veterinary factors that may vary among cases.
Collapse
Affiliation(s)
- James W Swann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claire L Fellman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Barbara Glanemann
- Royal Veterinary College, University of London, London, United Kingdom
| | - Robert Goggs
- College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Dana N LeVine
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Andrew J Mackin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Nathaniel T Whitley
- Davies Veterinary Specialists, Manor Farm Business Park, Huntingdon, United Kingdom
| |
Collapse
|
29
|
Goggs R, Bacek L, Bianco D, Koenigshof A, Li RHL. Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE): Domain 2-Defining rational therapeutic usage. J Vet Emerg Crit Care (San Antonio) 2019; 29:49-59. [PMID: 30654415 DOI: 10.1111/vec.12791] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To systematically review available evidence to determine when small animals at risk of thrombosis should be treated with antiplatelet agents and anticoagulants, which antiplatelet and anticoagulant agents are most effective, and when multimodal therapy is indicated. DESIGN Standardized, systematic evaluation of the literature, categorization of relevant articles according to level of evidence (LOE) and quality (Good, Fair, or Poor), and development of consensus on conclusions via a Delphi-style survey for application of the concepts to clinical practice. Draft recommendations were presented at 2 international veterinary conferences and made available for community assessment, review, and comment prior to final revisions and publication. SETTINGS Academic and referral veterinary medical centers. RESULTS Databases searched included Medline via PubMed and CAB abstracts. Twelve Population Intervention Comparison Outcome questions were devised and generated corresponding worksheets investigating indications for use of antithrombotic drugs in small animals. Seventy-eight studies were reviewed in detail. Most studies assessed were experimentally controlled laboratory studies in companion animals (56 LOE 3) with smaller numbers of LOE 2 (1), LOE 4 (5), LOE 5 (6), and LOE 6 (4) studies assessed. Only 5 randomized controlled clinical trials were identified (LOE 1, Good-Fair). The 12 worksheets generated 21 guidelines with 17 guideline statements that were refined during 3 rounds of Delphi surveys. A high degree of consensus was reached across all guideline recommendations during the Delphi process. CONCLUSIONS Overall, systematic evidence evaluations generated 2 strong recommendations, 19 weak recommendations (formulated as suggestions), 9 situations where the evidence was insufficient to make strong recommendations, and 8 situations where no relevant evidence was retrieved to aid guideline generation. Numerous significant knowledge gaps were highlighted by the evidence reviews undertaken, indicating the need for substantial additional research in this field.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Lenore Bacek
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | | | - Amy Koenigshof
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI
| | - Ronald H L Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA
| |
Collapse
|
30
|
Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers (Basel) 2018; 10:cancers10100380. [PMID: 30314362 PMCID: PMC6209883 DOI: 10.3390/cancers10100380] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated thrombosis is a major cause of mortality in cancer patients, the most common type being venous thromboembolism (VTE). Several risk factors for developing VTE also coexist with cancer patients, such as chemotherapy and immobilisation, contributing to the increased risk cancer patients have of developing VTE compared with non-cancer patients. Cancer cells are capable of activating the coagulation cascade and other prothrombotic properties of host cells, and many anticancer treatments themselves are being described as additional mechanisms for promoting VTE. This review will give an overview of the main thrombotic complications in cancer patients and outline the risk factors for cancer patients developing cancer-associated thrombosis, focusing on VTE as it is the most common complication observed in cancer patients. The multiple mechanisms involved in cancer-associated thrombosis, including the role of anticancer drugs, and a brief outline of the current treatment for cancer-associated thrombosis will also be discussed.
Collapse
|
31
|
Abstract
Hemostasis is a cell-based process that is regulated in a tissue-specific manner by the differential expression of procoagulant and anticoagulant factors on endothelial cells from different sites throughout the vasculature. The central nervous system, in particular, exhibits unique mechanisms of hemostatic regulation that favor increased activity of the tissue factor pathway. This results in an unusually high degree of protection against hemorrhage, at the potential expense of increased thrombotic risk. Unfortunately, standard laboratory assays, including the PT and aPTT, do not accurately reflect the complexity of hemostasis in vivo; therefore, they cannot predict the risk of bleeding or thrombosis.
Collapse
|
32
|
Soluble endothelial cell molecules and circulating endothelial cells in patients with venous thromboembolism. Blood Coagul Fibrinolysis 2018; 28:589-595. [PMID: 28661913 DOI: 10.1097/mbc.0000000000000650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: To evaluate the plasma levels of soluble endothelial cell molecules in patients with venous thromboembolism (VTE) out of the acute phase as compared with healthy individuals. We also investigated the possible associations of the soluble endothelial cell molecules among them, as well as with other clinical and laboratory data, including the numbers of circulating endothelial cells (CEC), circulating endothelial progenitor cells (CEP), and CEC expressing activation-related [cluster of differentiation (CD)54 and CD62E] and procoagulant (CD142) markers. In total, 15 patients with VTE and 20 normal individuals were studied. The CEC and CEP were quantified and characterized by flow cytometry. The soluble molecules studied included P-selectin, E-selectin, intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1 and tissue factor (ELISA), and von Willebrand factor antigen (immunoturbidimetry). VTE patients had significantly higher levels of vascular cell adhesion molecule 1 and von Willebrand factor antigen and lower levels of soluble E-selectin than controls. They also showed significantly higher numbers of CEC, as of activated/procoagulant CEC and lower numbers of CEP, compared with controls. We did not find any correlation between the levels of soluble molecules and the numbers of endothelial cell in circulation, but there was with several clinical and laboratory data in VTE patients. Our results would suggest that in VTE patients, the endothelium remains activated and in some hypercoagulable state. The levels of soluble endothelial cell molecules did not seem to be directly related to the numbers of CEC and CEP neither reflected the number of activated CEC, which may be because of the different function that surface and soluble molecules may have.
Collapse
|
33
|
Jayakumar T, Hsu CY, Khamrang T, Hsia CH, Hsia CW, Manubolu M, Sheu JR. Possible Molecular Targets of Novel Ruthenium Complexes in Antiplatelet Therapy. Int J Mol Sci 2018; 19:ijms19061818. [PMID: 29925802 PMCID: PMC6032250 DOI: 10.3390/ijms19061818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
In oncotherapy, ruthenium (Ru) complexes are reflected as potential alternatives for platinum compounds and have been proved as encouraging anticancer drugs with high efficacy and low side effects. Cardiovascular diseases (CVDs) are mutually considered as the number one killer globally, and thrombosis is liable for the majority of CVD-related deaths. Platelets, an anuclear and small circulating blood cell, play key roles in hemostasis by inhibiting unnecessary blood loss of vascular damage by making blood clot. Platelet activation also plays a role in cancer metastasis and progression. Nevertheless, abnormal activation of platelets results in thrombosis under pathological settings such as the rupture of atherosclerotic plaques. Thrombosis diminishes the blood supply to the heart and brain resulting in heart attacks and strokes, respectively. While currently used anti-platelet drugs such as aspirin and clopidogrel demonstrate efficacy in many patients, they exert undesirable side effects. Therefore, the development of effective therapeutic strategies for the prevention and treatment of thrombotic diseases is a demanding priority. Recently, precious metal drugs have conquered the subject of metal-based drugs, and several investigators have motivated their attention on the synthesis of various ruthenium (Ru) complexes due to their prospective therapeutic values. Similarly, our recent studies established that novel ruthenium-based compounds suppressed platelet aggregation via inhibiting several signaling cascades. Our study also described the structure antiplatelet-activity relationship (SAR) of three newly synthesized ruthenium-based compounds. This review summarizes the antiplatelet activity of newly synthesized ruthenium-based compounds with their potential molecular mechanisms.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Themmila Khamrang
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
34
|
Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:29-34. [DOI: 10.1016/j.cobme.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Spronk HMH, Padro T, Siland JE, Prochaska JH, Winters J, van der Wal AC, Posthuma JJ, Lowe G, d'Alessandro E, Wenzel P, Coenen DM, Reitsma PH, Ruf W, van Gorp RH, Koenen RR, Vajen T, Alshaikh NA, Wolberg AS, Macrae FL, Asquith N, Heemskerk J, Heinzmann A, Moorlag M, Mackman N, van der Meijden P, Meijers JCM, Heestermans M, Renné T, Dólleman S, Chayouâ W, Ariëns RAS, Baaten CC, Nagy M, Kuliopulos A, Posma JJ, Harrison P, Vries MJ, Crijns HJGM, Dudink EAMP, Buller HR, Henskens YMC, Själander A, Zwaveling S, Erküner O, Eikelboom JW, Gulpen A, Peeters FECM, Douxfils J, Olie RH, Baglin T, Leader A, Schotten U, Scaf B, van Beusekom HMM, Mosnier LO, van der Vorm L, Declerck P, Visser M, Dippel DWJ, Strijbis VJ, Pertiwi K, Ten Cate-Hoek AJ, Ten Cate H. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118:229-250. [PMID: 29378352 DOI: 10.1160/th17-07-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
Collapse
Affiliation(s)
- H M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Padro
- Cardiovascular Research Center (ICCC), Hospital Sant Pau, Barcelona, Spain
| | - J E Siland
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - J H Prochaska
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A C van der Wal
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - J J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - E d'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Wenzel
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P H Reitsma
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - W Ruf
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - R H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - T Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N Asquith
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - J Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Moorlag
- Synapse, Maastricht, The Netherlands
| | - N Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States
| | - P van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J C M Meijers
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
| | - M Heestermans
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - T Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Dólleman
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Chayouâ
- Synapse, Maastricht, The Netherlands
| | - R A S Ariëns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - C C Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Kuliopulos
- Tufts University School of Graduate Biomedical Sciences, Biochemistry/Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - J J Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - M J Vries
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E A M P Dudink
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H R Buller
- Department of Vascular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Y M C Henskens
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - S Zwaveling
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse, Maastricht, The Netherlands
| | - O Erküner
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - A Gulpen
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F E C M Peeters
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Douxfils
- Department of Pharmacy, Thrombosis and Hemostasis Center, Faculty of Medicine, Namur University, Namur, Belgium
| | - R H Olie
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Baglin
- Department of Haematology, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - A Leader
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Tel Aviv, Israel
| | - U Schotten
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - B Scaf
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H M M van Beusekom
- Department of Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | | | - P Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | - D W J Dippel
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | - K Pertiwi
- Department of Cardiovascular Pathology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
36
|
Monie DD, DeLoughery EP. Pathogenesis of thrombosis: cellular and pharmacogenetic contributions. Cardiovasc Diagn Ther 2017; 7:S291-S298. [PMID: 29399533 DOI: 10.21037/cdt.2017.09.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our understanding of thrombosis formation has evolved significantly ever since physician Rudolf Virchow proposed his "triad" theory in 1856. Modern science has elucidated the mechanisms of stasis, hypercoagulability, and endothelial dysfunction. Today, we have a firm understanding of the key molecular factors involved in the coagulation cascade and fibrinolytic system, as well as the underlying genetic influences. This knowledge of cellular and genetic contributors has been translated into diverse pharmaceutical interventions. Here, we examine the molecular and cellular mechanisms of thrombosis and its associated pathologies. We also review the current state of pharmacologic interventions, including pro- and anti-thrombotics, direct oral anticoagulants, and anti-platelet therapies. The pharmacogenetic factors that guide clinical decision making and prognosis are described in detail. Finally, we explore new approaches to thrombosis drug discovery, repurposing, and diagnostics. We argue that network biology tools will enable a systems pharmacology revolution in the next generation of interventions, facilitating precision medicine applications and ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Dileep D Monie
- School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma P DeLoughery
- School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
37
|
Elizondo P, Fogelson AL. A Mathematical Model of Venous Thrombosis Initiation. Biophys J 2017; 111:2722-2734. [PMID: 28002748 DOI: 10.1016/j.bpj.2016.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/23/2016] [Accepted: 10/17/2016] [Indexed: 01/28/2023] Open
Abstract
We present a mathematical model for the initiation of venous thrombosis (VT) due to slow flow and the consequent activation of the endothelial cells (ECs) lining the vein, in the absence of overt mechanical disruption of the EC layer. It includes all reactions of the tissue factor (TF) pathway of coagulation through fibrin formation, incorporates the accumulation of blood cells on activated ECs, accounts for the flow-mediated delivery and removal of coagulation proteins and blood cells from the locus of the reactions, and accounts for the activity of major inhibitors including heparan-sulfate-accelerated antithrombin and activated protein C. The model reveals that the occurrence of robust thrombin generation (a thrombin burst) depends in a threshold manner on the density of TF on the activated ECs and on the concentration of thrombomodulin and the degree of heparan-sulfate accelerated antithrombin activity on those cells. Small changes in any of these in appropriate narrow ranges switches the response between "no burst" and "burst." The model predicts synergies among the inhibitors, both in terms of each inhibitor's multiple targets, and in terms of interactions between the different inhibitors. The model strongly suggests that the rate and extent of accumulation of activated monocytes, platelets, and MPs that can support the coagulation reactions has a powerful influence on whether a thrombin burst occurs and the thrombin response when it does. The slow rate of accumulation of cells supporting coagulation is one reason that the progress of VT is so much slower than that of arterial thrombosis initiated by subendothelial exposure.
Collapse
Affiliation(s)
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
38
|
How J, Zhou A, Oh ST. Splanchnic vein thrombosis in myeloproliferative neoplasms: pathophysiology and molecular mechanisms of disease. Ther Adv Hematol 2017; 8:107-118. [PMID: 28246554 PMCID: PMC5305004 DOI: 10.1177/2040620716680333] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are the most common underlying prothrombotic disorder found in patients with splanchnic vein thrombosis (SVT). Clinical risk factors for MPN-associated SVTs include younger age, female sex, concomitant hypercoagulable disorders, and the JAK2 V617F mutation. These risk factors are distinct from those associated with arterial or deep venous thrombosis (DVT) in MPN patients, suggesting disparate disease mechanisms. The pathophysiology of SVT is thought to derive from local interactions between activated blood cells and the unique splanchnic endothelial environment. Other mutations commonly found in MPNs, including CALR and MPL, are rare in MPN-associated SVT. The purpose of this article is to review the clinical and molecular risk factors for MPN-associated SVT, with particular focus on the possible mechanisms of SVT formation in MPN patients.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Amy Zhou
- Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8125, St Louis, MO 63110, USA
| |
Collapse
|
39
|
Pathogenesis of Thromboembolism and Endovascular Management. THROMBOSIS 2017; 2017:3039713. [PMID: 28154761 PMCID: PMC5244017 DOI: 10.1155/2017/3039713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/13/2016] [Accepted: 11/27/2016] [Indexed: 02/03/2023]
Abstract
Venous thromboembolism (VTE), a disease that includes deep venous thrombosis (DVT) and pulmonary embolism (PE), is associated with high mortality, morbidity, and costs. It can result in long-term complications that include postthrombotic syndrome (PTS) adding to its morbidity. VTE affects 1/1000 patients, costs $13.5 billion annually to treat, and claims 100,000 lives annually in the US. The current standard of care for VTE is anticoagulation, though thrombolysis may be performed in patients with PE and threatened limb. This review discusses pathogenesis and medical treatment of VTE and then focuses on endovascular treatment modalities. Mechanical- and catheter-directed thrombolysis (CDT) is discussed, as well as patient selection criteria, and complications. The first prospective study (CaVenT) comparing CDT with anticoagulation alone in acute DVT, despite study shortcomings, corroborates the existing literature indicating improved outcomes with CDT. The potential of the ongoing prospective, multicenter, randomized ATTRACT trial is also highlighted.
Collapse
|
40
|
Hypercoagulation and complement: Connected players in tumor development and metastases. Semin Immunol 2016; 28:578-586. [PMID: 27876232 DOI: 10.1016/j.smim.2016.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Hypercoagulation is a common feature of several tumors to the extent that individuals with coagulation defects often present with occult visceral cancers. Recent evidence has shown that hypercoagulation is not just a mere secondary effect due to the presence of the tumor, rather it actively contributes to tumor development and dissemination. Among the numerous mechanisms that can contribute to cancer-associated hypercoagulation, the ones involving immune-mediated processes are gaining increasing attention. In particular, complement cascade and hypercoagulation are one inducing the other in a vicious circle that involves neutrophil extracellular traps (NETs) formation. Together, in this feedback loop, they can promote the protumorigenic phenotype of immune cells and the protection of tumor cells from immune attack, ultimately favouring tumor development, progression and metastases formation. In this review, we summarize the role of these processes in cancer development and highlight new possible intervention strategies based on anticoagulants that can arrest this vicious circle.
Collapse
|
41
|
Zilberman-Rudenko J, Sylman JL, Lakshmanan HHS, McCarty OJT, Maddala J. Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cell Mol Bioeng 2016; 10:16-29. [PMID: 28580033 DOI: 10.1007/s12195-016-0470-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The reaction dynamics of a complex mixture of cells and proteins, such as blood, in branched circulatory networks within the human microvasculature or extravascular therapeutic devices such as extracorporeal oxygenation machine (ECMO) remains ill-defined. In this report we utilize a multi-bypass microfluidics ladder network design with dimensions mimicking venules to study patterns of blood platelet aggregation and fibrin formation under complex shear. Complex blood fluid dynamics within multi-bypass networks under flow were modeled using COMSOL. Red blood cells and platelets were assumed to be non-interacting spherical particles transported by the bulk fluid flow, and convection of the activated coagulation factor II, thrombin, was assumed to be governed by mass transfer. This model served as the basis for predicting formation of local shear rate gradients, stagnation points and recirculation zones as dictated by the bypass geometry. Based on the insights from these models, we were able to predict the patterns of blood clot formation at specific locations in the device. Our experimental data was then used to adjust the model to account for the dynamical presence of thrombus formation in the biorheology of blood flow. The model predictions were then compared to results from experiments using recalcified whole human blood. Microfluidic devices were coated with the extracellular matrix protein, fibrillar collagen, and the initiator of the extrinsic pathway of coagulation, tissue factor. Blood was perfused through the devices at a flow rate of 2 µL/min, translating to physiologically relevant initial shear rates of 300 and 700 s-1 for main channels and bypasses, respectively. Using fluorescent and light microscopy, we observed distinct flow and thrombus formation patterns near channel intersections at bypass points, within recirculation zones and at stagnation points. Findings from this proof-of-principle ladder network model suggest a specific correlation between microvascular geometry and thrombus formation dynamics under shear. This model holds potential for use as an integrative approach to identify regions susceptible to intravascular thrombus formation within the microvasculature as well as extravascular devices such as ECMO.
Collapse
Affiliation(s)
| | - Joanna L Sylman
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Hari H S Lakshmanan
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV
| | - Owen J T McCarty
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Jeevan Maddala
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV
| |
Collapse
|
42
|
Li D, Ye L, He Y, Cao X, Liu J, Zhong W, Cao L, Zeng R, Zeng Z, Wan Z, Cao Y. False Lumen Status in Patients With Acute Aortic Dissection: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2016; 5:JAHA.115.003172. [PMID: 27166218 PMCID: PMC4889188 DOI: 10.1161/jaha.115.003172] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The long‐term association between the status of the false lumen and poor patient outcomes in acute aortic dissection (AAD) remains unclear. This systematic review and meta‐analysis investigated whether the status of the false lumen was a predictor of poor long‐term survival in AAD. Methods and Results Eleven cohort studies (2924 participants) exploring the association between the false lumen status and long‐term outcomes (>1 year) in AAD were included. All studies reported multivariate‐adjusted hazard ratios (HRs) with 95% CIs for long‐term outcomes, according to false lumen status. Pooled HRs for mortality and aortic events were computed and weighted using generic inverse‐variance and random‐effect modeling. Residual patent false lumen was an independent predictor of long‐term mortality in AAD type A (HR, 1.71; 95% CI, 1.16–2.52; P=0.007) and type B (HR, 2.79; 95% CI, 1.80–4.32; P<0.001). AAD patients with residual patent false lumen exhibited an increased risk of aortic events (HR, 5.43; 95% CI, 2.95–9.99; P<0.001). Partial false lumen thrombosis was independently associated with long‐term mortality in type B AAD (HR, 2.24; 95% CI, 1.37–3.65; P=0.001). This association was not observed in AAD type A patients (HR, 1.75; 95% CI, 0.88–3.45; P=0.211). Conclusions The false lumen status influences late outcomes in AAD. Residual patent false lumen is independently associated with poor long‐term survival in AAD. However, only type B AAD patients with partial false lumen thrombosis had an increased late mortality risk.
Collapse
Affiliation(s)
- Dongze Li
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Ye
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yarong He
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoping Cao
- Department of Emergency Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jining Liu
- Department of Emergency Medicine, Mianyang Central Hospital, Mianyang, China
| | - Wu Zhong
- Department of Emergency Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, China
| | - Linghong Cao
- Department of Emergency Medicine, Zigong No. 4 People's Hospital, Zigong, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi Zeng
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi Wan
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Abstract
The endothelium is a widely distributed organ system that plays an important role in health and disease. The endothelium is remarkably heterogeneous in structure and function. One vital function of the endothelium is to maintain blood in its fluid state, and to provide controlled haemostasis at sites of vascular injury. In keeping with the theme of endothelial cell heterogeneity, endothelial cells from different sites of the vascular employ different strategies to mediate local haemostatic balance. These differences are sufficient to explain why systemic imbalances of haemostatic components invariably lead to local thrombotic phenotypes. An important goal for the future is to identify diagnostic markers that reflect phenotypic changes at the level of individual vascular beds, and to develop therapies that target one or another site of the vasculature.
Collapse
Affiliation(s)
- W C Aird
- William C. Aird, M.D., Beth Israel Deaconess Medical Center, Molecular and Vascular Medicine, RN-227, 330 Brookline Ave., Boston MA 02215, USA, E-mail:
| |
Collapse
|
44
|
Chen C, Yang FQ, Zhang Q, Wang FQ, Hu YJ, Xia ZN. Natural Products for Antithrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:876426. [PMID: 26075003 PMCID: PMC4449941 DOI: 10.1155/2015/876426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively.
Collapse
Affiliation(s)
- Cen Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Feng-Qin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
45
|
Loeffen R, Winckers K, Ford I, Jukema JW, Robertson M, Stott DJ, Spronk HM, ten Cate H, Lowe GD. Associations Between Thrombin Generation and the Risk of Cardiovascular Disease in Elderly Patients: Results From the PROSPER Study. J Gerontol A Biol Sci Med Sci 2014; 70:982-8. [PMID: 25540034 DOI: 10.1093/gerona/glu228] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/12/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hypercoagulability may be an important contributor to the pathophysiology of atherosclerosis and atherothrombosis. As thrombin fulfills a central role in coagulation and links to several cellular mechanisms involved in arterial disease, we hypothesized that thrombin generation is associated with cardiovascular events in elderly patients. METHODS We studied the relationship between plasma thrombin generation and incident coronary heart disease (CHD) and stroke in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). From this multicenter prospective cohort, 4,932 samples of subjects (70-82 years) with pre-existing vascular disease or risk factors were available for thrombin generation measurements. RESULTS Within the 3.2 years of follow-up incident stroke and CHD was observed in 227 and 545 subjects, respectively. Baseline thrombin generation was significantly decreased in subjects with incident stroke compared with subjects without: normalized peak height 71.1±40.8% versus 82.3±44.9%, p = .0002, and normalized endogenous thrombin potential 79.1±23.3% versus 87.0±24.8%, p < .0001 (mean and SDs). Thrombin generation was independently and inversely associated with stroke risk: hazard ratio 0.71 (95%CI: 0.60-0.85), 0.68 (95%CI: 0.58-0.79), for normalized peak height and normalized endogenous thrombin potential, respectively (all p < .001). In subjects with incident CHD, thrombin generation was comparable to subjects without a coronary event. Only an increased normalized peak height was significantly associated with incident CHD (hazard ratio 1.17 [95% CI: 1.06-1.28], p = .002). CONCLUSIONS We demonstrate that a delayed and decreased thrombin generation is a strong and independent predictor for stroke in elderly people at increased risk of vascular disease. However, no convincing consistent association could be demonstrated between thrombin generation and incident CHD.
Collapse
Affiliation(s)
- Rinske Loeffen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Kristien Winckers
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ian Ford
- The Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michele Robertson
- The Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - David J Stott
- Faculty of Medicine, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Henri M Spronk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hugo ten Cate
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gordon D Lowe
- Faculty of Medicine, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | | |
Collapse
|
46
|
Trombosis microvascular. ANGIOLOGIA 2014. [DOI: 10.1016/j.angio.2014.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Costanzo L, Di Pino L, Ragusa M, Buccheri S, Sole A, Virgilio V, Tamburino C, Bellanca S. Prevalence of asymptomatic lower limb venous thrombosis in infertile women with thrombophilic disorders. Phlebology 2014; 30:449-54. [PMID: 24906906 DOI: 10.1177/0268355514539317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We sought to assess the prevalence of asymptomatic venous thrombosis in infertile women with thrombophilic disorders (TDs). METHODS AND RESULTS A total of 73 infertile women with TDs underwent duplex ultrasound scan to evaluate superficial and deep venous circulation of lower limbs. A control group of 35 infertile women without TDs was included. A single TD was found in 13 (17.8%) subjects, and 40 (54.8%) women presented a combined defect (more than three alterations). No residual mural thrombosis (RT) was noted in any deep veins. We found RT in 48 (65.8%) patients of TD group, while no RT was found in the control group (p < 0.0001). None of the clinical and prothrombotic factors were predictors of RT (all p > 0.20), and frequency of TD did not correlate with multi-vessel RT (p = 0.252). CONCLUSIONS No signs of deep vein thrombosis but high prevalence of superficial RT is present in infertile women with TDs. Further studies are needed to assess the prognostic value of our findings.
Collapse
Affiliation(s)
- Luca Costanzo
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | - Luigi Di Pino
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | - Mario Ragusa
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | - Sergio Buccheri
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | - Andrea Sole
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | | | - Corrado Tamburino
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Catania, Italy
| | - Salvatore Bellanca
- Conjugal Sterility Center, Policlinic Hospital, University of Catania, Catania, Italy
| |
Collapse
|
48
|
Vaezzadeh N, Ni R, Kim PY, Weitz JI, Gross PL. Comparison of the effect of coagulation and platelet function impairments on various mouse bleeding models. Thromb Haemost 2014; 112:412-8. [PMID: 24696126 DOI: 10.1160/th13-11-0919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/08/2014] [Indexed: 01/21/2023]
Abstract
Haemostatic impairments are studied in vivo using one of several murine bleeding models. However it is not known whether these models are equally appropriate for assessing coagulation or platelet function defects. It was our study objective to assess the performance of arterial, venous and combined arterial and venous murine bleeding models towards impaired coagulation or platelet function. Unfractionated heparin (UFH) or αIIbβ3inhibitory antibody (Leo.H4) were administered to mice, and their effects on bleeding in saphenous vein, artery, and tail tip transection models were quantified and correlated with their effects on plasma clotting and ADP-induced platelet aggregation, respectively. All models exhibited similar sensitivity with UFH (EC50 dose = 0.19, 0.13 and 0.07 U/g, respectively) (95% CI = 0.14 - 0.27, 0.08 - 0.20, and 0.03 - 0.16 U/g, respectively). Maximal inhibition of ex vivo plasma clotting could be achieved with UFH doses as low as 0.03 U/g. In contrast, the saphenous vein bleeding model was less sensitive to αIIbβ3 inhibition (EC50 = 6.9 μg/ml) than tail transection or saphenous artery bleeding models (EC50 = 0.12 and 0.37 μg/ml, respectively) (95% CI = 2.4 - 20, 0.05 - 0.33, and 0.06 - 2.2 μg/ml, respectively). The EC50 of Leo.H4 for ADP-induced platelet aggregation in vitro (8.0 μg/ml) was at least 20-fold higher than that of the tail and arterial, but not the venous bleeding model. In conclusion, venous, arterial and tail bleeding models are similarly affected by impaired coagulation, while platelet function defects have a greater influence in models incorporating arterial injury.
Collapse
Affiliation(s)
| | | | | | | | - P L Gross
- Dr. Peter L. Gross, Thrombosis and Atherosclerosis Research Institute, 237 Barton St East, Hamilton, Ontario, L8L 2X2 Canada, E-mail:
| |
Collapse
|
49
|
Bodnár T, Fasano A, Sequeira A. Mathematical Models for Blood Coagulation. FLUID-STRUCTURE INTERACTION AND BIOMEDICAL APPLICATIONS 2014. [DOI: 10.1007/978-3-0348-0822-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Affiliation(s)
- Mark J Fisher
- From the Departments of Neurology, Anatomy & Neurobiology, and Pathology & Laboratory Medicine, UC Irvine School of Medicine, Irvine, CA
| |
Collapse
|