1
|
Le HH, Shorey-Kendrick LE, Hinds MT, McCarty OJT, Lo JO, Anderson DEJ. Effects of in utero exposure to Δ-9-tetrahydrocannabinol on cardiac extracellular matrix expression and vascular transcriptome in rhesus macaques. Am J Physiol Heart Circ Physiol 2024; 327:H701-H714. [PMID: 39028280 PMCID: PMC11442028 DOI: 10.1152/ajpheart.00181.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Before conception, animals were acclimated to THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart weight-to-body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown but suggest that prenatal THC exposure may affect cardiovascular development in offspring.NEW & NOTEWORTHY Prenatal cannabis use is increasing and despite the public health relevance, there is limited safety data regarding its impact on offspring cardiovascular health outcomes. We used a translational, nonhuman primate model of daily edible Δ-9-tetrahydrocannabinol (THC) consumption during pregnancy to assess its effects on the fetal cardiovascular system. THC-exposed fetal vascular tissues displayed upregulation of genes involved in cellular metabolism and inflammation, suggesting that prenatal THC exposure may impact fetal vascular tissues.
Collapse
Affiliation(s)
- Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
- Center for Developmental Health, Oregon Health & Science University, Portland, Oregon, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, United States
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
2
|
Ning DS, Zhou ZQ, Zhou SH, Chen JM. Identification of macrophage differentiation related genes and subtypes linking atherosclerosis plaque processing and metabolic syndrome via integrated bulk and single-cell sequence analysis. Heliyon 2024; 10:e34295. [PMID: 39130409 PMCID: PMC11315131 DOI: 10.1016/j.heliyon.2024.e34295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Metabolic syndrome(MS) is a separate risk factor for the advancement of atherosclerosis(AS) plaque but mechanism behind this remains unclear. There may be a significant role for the immune system in this process. This study aims to identify potential diagnostic genes in MS patients at a higher risk of developing and progressing to AS. Datasets were retrevied from gene expression omnibus(GEO) database and differentially expressed genes were identified. Hub genes, immune cell dysregulation and AS subtypes were identified using a conbination of muliple bioinformatic analysis, machine learning and consensus clustering. Diagnostic value of hub genes was estimated using a nomogram and ROC analysis. Finally, enrichment analysis, competing endogenous RNA(ceRNA) network, single-cell RNA(scRNA) sequencing analysis and drug-protein interaction prediction was constructed to identify the functional roles, potential regulators and distribution for hub genes. Four hub genes and two macrophage-related subtypes were identified. Their strong diagnostic value was validated and functional process were identified. ScRNA analysis identified the macrophage differentiation regulation function of F13A1. CeRNA network and drug-protein binding modes revealed the potential therapeutic method. Four immune-correlated hub genes(F13A1, MMRN1, SLCO2A1 and ZNF521) were identified with their diagnostic value being assesed, which F13A1 was found strong correlated with macrophage differentiation and could be potential diagnostic and therapeutic marker for AS progression in MS patients.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zi-Qing Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shu-Heng Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Ji-Mei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| |
Collapse
|
3
|
Roh YR, Yim HS, Park K, Lee JH. Molecular characterization of positively selected genes contributing aquatic adaptation in marine mammals. Genes Genomics 2024; 46:775-783. [PMID: 38733518 DOI: 10.1007/s13258-023-01487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/20/2023] [Indexed: 05/13/2024]
Abstract
BACKGROUND Marine mammals, which have evolved independently into three distinct lineages, share common physiological features that contribute to their adaptation to the marine environment. OBJECTIVE To identify positively selected genes (PSGs) for adaptation to the marine environment using available genomic data from three taxonomic orders: cetaceans, pinnipeds, and sirenians. METHODS Based on the genomes within each group of Artiodactyla, Carnivora and Afrotheria, we performed selection analysis using the branch-site model in CODEML. RESULTS Based on the branch-site model, 460, 614, and 359 PSGs were predicted for the cetaceans, pinnipeds, and sirenians, respectively. Functional enrichment analysis indicated that genes associated with hemostasis were positively selected across all lineages of marine mammals. We observed positive selection signals for the hemostasis and coagulation-related genes plasminogen activator, urokinase (PLAU), multimerin 1 (MMRN1), gamma-glutamyl carboxylase (GGCX), and platelet endothelial aggregation receptor 1 (PEAR1). Additionally, we found out that the sodium voltage-gated channel alpha subunit 9 (SCN9A), serine/arginine repetitive matrix 4 (SRRM4), and Ki-ras-induced actin-interacting protein (KRAP) are under positive selection pressure and are associated with cognition, neurite outgrowth, and IP3-mediated Ca2 + release, respectively. CONCLUSION This study will contribute to our understanding of the adaptive evolution of marine mammals by providing information on a group of candidate genes that are predicted to influence adaptation to aquatic environments, as well as their functional characteristics.
Collapse
Affiliation(s)
- Yoo-Rim Roh
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea
- Department of Marine Biotechnology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea
- Department of Marine Biotechnology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Kiejung Park
- Cheonan Industry-Academic Collaboration Foundation, Sangmyung University, 31 Sangmyeongdae-gil, Dongnam-gu, Cheonan, 31066, Republic of Korea.
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea.
- Department of Marine Biotechnology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Zhou Q, Liu Y, Zhou J, Zhang W. Prognostic value and immunological role of MMRN1: a rising star in cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:148-169. [PMID: 38715238 DOI: 10.1080/15257770.2024.2335680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Multimerin 1 (MMRN1) is a factor V binding protein, which can support platelet adhesion and thrombus formation. In recent years, the role of MMRN1 in cancer has begun to attract attention. But systematic studies in this area are lacking. Therefore, we used bioinformatics methods to analyze MMRN1 in tumors to reveal the possible role of MMRN1. METHODS Using the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database, we obtained relevant data for analyzing MMRN1. Using Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas (HPA), TCGA, GeneMANIA, and cBioPortal, we explored the potential role of MMRN1 in different types of tumors. Tumor Immune System Interactions and Drug Bank (TISIDB) and Sangerbox were used to analyze the correlation between MMRN1 and tumor immunity. Gene set cancer analysis (GSCA) and UALCAN were used to analyze the methylation of MMRN1. GSCA was also used to analyze the drug sensitivity of MMRN1. RESULTS MMRN1 is down-regulated in most cancer types and is closely related to the prognosis of cancer patients. Interestingly, in most tumors, MMRN1 is positively correlated with immune -related genes. In addition, we observed different levels of methylation and mutations in different types of tumors. Drug sensitivity analysis found that MMRN1 was negatively correlated with several drugs, including GW-2580 and TL-1-85, suggesting that it can be used to develop potential anticancer therapies. CONCLUSION Our analysis demonstrated a significant relationship between MMRN1 and prognosis, tumor immunity, and drug sensitivity of several tumors. As a rising star in cancer, it needs further research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Liu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, China
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, China
| |
Collapse
|
5
|
Jung I, Cho YJ, Park M, Park K, Lee SH, Kim WH, Jeong H, Lee JE, Kim GY. Proteomic analysis reveals activation of platelet- and fibrosis-related pathways in hearts of ApoE -/- mice exposed to diesel exhaust particles. Sci Rep 2023; 13:22636. [PMID: 38114606 PMCID: PMC10730529 DOI: 10.1038/s41598-023-49790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Air pollution is an environmental risk factor linked to multiple human diseases including cardiovascular diseases (CVDs). While particulate matter (PM) emitted by diesel exhaust damages multiple organ systems, heart disease is one of the most severe pathologies affected by PM. However, the in vivo effects of diesel exhaust particles (DEP) on the heart and the molecular mechanisms of DEP-induced heart dysfunction have not been investigated. In the current study, we attempted to identify the proteomic signatures of heart fibrosis caused by diesel exhaust particles (DEP) in CVDs-prone apolipoprotein E knockout (ApoE-/-) mice model using tandem mass tag (TMT)-based quantitative proteomic analysis. DEP exposure induced mild heart fibrosis in ApoE-/- mice compared with severe heart fibrosis in ApoE-/- mice that were treated with CVDs-inducing peptide, angiotensin II. TMT-based quantitative proteomic analysis of heart tissues between PBS- and DEP-treated ApoE-/- mice revealed significant upregulation of proteins associated with platelet activation and TGFβ-dependent pathways. Our data suggest that DEP exposure could induce heart fibrosis, potentially via platelet-related pathways and TGFβ induction, causing cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Inkyo Jung
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Yoon Jin Cho
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Minhan Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kihong Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Hyuk Jeong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Ji Eun Lee
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Geun-Young Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
6
|
de Sousa DMB, Poupardin R, Villeda SA, Schroer AB, Fröhlich T, Frey V, Staffen W, Mrowetz H, Altendorfer B, Unger MS, Iglseder B, Paulweber B, Trinka E, Cadamuro J, Drerup M, Schallmoser K, Aigner L, Kniewallner KM. The platelet transcriptome and proteome in Alzheimer's disease and aging: an exploratory cross-sectional study. Front Mol Biosci 2023; 10:1196083. [PMID: 37457829 PMCID: PMC10348715 DOI: 10.3389/fmolb.2023.1196083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Alzheimer's disease (AD) and aging are associated with platelet hyperactivity. However, the mechanisms underlying abnormal platelet function in AD and aging are yet poorly understood. Methods: To explore the molecular profile of AD and aged platelets, we investigated platelet activation (i.e., CD62P expression), proteome and transcriptome in AD patients, non-demented elderly, and young individuals as controls. Results: AD, aged and young individuals showed similar levels of platelet activation based on CD62P expression. However, AD and aged individuals had a proteomic signature suggestive of increased platelet activation compared with young controls. Transcriptomic profiling suggested the dysregulation of proteolytic machinery involved in regulating platelet function, particularly the ubiquitin-proteasome system in AD and autophagy in aging. The functional implication of these transcriptomic alterations remains unclear and requires further investigation. Discussion: Our data strengthen the evidence of enhanced platelet activation in aging and provide a first glimpse of the platelet transcriptomic changes occurring in AD.
Collapse
Affiliation(s)
- Diana M. Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Adam B. Schroer
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Frey
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Staffen
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Michael S. Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Iglseder
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, University Hospital SALK, Salzburg, Austria
| | - Martin Drerup
- Department of Urology, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kathrin M. Kniewallner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Fang D, Tan XH, Song WP, Gu YY, Pan JC, Yang XQ, Song WD, Yuan YM, Peng J, Zhang ZC, Xin ZC, Li XS, Guan RL. Single-Cell RNA Sequencing of Human Corpus Cavernosum Reveals Cellular Heterogeneity Landscapes in Erectile Dysfunction. Front Endocrinol (Lausanne) 2022; 13:874915. [PMID: 35518933 PMCID: PMC9066803 DOI: 10.3389/fendo.2022.874915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To assess the diverse cell populations of human corpus cavernosum in patients with severe erectile dysfunction (ED) at the single-cell level. METHODS Penile tissues collected from three patients were subjected to single-cell RNA sequencing using the BD Rhapsody™ platform. Common bioinformatics tools were used to analyze cellular heterogeneity and gene expression profiles from generated raw data, including the packages Seurat, Monocle, and CellPhoneDB. RESULTS Disease-related heterogeneity of cell types was determined in the cavernous tissue such as endothelial cells (ECs), smooth muscle cells, fibroblasts, and immune cells. Reclustering analysis of ECs identified an arteriole ECs subcluster and another one with gene signatures of fibroblasts. The proportion of fibroblasts was higher than the other cell populations and had the most significant cellular heterogeneity, in which a distinct subcluster co-expressed endothelial markers. The transition trajectory of differentiation from smooth muscle cells into fibroblasts was depicted using the pseudotime analysis, suggesting that the expansion of corpus cavernosum is possibly compromised as a result of fibrosis. Cell-cell communications among ECs, smooth muscle cells, fibroblasts, and macrophages were robust, which indicated that inflammation may also have a crucial role in the development of ED. CONCLUSIONS Our study has demonstrated a comprehensive single-cell atlas of cellular components in human corpus cavernosum of ED, providing in-depth insights into the pathogenesis. Future research is warranted to explore disease-specific alterations for individualized treatment of ED.
Collapse
Affiliation(s)
- Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Wen-Peng Song
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yang-Yang Gu
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jian-Cheng Pan
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Xiao-Qing Yang
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yi-Ming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Jing Peng
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhi-Chao Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhong-Cheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Xue-Song Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
8
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
9
|
Tamura N, Shimizu K, Shiozaki S, Sugiyama K, Nakayama M, Goto S, Takagi S, Goto S. Important Regulatory Roles of Erythrocytes on Platelet Adhesion to the von Willebrand Factor on the Wall Under Blood Flow Conditions. Thromb Haemost 2021; 122:974-983. [PMID: 34695874 DOI: 10.1055/a-1677-9499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The roles of erythrocytes on platelet adhesion to von Willebrand factor (VWF) on the vessel wall through their membrane glycoprotein (GP)Ibα under blood flow condition is still to be elucidated. Blood specimens containing fluorescently labeled platelet and native, biochemically fixed, or artificial erythrocytes, at various hematocrits were perfused on a surface of VWF immobilized on the wall at a shear rate of 1,500 s-1. Rates of platelet adhesions were measured in each condition. Computer simulation of platelet adhesion to the VWF on the wall at the same shear rate was conducted by solving governing equations with a finite-difference method on K-computer. The rates of platelet adhesion were calculated at various hematocrits conditions in the computational domain of 100 µm (x-axis) x 400 µm (y-axis) x 100 µm (z-axis). Biological experiments demonstrated the positive correlation between the rates of platelet adhesion and hematocrit values in native, fixed, and artificial erythrocytes. (r=0.992, 0.934, and 0.825 respectively, p<0.05 for all). The computer simulation results supported the hematocrit dependent increase in platelet adhesion rates on VWF (94.3/sec at 10%, 185.2/sec at 20%, and 327.9/sec at 30%, respectively). These results suggest the important contributing role of erythrocytes on platelet adhesion to the VWF. The augmented z-axis fluctuation of flowing platelet caused by the physical presence of erythrocytes is speculated as the cause for hematocrit dependent increase in platelet adhesion.
Collapse
Affiliation(s)
- Noriko Tamura
- Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuya Shimizu
- The University of Tokyo Graduate School of Engineering Faculty of Engineering, Bunkyo-ku, Japan
| | - Seiji Shiozaki
- Tokai University School of Medicine Graduate School of Medicine, Isehara, Japan
| | - Kazuyasu Sugiyama
- Osaka University School of Engineering Graduate School of Engineering, Suita, Japan
| | - Masamitsu Nakayama
- Tokai University School of Medicine Graduate School of Medicine, Isehara, Japan
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Japan
| | - Shu Takagi
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
| | - Shinya Goto
- Department of Medicine, Tokai University, Isehara, Japan
| |
Collapse
|
10
|
Leatherdale A, Parker D, Tasneem S, Wang Y, Bihan D, Bonna A, Hamaia SW, Gross PL, Ni H, Doble BW, Lillicrap D, Farndale RW, Hayward CPM. Multimerin 1 supports platelet function in vivo and binds to specific GPAGPOGPX motifs in fibrillar collagens that enhance platelet adhesion. J Thromb Haemost 2021; 19:547-561. [PMID: 33179420 PMCID: PMC7898486 DOI: 10.1111/jth.15171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a homopolymeric, adhesive, platelet and endothelial protein that binds to von Willebrand factor and enhances platelet adhesion to fibrillar collagen ex vivo. OBJECTIVES To examine the impact of Mmrn1 deficiency on platelet adhesive function, and the molecular motifs in fibrillar collagen that bind MMRN1 to enhance platelet adhesion. METHODS Mmrn1-deficient mice were generated and assessed for altered platelet adhesive function. Collagen Toolkit peptides, and other triple-helical collagen peptides, were used to identify multimerin 1 binding motifs and their contribution to platelet adhesion. RESULTS MMRN1 bound to conserved GPAGPOGPX sequences in collagens I, II, and III (including GPAGPOGPI, GPAGPOGPV, and GPAGPOGPQ) that enhanced activated human platelet adhesion to collagen synergistically with other triple-helical collagen peptides (P < .05). Mmrn1-/- and Mmrn1+/- mice were viable and fertile, with complete and partial platelet Mmrn1 deficiency, respectively. Relative to wild-type mice, Mmrn1-/- and Mmrn1+/- mice did not have overt bleeding, increased median bleeding times, or increased wound blood loss (P ≥ .07); however, they both showed significantly impaired platelet adhesion and thrombus formation in the ferric chloride injury model (P ≤ .0003). Mmrn1-/- platelets had impaired adhesion to GPAGPOGPX peptides and fibrillar collagen (P ≤ .03) and formed smaller aggregates than wild-type platelets when captured onto collagen, triple-helical collagen mimetic peptides, von Willebrand factor, or fibrinogen (P ≤ .008), despite preserved, low shear, and high shear aggregation responses. CONCLUSIONS Multimerin 1 supports platelet adhesion and thrombus formation and binds to highly conserved, GPAGPOGPX motifs in fibrillar collagens that synergistically enhance platelet adhesion.
Collapse
Affiliation(s)
| | - D’Andra Parker
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Subia Tasneem
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Yiming Wang
- Laboratory Medicine and PathobiologyKeenan Research CentreLi Ka‐Shing Knowledge InstituteSt. Michael's HospitalUniversity of TorontoTorontoONCanada
- Canadian Blood Services Centre for InnovationOttawaONCanada
| | - Dominique Bihan
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
| | - Arkadiusz Bonna
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
- Present address:
CambCol Laboratories LtdElyUK
| | - Samir W. Hamaia
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
| | - Peter L. Gross
- Medicine, Thrombosis and Atherosclerosis Research InstituteMcMaster UniversityHamiltonONCanada
| | - Heyu Ni
- Laboratory Medicine and PathobiologyKeenan Research CentreLi Ka‐Shing Knowledge InstituteSt. Michael's HospitalUniversity of TorontoTorontoONCanada
- Canadian Blood Services Centre for InnovationOttawaONCanada
| | - Bradley W. Doble
- Biochemistry and Biomedical SciencesMcMaster Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonONCanada
| | - David Lillicrap
- Pathology and Molecular MedicineRichardson LaboratoryQueen’s UniversityKingstonONCanada
| | - Richard W. Farndale
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
- Present address:
CambCol Laboratories LtdElyUK
| | - Catherine P. M. Hayward
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Hamilton Regional Laboratory Medicine Program, and Department of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
11
|
Nukala SB, Regazzoni L, Aldini G, Zodda E, Tura-Ceide O, Mills NL, Cascante M, Carini M, D'Amato A. Differentially Expressed Proteins in Primary Endothelial Cells Derived From Patients With Acute Myocardial Infarction. Hypertension 2019; 74:947-956. [PMID: 31446798 DOI: 10.1161/hypertensionaha.119.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction is one of the primary factors in the onset and progression of atherothrombosis resulting in acute myocardial infarction (AMI). However, the pathological and cellular mechanisms of endothelial dysfunction in AMI have not been systematically studied. Protein expression profiling in combination with a protein network analysis was used by the mass spectrometry-based label-free quantification approach. This identified and quantified 2246 proteins, of which 335 were differentially regulated in coronary arterial endothelial cells from patients with AMI compared with controls. The differentially regulated protein profiles reveal the alteration of (1) metabolism of RNA, (2) platelet activation, signaling, and aggregation, (3) neutrophil degranulation, (4) metabolism of amino acids and derivatives, (5) cellular responses to stress, and (6) response to elevated platelet cytosolic Ca2+ pathways. Increased production of oxidants and decreased production of antioxidant biomarkers as well as downregulation of proteins with antioxidant properties suggests a role for oxidative stress in mediating endothelial dysfunction during AMI. In conclusion, this is the first quantitative proteomics study to evaluate the cellular mechanisms of endothelial dysfunction in patients with AMI. A better understanding of the endothelial proteome and pathophysiology of AMI may lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.).,Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante)
| | - Luca Regazzoni
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Giancarlo Aldini
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Erika Zodda
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante)
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Spain (O.T.-C.).,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain (O.T.-C.)
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (N.L.M.).,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, UK (N.L.M.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante).,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and metabolomics node at INB-Bioinfarmatics Platform, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M. Cascante)
| | - Marina Carini
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Alfonsina D'Amato
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| |
Collapse
|
12
|
Stachowicz A, Zabczyk M, Natorska J, Suski M, Olszanecki R, Korbut R, Wiśniewski JR, Undas A. Differences in plasma fibrin clot composition in patients with thrombotic antiphospholipid syndrome compared with venous thromboembolism. Sci Rep 2018; 8:17301. [PMID: 30470809 PMCID: PMC6251889 DOI: 10.1038/s41598-018-35034-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
The prothrombotic fibrin clot phenotype has been reported in patients with thrombotic antiphospholipid syndrome (APS) and venous thromboembolism (VTE). Protein composition of plasma fibrin clots in APS has not been studied. We evaluated 23 patients with thrombotic APS, 19 with VTE alone, and 20 well-matched controls. A proteomic analysis of fibrin clots generated from citrated plasma was based on liquid chromatography-mass spectrometry. Plasma levels of thrombospondin-1 (TSP1), apolipoprotein(a), A-I, and B-100, complement components (C)3a, C5b-C9, histidine-rich glycoprotein (HRG), and prothrombin were evaluated using immunoenzymatic tests. In plasma fibrin clots of APS patients, compared with VTE subjects and controls, we identified decreased amounts of (pro)thrombin, antithrombin-III, apolipoprotein A-I, and HRG with no differences in plasma levels of antithrombin, prothrombin, along with lower plasma HRG and apolipoprotein A-I. In APS patients, plasma HRG positively correlated with amounts of clot-bound HRG, while apolipoprotein A-I was inversely associated with clot-bound levels of this protein. The most predominant proteins within the clots of APS patients were bone marrow proteoglycan, C5-C9, immunoglobulins, apolipoprotein B-100, platelet-derived proteins, and TSP1. Our study is the first to demonstrate differences in the protein composition of fibrin clots generated from plasma of thrombotic APS patients versus those with VTE alone.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.,Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michal Zabczyk
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.,Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland. .,Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
13
|
Lacko LA, Hurtado R, Hinds S, Poulos MG, Butler JM, Stuhlmann H. Altered feto-placental vascularization, feto-placental malperfusion and fetal growth restriction in mice with Egfl7 loss of function. Development 2017; 144:2469-2479. [PMID: 28526753 DOI: 10.1242/dev.147025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/16/2017] [Indexed: 01/16/2023]
Abstract
EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel Egfl7 knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning. Microangiography and 3D imaging revealed patchy perfusion of Egfl7-/- placentas marked by impeded blood conductance through sites of narrowed vessels. Consistent with poor feto-placental perfusion, Egfl7 knockout resulted in reduced placental weight and fetal growth restriction. The placentas also showed abnormal fetal vessel patterning and over 50% reduction in fetal blood space. In vitro, placental endothelial cells were deficient in migration, cord formation and sprouting. Expression of genes involved in branching morphogenesis, Gcm1, Syna and Synb, and in patterning of the extracellular matrix, Mmrn1, were temporally dysregulated in the placentas. Egfl7 knockout did not affect expression of the microRNA embedded within intron 7. Collectively, these data reveal that Egfl7 is crucial for placental vascularization and embryonic growth, and may provide insight into etiological factors underlying placental pathologies associated with intrauterine growth restriction, which is a significant cause of infant morbidity and mortality.
Collapse
Affiliation(s)
- Lauretta A Lacko
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Romulo Hurtado
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Samantha Hinds
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Michael G Poulos
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Jason M Butler
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| |
Collapse
|
14
|
Yahiro K, Hirayama T, Moss J, Noda M. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors. Toxins (Basel) 2016; 8:toxins8050152. [PMID: 27187473 PMCID: PMC4885067 DOI: 10.3390/toxins8050152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, Building 10, Room 6D03, MSC 1590, Bethesda, MD 20892-1590, USA.
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
15
|
Ulum MF, Maylina L, Noviana D, Wicaksono DHB. EDTA-treated cotton-thread microfluidic device used for one-step whole blood plasma separation and assay. LAB ON A CHIP 2016; 16:1492-1504. [PMID: 27021631 DOI: 10.1039/c6lc00175k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study aims to observe the wicking and separation characteristics of blood plasma in a cotton thread matrix functioning as a microfluidic thread-based analytical device (μTAD). We investigated several cotton thread treatment methods using ethylenediaminetetraacetic acid (EDTA) anticoagulant solution for wicking whole blood samples and separating its plasma. The blood of healthy Indonesian thin tailed sheep was used in this study to understand the properties of horizontal wicking and separation on the EDTA-treated μTAD. The wicking distance and blood cell separation from its plasma was observed for 120 s and documented using a digital phone camera. The results show that untreated cotton-threads stopped the blood wicking process on the μTAD. On the other hand, the deposition of EDTA anticoagulant followed by its drying on the thread at room temperature for 10 s provides the longest blood wicking with gradual blood plasma separation. Furthermore, the best results in terms of the longest wicking and the clearest on-thread separation boundary between blood cells and its plasma were obtained using the μTAD treated with EDTA deposition followed by 60 min drying at refrigerated temperature (2-8 °C). The separation length of blood plasma in the μTADs treated with dried-EDTA at both room and refrigerated temperatures was not statistically different (P > 0.05). This separation occurs through the synergy of three factors, cotton fiber, EDTA anticoagulant and blood platelets, which induce the formation of a fibrin-filter via a partial coagulation process in the EDTA-treated μTAD. An albumin assay was employed to demonstrate the efficiency of this plasma separation method during a one-step assay on the μTAD. Albumin in blood is an important biomarker for kidney and heart disease. The μTAD has a slightly better limit of detection (LOD) than conventional blood analysis, with an LOD of 114 mg L(-1) compared to 133 mg L(-1), respectively. However, the μTAD performed faster to get results after 3 min compared to 14 min for centrifuged analysis of sheep blood samples. In conclusion, on-thread dried-EDTA anticoagulant deposition was able to increase the wicking distance and has a better capability to separate blood plasma and is suitable for combining separation and the assay system in a single device.
Collapse
Affiliation(s)
- Mokhamad Fakhrul Ulum
- Medical Devices and Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia. and Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, Indonesia.
| | - Leni Maylina
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, Indonesia.
| | - Deni Noviana
- Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor, Indonesia.
| | - Dedy Hermawan Bagus Wicaksono
- Medical Devices and Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia. and IJN-UTM Cardiovascular Engineering Centre (CEC), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| |
Collapse
|
16
|
Parker DN, Tasneem S, Farndale RW, Bihan D, Sadler JE, Sebastian S, de Groot PG, Hayward CPM. The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding. Thromb Haemost 2016; 116:87-95. [PMID: 27052467 PMCID: PMC5175582 DOI: 10.1160/th15-09-0700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/18/2016] [Indexed: 12/24/2022]
Abstract
Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine P M Hayward
- Catherine P. M. Hayward, McMaster University Medical Centre, HSC 2N29A, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5, Tel.: +1 905 521 2100 Ext. 76274, Fax: +1 905 521 2338, E-mail:
| |
Collapse
|
17
|
Milioli M, Ibáñez-Vea M, Sidoli S, Palmisano G, Careri M, Larsen MR. Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteomics 2015; 121:56-66. [PMID: 25835965 DOI: 10.1016/j.jprot.2015.03.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Platelet-derived MPs (PMPs) are a heterogeneous population of microvesicles released from platelets upon activation and apoptosis. Different platelet activations may affect PMP protein profiles and roles in intercellular communication. Here, we performed a quantitative proteomics study to characterize the protein content of PMPs generated by four differentially activated platelet samples. We selected known physiological agonists for platelet activation such as ADP, thrombin and collagen. Thrombin, which is mostly used to generate PMPs in vitro, was set as control. Platelets were activated by following a known agonist strength scale in which ADP was the weakest activation and thrombin and collagen stimulations were the strongest ones. Our proteomic analysis allowed the quantification of 3383 proteins, of which 428 membrane and 131 soluble proteins were found as significantly different in at least one of the analyzed conditions. Activation with stronger agonists led to the enrichment of proteins related to platelet activation in PMPs. In addition, proteins involved in platelet degranulation and proteins from the electron transport chain were less abundant in PMPs when stronger activation was used. Collectively, our data describe the most detailed characterization of PMPs after platelet physiological activation. Furthermore, we show that PMP protein content is highly dependent on the type of physiological agonist involved in platelet stimulation. BIOLOGICAL SIGNIFICANCE Platelet-derived MPs (PMPs) are a population of vesicles generated upon platelet activation by various stimuli known to be involved in several physiological and pathological processes. This manuscript investigates the protein profile of PMPs obtained by performing four different activation protocols using mass spectrometry-based quantitative proteomics. By following a known physiological agonist strength scale our findings suggest a biological link between agonist strength and proteins associated to platelet mediated processes such as activation and degranulation. These data may provide new insights for understanding PMP biological role and formation.
Collapse
Affiliation(s)
- Marco Milioli
- Department of Chemistry, University of Parma, 43124 Parma, Italy
| | - Maria Ibáñez-Vea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Institute of Biomedical Sciences, Department of Parasitology, USP, São Paulo, Brazil
| | - Maria Careri
- Department of Chemistry, University of Parma, 43124 Parma, Italy
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
18
|
Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 2014; 344:62-73. [DOI: 10.1016/j.canlet.2013.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
|
19
|
|
20
|
Firbas C, Siller-Matula JM, Jilma B. Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert Rev Cardiovasc Ther 2011; 8:1689-701. [PMID: 21108551 DOI: 10.1586/erc.10.154] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherothrombotic events, such as acute coronary syndrome or stroke, are the result of platelet activation. Von Willebrand factor (vWF), a multimeric glycoprotein, plays a key role in aggregation of platelets, especially under high-shear conditions. Acting as bridging element or ligand between damaged endothelial sites and the glycoprotein Ib (GPIb) receptor on platelets, vWF is responsible for platelet adhesion and aggregation. This vWF activation and further platelet aggregation mainly occurs under high shear stress present in small arterioles or during deficiency of the vWF-cleaving protease ADAMTS13. There are several substances targeting vWF itself or its binding receptor GPIb on platelets. Two antibodies are directed against vWF: AJW200, an IgG4 humanized monoclonal antibody, and 82D6A3, a monoclonal antibody of the collagen-binding A-3 domain of vWF. ALX-0081 and ALX-0681 are bivalent humanized nanobodies targeting the GPIb binding site of vWF. Aptamers are oligonucleotides with drug-like properties that share some of the attributes of monoclonal antibodies. ARC1779 is a second-generation, nuclease-resistant aptamer, binding to the activated vWF A1 domain and ARC15105 is a chemically advanced follower with an assumed higher affinity to vWF. Antibodies targeting GPIbα are h6B4-Fab, a murine monoclonal antibody; GPG-290, a recombinant, chimeric protein containing the amino-terminal 290 amino acids of GPIbα linked to human IgG1 Fc; and the monoclonal antibody SZ2. There are a number of promising preclinical results and development of some agents (AJW 200, ARC1779 and ALX-0081) has already reached Phase II trials.
Collapse
Affiliation(s)
- Christa Firbas
- Medical University of Vienna, Department of Clinical Pharmacology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | |
Collapse
|
21
|
Välk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, Metspalu A. Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology 2011; 79:283-92. [PMID: 21412013 DOI: 10.1159/000322116] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Despite the well-defined histological types of non-small cell lung cancer (NSCLC), a given stage is often associated with wide-ranging survival rates and treatment outcomes. This disparity has led to an increased demand for the discovery and identification of new informative biomarkers. METHODS In the current study, we screened 81 NSCLC samples using Illumina whole-genome gene expression microarrays in an effort to identify differentially expressed genes and new NSCLC biomarkers. RESULTS We identified novel genes whose expression was upregulated in NSCLC, including SPAG5, POLH, KIF23, and RAD54L, which are associated with mitotic spindle formation, DNA repair, chromosome segregation, and dsDNA break repair, respectively. We also identified several novel genes whose expression was downregulated in NSCLC, including SGCG, NLRC4, MMRN1, and SFTPD, which are involved in extracellular matrix formation, apoptosis, blood vessel leakage, and inflammation, respectively. We found a significant correlation between RNA degradation and survival in adenocarcinoma cases. CONCLUSIONS Even though the follow-up time was too limited to draw final conclusions, we were able to show better prediction p values in a group selection based on molecular profiles compared to histology. The current study also uncovered new candidate biomarker genes that are likely to be involved in diverse processes associated with NSCLC development.
Collapse
Affiliation(s)
- Kristjan Välk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
22
|
Mice with deleted multimerin 1 and α-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1. Thromb Res 2010; 125:e177-83. [DOI: 10.1016/j.thromres.2010.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/23/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022]
|