1
|
Zhang T, Zhang M, Guo L, Liu D, Zhang K, Bi C, Zhang P, Wang J, Fan Y, He Q, Chang ACY, Zhang J. Angiopoietin-like protein 2 inhibits thrombus formation. Mol Cell Biochem 2025; 480:1169-1181. [PMID: 38880861 PMCID: PMC11835982 DOI: 10.1007/s11010-024-05034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingliang Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lingyu Guo
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongsheng Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jin Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex C Y Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Smith CW, Nagy Z, Geer MJ, Pike JA, Patel P, Senis YA, Mazharian A. LAIR-1 and PECAM-1 function via the same signaling pathway to inhibit GPVI-mediated platelet activation. Res Pract Thromb Haemost 2024; 8:102557. [PMID: 39318773 PMCID: PMC11421324 DOI: 10.1016/j.rpth.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Background Inhibition of platelet responsiveness is important for controlling thrombosis. It is well established that platelet endothelial cell adhesion molecule-1 (PECAM-1) serves as a physiological negative regulator of platelet-collagen interactions. We recently demonstrated that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a negative regulator of platelet production and reactivity. It is however not known if LAIR-1 and PECAM-1 function in the same or different inhibitory pathways. Objectives In this study, we investigated the role of LAIR-1 alongside PECAM-1 in megakaryocyte development and platelet production and determined the functional redundancy through characterization of a LAIR-1/PECAM-1 double knockout (DKO) mouse model. Methods LAIR-1 and PECAM-1 expression in megakaryocytes were evaluated by western blotting. Megakaryocyte ploidy and proplatelet formation were evaluated by flow cytometry and fluorescent microscopy. Platelet function and signalling were compared in wild-type, LAIR-1 -/- , PECAM-1 -/- and DKO mice using aggregometry, flow cytometry and western blotting. Thrombosis was evaluated using the FeCl 3 carotid artery model. Results We show that LAIR-1/PECAM-1 DKO mice exhibit a 17% increase in platelet count. Bone marrow-derived megakaryocytes from all 3 mouse models had normal ploidy in vitro, suggesting that neither LAIR-1 nor PECAM-1 regulates megakaryocyte development. Furthermore, relative to wild-type platelets, platelets derived from LAIR-1, PECAM-1, and DKO mice were equally hyperresponsive to collagen in vitro, indicating that LAIR-1 and PECAM-1 participate in the same inhibitory pathway. Interestingly, DKO mice exhibited normal thrombus formation in vivo due to DKO mouse platelets lacking the enhanced Src family kinase activation previously shown in platelets from LAIR-1-deficient mice. Conclusion Findings from this study reveal that LAIR-1 and PECAM-1 act to inhibit GPVI-mediated platelet activation via the same signaling pathway. Mice lacking LAIR-1 and PECAM-1 do not however exhibit an increase in thrombus formation despite minor increase in platelet count and reactivity to collagen. This study adds to the growing evidence that immunoreceptor tyrosine-based inhibition motif-containing receptors are important regulators of platelet count and function.
Collapse
Affiliation(s)
- Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Mitchell J Geer
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York, USA
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pushpa Patel
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale (INSERM), Etablissement Français du Sang (EFS) Grand-Est, Unité Mixte de Recherche (UMR)-S 1255, Université de Strasbourg, Strasbourg, France
| | - Alexandra Mazharian
- Institut National de la Santé et de la Recherche Médicale (INSERM), Etablissement Français du Sang (EFS) Grand-Est, Unité Mixte de Recherche (UMR)-S 1255, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Zhang Z, Gan Q, Han J, Tao Q, Qiu WQ, Madri JA. CD31 as a probable responding and gate-keeping protein of the blood-brain barrier and the risk of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:1027-1041. [PMID: 37051650 PMCID: PMC10291450 DOI: 10.1177/0271678x231170041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and β-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Psychiatry, Boston University School of Medicine, Boston, MA, USA
- The Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Kuriri F, Burchall G, Alanazi F, Antonipillai J, Dobie G, Beauchemin N, Jackson DE. Mice lacking PECAM-1 and Ceacam1 have an aberrant platelet and thrombus phenotype. Thromb Haemost 2021; 122:961-973. [PMID: 34619794 DOI: 10.1055/a-1663-8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The immunoglobulin (Ig)-immunoreceptor tyrosine-based inhibitory motif (ITIM) bearing receptors, PECAM-1 and CEACAM1 have been shown net negative regulators of platelet-collagen interactions and hemi-ITAM signalling pathways. In this study, a double knockout (DKO) mouse was developed with deleted PECAM-1 and CEACAM1 to study their combined contribution in platelet activation by glycoprotein VI, C-type lectin-like receptor 2 (CLEC-2), protease activated receptor PAR-4, ADP purinergic receptors and thromboxane receptor TP A2 pathways. Additionally, their collective contribution was examined in thrombus formation under high shear and microvascular thrombosis using in vivo models. DKO platelets responded normally to ADP purinergic receptors and TP A2 pathway. However, DKO platelets released significantly higher amounts of P-selectin compared to hyper-responsive Pecam-1-/- or Ceacam1-/- versus wild-type (WT) upon stimulation with collagen related peptide or rhodocytin. Contrastingly, DKO platelets released increased amounts of P-selectin upon stimulation with PAR-4 agonist peptide or thrombin but not Pecam-1-/-, Ceacam1-/- or WT platelets. Blockade of phospholipase C (PLC) or Rho A kinase revealed that DKO platelets enhanced alpha granule release via PAR-4/Gαq/PLC signalling without crosstalk with Src/Syk or G12/13 signalling pathways. This DKO model showed a significant increase in thrombus formation compared to the hyper-responsive Ceacam1-/- or Pecam-1-/- versus WT phenotype. DKO platelets have similar glycoprotein surface expression compared to Pecam-1-/-, Ceacam1-/- and WT platelets. PECAM-1 and CEACAM1 work in concert to negatively regulate hemiITAM signalling, platelet-collagen interactions and PAR-4 Gαq protein coupled signalling pathways. Both PECAM-1 and CEACAM1 are required for negative regulation of platelet activation and microvascular thrombosis in vivo.
Collapse
Affiliation(s)
- Fahd Kuriri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Shaqra University College of Applied Medical Sciences, Shaqra, Saudi Arabia
| | | | - Fehaid Alanazi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,College of Applied Medical Sciences, Al Jouf University, Skaka, Saudi Arabia
| | - Juliana Antonipillai
- Thrombosis and Vascular Diseases Laboratory, RMIT University, Melbourne, Australia
| | - Gasim Dobie
- Haematology Unit, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
5
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
6
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118927. [PMID: 33310067 DOI: 10.1016/j.bbamcr.2020.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Platelets are small enucleated cell fragments specialized in the control of hemostasis, but also playing a role in angiogenesis, inflammation and immunity. This plasticity demands a broad range of physiological processes. Platelet functions are mediated through a variety of receptors, the concerted action of which must be tightly regulated, in order to allow specific and timely responses to different stimuli. Protein phosphorylation is one of the main key regulatory mechanisms by which extracellular signals are conveyed. Despite the importance of platelets in health and disease, the molecular pathways underlying the activation of these cells are still under investigation. Here, we review current literature on signaling platelet biology and in particular emphasize the newly emerging role of phosphatases in these processes.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands; Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Catalytic dysregulation of SHP2 leading to Noonan syndromes affects platelet signaling and functions. Blood 2020; 134:2304-2317. [PMID: 31562133 DOI: 10.1182/blood.2019001543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Src homology 2 domain-containing phosphatase 2 (SHP2), encoded by the PTPN11 gene, is a ubiquitous protein tyrosine phosphatase that is a critical regulator of signal transduction. Germ line mutations in the PTPN11 gene responsible for catalytic gain or loss of function of SHP2 cause 2 disorders with multiple organ defects: Noonan syndrome (NS) and NS with multiple lentigines (NSML), respectively. Bleeding anomalies have been frequently reported in NS, but causes remain unclear. This study investigates platelet activation in patients with NS and NSML and in 2 mouse models carrying PTPN11 mutations responsible for these 2 syndromes. Platelets from NS mice and patients displayed a significant reduction in aggregation induced by low concentrations of GPVI and CLEC-2 agonists and a decrease in thrombus growth on a collagen surface under arterial shear stress. This was associated with deficiencies in GPVI and αIIbβ3 integrin signaling, platelet secretion, and thromboxane A2 generation. Similarly, arterial thrombus formation was significantly reduced in response to a local carotid injury in NS mice, associated with a significant increase in tail bleeding time. In contrast, NSML mouse platelets exhibited increased platelet activation after GPVI and CLEC-2 stimulation and enhanced platelet thrombotic phenotype on collagen matrix under shear stress. Blood samples from NSML patients also showed a shear stress-dependent elevation of platelet responses on collagen matrix. This study brings new insights into the understanding of SHP2 function in platelets, points to new thrombopathies linked to platelet signaling defects, and provides important information for the medical care of patients with NS in situations involving risk of bleeding.
Collapse
|
8
|
Merchand-Reyes G, Robledo-Avila FH, Buteyn NJ, Gautam S, Santhanam R, Fatehchand K, Mo X, Partida-Sanchez S, Butchar JP, Tridandapani S. CD31 Acts as a Checkpoint Molecule and Is Modulated by FcγR-Mediated Signaling in Monocytes. THE JOURNAL OF IMMUNOLOGY 2019; 203:3216-3224. [PMID: 31732534 DOI: 10.4049/jimmunol.1900059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
Monocytes and macrophages express FcγR that engage IgG immune complexes such as Ab-opsonized pathogens or cancer cells to destroy them by various mechanisms, including phagocytosis. FcγR-mediated phagocytosis is regulated by the concerted actions of activating FcγR and inhibitory receptors, such as FcγRIIb and SIRPα. In this study, we report that another ITIM-containing receptor, PECAM1/CD31, regulates FcγR function and is itself regulated by FcγR activation. First, quantitative RT-PCR and flow cytometry analyses revealed that human monocyte FcγR activation leads to a significant downregulation of CD31 expression, both at the message level and at surface expression, mainly mediated through FcγRIIa. Interestingly, the kinetics of downregulation between the two varied, with surface expression reducing earlier than the message. Experiments to analyze the mechanism behind this discrepancy revealed that the loss of surface expression was because of internalization, which depended predominantly on the PI3 kinase pathway and was independent of FcγR internalization. Finally, functional analyses showed that the downregulation of CD31 expression in monocytes by small interfering RNA enhanced FcγR-mediated phagocytic ability but have little effect on cytokine production. Together, these results suggest that CD31 acts as a checkpoint receptor that could be targeted to enhance FcγR functions in Ab-mediated therapies.
Collapse
Affiliation(s)
- Giovanna Merchand-Reyes
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Frank H Robledo-Avila
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205; and
| | - Nathaniel J Buteyn
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Shalini Gautam
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Ramasamy Santhanam
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Kavin Fatehchand
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Xiaokui Mo
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Santiago Partida-Sanchez
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Jonathan P Butchar
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210;
| | - Susheela Tridandapani
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210;
| |
Collapse
|
9
|
|
10
|
Hu M, Liu P, Liu Y, Yue M, Wang Y, Wang S, Chen X, Zhou Y, Zhou J, Hu X, Ke Y, Hu H. Platelet Shp2 negatively regulates thrombus stability under high shear stress. J Thromb Haemost 2019; 17:220-231. [PMID: 30444570 DOI: 10.1111/jth.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/30/2022]
Abstract
Essentials Shp2 negatively regulates thrombus stability under pathological shear rate. Shp2 suppresses TXA2 receptor-mediated platelet dense granule secretion. Through αIIbβ3 outside-in signaling, Shp2 targets calmodulin-dependent activation of Akt. Shp2 may serve to prevent the formation of unwanted occlusive thrombi. SUMMARY: Background Perpetuation is the final phase of thrombus formation; however, its mechanisms and regulation are poorly understood. Objective To investigate the mechanism of Shp2 in platelet function and thrombosis. Methods and results We demonstrate that the platelet-expressed Src homology region 2 domain-containing protein tyrosine phosphatase Shp2 is a negative regulator of thrombus stability under high shear stress. In a ferric chloride-induced mesenteric arteriole thrombosis model, megakaryocyte/platelet-specific Shp2-deficient mice showed less thrombi shedding than wild-type mice, although their occlusion times were comparable. In accordance with this in vivo phenotype, a microfluidic whole-blood perfusion assay revealed that the thrombi formed on collagen surfaces by Shp2-deficient platelets were more stable under high shear rates than those produced by wild-type platelets. Whereas Shp2 deficiency did not alter platelet responsiveness towards thrombin, ADP and collagen stimulation, Shp2-deficient platelets showed increased dense granule secretion when stimulated by the thromboxane A2 analog U46619. Shp2 appears to act downstream of integrin αIIb β3 outside-in signaling, inhibiting the phosphorylation of Akt (Ser473 and Thr308) and dense granule secretion. Calmodulin was also shown to bind both Shp2 and Akt, linking Shp2 to Akt activation. Conclusions Platelet Shp2 negatively regulates thrombus perpetuation under high shear stress. This signaling pathway may constitute an important mechanism for the prevention of unwanted occlusive thrombus formation, without dramatically interfering with hemostasis.
Collapse
Affiliation(s)
- M Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - P Liu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Liu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - M Yue
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - S Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - X Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - J Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - X Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - H Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| |
Collapse
|
11
|
Meinke S, Wikman A, Gryfelt G, Hultenby K, Uhlin M, Höglund P, Sandgren P. Cryopreservation of buffy coat-derived platelet concentrates photochemically treated with amotosalen and UVA light. Transfusion 2018; 58:2657-2668. [PMID: 30281156 DOI: 10.1111/trf.14905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cryopreserved platelets (CPPs) are considered a promising approach for extended platelet storage, bridging inventory shortages of conventionally stored platelets. It is unknown if platelet concentrates exposed to photochemical treatment (PCT) with amotosalen and ultraviolet A (UVA) light, to inactivate pathogens, are suitable for freezing. The objective of this study was to analyze potential effects of PCT on CPPs as compared with untreated CPPs. STUDY DESIGN AND METHODS A total of 12 PCT-treated and 12 untreated platelet units from buffy coats were cryopreserved at -80°C in 5% dimethyl sulfoxide. CPPs of both types were rapidly thawed at 37°C and resuspended in 200 mL fresh plasma. In vitro properties were analyzed prefreezing, postfreezing and thawing, and on Day 1 after thawing. RESULTS Directly after thawing, no major differences in platelet content, lactase hydrogenase, adenosine triphosphate, mitochondrial membrane potential, CD62P, CD42b, and platelet endothelial cell adhesion molecule were seen between PCT-CPPs and conventional CPPs. Agonist-induced PAC-1 expression and contribution of CPPs to blood coagulation in an experimental rotational thromboelastometry setup were also similar between the groups. On Day 1 after thawing, the CPPs of both types performed less well. The PCT-CPPs tended to be more affected by the freezing process than the conventional CPPs. CONCLUSIONS PCT-CPPs appeared slightly more susceptible to lesion effects by freezing than conventional CPPs, in particular in assays on Day 1 after thawing, but these differences were small relative to the dramatic effects of the freezing process itself.
Collapse
Affiliation(s)
- Stephan Meinke
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet
| | - Agneta Wikman
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital.,Department of Laboratory Medicine, Karolinska Institutet
| | - Gunilla Gryfelt
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet
| | - Per Sandgren
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital.,Department of Laboratory Medicine, Karolinska Institutet
| |
Collapse
|
12
|
Bye AP, Ilkan Z, Unsworth AJ, Jones CI. Immobilization of Nonactivated Unfixed Platelets for Real-Time Single-Cell Analysis. Methods Mol Biol 2018; 1812:1-11. [PMID: 30171569 DOI: 10.1007/978-1-4939-8585-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Existing methods for measuring the response of individual platelets to stimulation are limited. They either measure each platelet at one discrete time-point (flow cytometry) or rely on adhesive ligands to immobilize platelets that concomitantly generate activation signals (microscopy). Such methods of immobilization make it impossible to assess resting platelets, the changes that occur as platelets transition from resting to active states, or the signals generated by soluble agonists, such as ADP and thrombin, or by mechanical stimulus, independently from those generated by the adhesive ligand. Here we describe a microscopy method that allows the immobilization of platelets to a glass cover slip without triggering platelet activation. This method makes use of specific antibodies that bind platelet PECAM-1 without activating it. Platelets can therefore be immobilized to PECAM-1 antibody coated biochips without causing activation and perfused with agonists or inhibitors. Using this method, platelets can be stimulated by an array of soluble agonists at any concentration or combination, in the presence or absence of inhibitors or shear forces. This chapter describes in detail this PECAM-1 mediated immobilized platelet method and its use for measuring changes in Ca2+ signaling in individual platelets under a number of different conditions. While we focus on the measurement of Ca2+ dynamics in this chapter, it is important to consider that the basic method we describe will easily lend its self to other measures of platelet activation (integrin activation, shape change, actin dynamics, degranulation), and may, therefore, be used to measure almost any facet of platelet activation.
Collapse
Affiliation(s)
- Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Zeki Ilkan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Amanda J Unsworth
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Chris I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
13
|
Stefanini L, Bergmeier W. Negative regulators of platelet activation and adhesion. J Thromb Haemost 2018; 16:220-230. [PMID: 29193689 PMCID: PMC5809258 DOI: 10.1111/jth.13910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Platelets are small anucleated cells that constantly patrol the cardiovascular system to preserve its integrity and prevent excessive blood loss where the vessel lining is breached. Their key challenge is to form a hemostatic plug under conditions of high shear forces. To do so, platelets have evolved a molecular machinery that enables them to sense trace amounts of signals at the site of damage and to rapidly shift from a non-adhesive to a pro-adhesive state. However, this highly efficient molecular machinery can also lead to unintended platelet activation and cause clinical complications such as thrombocytopenia and thrombosis. Thus, several checkpoints are in place to tightly control platelet activation and adhesiveness in space and time. In this review, we will discuss select negative regulators of platelet activation, which are critical to maintain patrolling platelets in a quiescent, non-adhesive state and/or to limit platelet adhesion to sites of injury.
Collapse
Affiliation(s)
- L Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - W Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
ITIM receptors: more than just inhibitors of platelet activation. Blood 2017; 129:3407-3418. [PMID: 28465343 DOI: 10.1182/blood-2016-12-720185] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbβ3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.
Collapse
|
15
|
Unsworth AJ, Bye AP, Gibbins JM. Platelet-Derived Inhibitors of Platelet Activation. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017. [PMCID: PMC7123044 DOI: 10.1007/978-3-319-47462-5_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost 2016; 14:918-30. [PMID: 26929147 PMCID: PMC4879507 DOI: 10.1111/jth.13302] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/11/2016] [Indexed: 01/22/2023]
Abstract
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology, and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation, or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators.
Collapse
Affiliation(s)
- A P Bye
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - A J Unsworth
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - J M Gibbins
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
17
|
Abstract
Multiple studies have now shown that various species of bacteria can stimulate platelets; many in a strain and donor-dependent manner. The signalling pathways underlying this platelet activation has been the subject of scrutiny for the last decade. The best-delineated pathway is that in response to Streptococcal species, such as Streptococcus sanguinis (S. sanguinis), Streptococcus gordonii (S. gordonii) and Streptococcus oralis (S. oralis), where a pathway is initiated by the engagement of the low affinity IgG receptor, FcγRIIA. This leads to and involves the tyrosine kinase Syk, the adaptor protein Linker of Activated T Cells (LAT) and subsequently both phospholipase Cγ2 (PLCγ2) and phosphatidylinositol-3-kinase (PI-3-K). Finally, this leads to the expression of the αIIbβ3 integrin, the synthesis and release of thromboxane A2 (T × A2) and the exocytosis of PF4, each of which plays a crucial role in secondary signalling and full platelet activation. Roles for other signalling pathways in Streptococcal-induced platelet activation are less clear, although an ADP-mediated inhibition of adenylyl cyclase, a glycoprotein Ib/IX/V-mediated pathway and perhaps a complement-induced pathway have each been proposed. Platelet activation by Porphyromonas gingivalis (P. gingivalis) at least partially shares the FcγRIIA/Syk/PLCγ2/PI-3-K mechanism utilised by Streptococcal species. However, it has also been suggested that P. gingivalis activates platelets by two additional methods; stimulation of the protease-activated receptors leading to activation of phospholipase Cβ (PLCβ), and the engagement of Toll-like receptors 2 and 4 by released lipopolysaccharide leading to an ill-defined pathway which may involve PI-3-K. Consequently, it appears that bacteria can stimulate platelets by eliciting multiple signalling pathways some of which are common, and some unique, to individual species.
Collapse
|
18
|
Li W, Gigante A, Perez-Perez MJ, Yue H, Hirano M, McIntyre TM, Silverstein RL. Thymidine phosphorylase participates in platelet signaling and promotes thrombosis. Circ Res 2014; 115:997-1006. [PMID: 25287063 DOI: 10.1161/circresaha.115.304591] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. OBJECTIVE To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. METHODS AND RESULTS By using a ferric chloride (FeCl3)-induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide-, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide- or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3-induced carotid artery thrombosis without affecting hemostasis. CONCLUSIONS TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Alba Gigante
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Maria-Jesus Perez-Perez
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Hong Yue
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Michio Hirano
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Thomas M McIntyre
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Roy L Silverstein
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| |
Collapse
|
19
|
Kłossowicz M, Marek-Bukowiec K, Arbulo-Echevarria MM, Ścirka B, Majkowski M, Sikorski AF, Aguado E, Miazek A. Identification of functional, short-lived isoform of linker for activation of T cells (LAT). Genes Immun 2014; 15:449-56. [PMID: 25008862 DOI: 10.1038/gene.2014.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/04/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Linker for activation of T cells (LAT) is a transmembrane adaptor protein playing a key role in the development, activation and maintenance of peripheral homeostasis of T cells. In this study we identified a functional isoform of LAT. It originates from an intron 6 retention event generating an in-frame splice variant of LAT mRNA denoted as LATi6. Comparison of LATi6 expression in peripheral blood leukocytes of human and several other mammalian species revealed that it varied from being virtually absent in the mouse to being predominant in the cow. Analysis of LAT isoform frequency expressed from minigene splicing reporters carrying loss- or gain-of-function point mutations within intronic polyguanine sequences showed that these elements are critical for controlling the intron 6 removal. The protein product of LATi6 isoform (LATi6) ectopically expressed in LAT-deficient JCam 2.5 cell line localized correctly to subcellular compartments and supported T-cell receptor signaling but differed from the canonical LAT protein by displaying a shorter half-life and mediating an increased interleukin-2 secretion upon prolonged CD3/CD28 crosslinking. Altogether, our data suggest that the appearance of LATi6 isoform is an evolutionary innovation that may contribute to a more efficient proofreading control of effector T-cell response.
Collapse
Affiliation(s)
- M Kłossowicz
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - K Marek-Bukowiec
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cadiz, Spain
| | - B Ścirka
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Majkowski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wroclaw, Poland
| | - A F Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wroclaw, Poland
| | - E Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cadiz, Spain
| | - A Miazek
- 1] Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland [2] Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
20
|
Jones CI, Sage T, Moraes LA, Vaiyapuri S, Hussain U, Tucker KL, Barrett NE, Gibbins JM. Platelet endothelial cell adhesion molecule-1 inhibits platelet response to thrombin and von Willebrand factor by regulating the internalization of glycoprotein Ib via AKT/glycogen synthase kinase-3/dynamin and integrin αIIbβ3. Arterioscler Thromb Vasc Biol 2014; 34:1968-76. [PMID: 24969778 DOI: 10.1161/atvbaha.114.304097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.
Collapse
Affiliation(s)
- Chris I Jones
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom.
| | - Tanya Sage
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Leonardo A Moraes
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Sakthivel Vaiyapuri
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Umara Hussain
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Katherine L Tucker
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Natasha E Barrett
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Jonathan M Gibbins
- From the Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
21
|
Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS, Chang TS. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal 2014; 20:2528-40. [PMID: 24093153 PMCID: PMC4025609 DOI: 10.1089/ars.2013.5337] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The collagen-stimulated generation of reactive oxygen species (ROS) regulates signal transduction in platelets, although the mechanism is unclear. The major targets of ROS include protein tyrosine phosphatases (PTPs). ROS-mediated oxidation of the active cysteine site in PTPs abrogates the PTP catalytic activity. The aim of this study was to elucidate whether collagen-induced ROS generation leads to PTP oxidation, which promotes platelet stimulation. RESULTS SH2 domain-containing PTP-2 (SHP-2) is oxidized in platelets by ROS produced upon collagen stimulation. The oxidative inactivation of SHP-2 leads to the enhanced tyrosine phosphorylation of spleen tyrosine kinase (Syk), Vav1, and Bruton's tyrosine kinase (Btk) in the linker for the activation of T cells signaling complex, which promotes the tyrosine phosphorylation-mediated activation of phospholipase Cγ2 (PLCγ2). Moreover, we found that, relative to wild-type platelets, platelets derived from glutathione peroxidase 1 (GPx1)/catalase double-deficient mice showed enhanced cellular ROS levels, oxidative inactivation of SHP-2, and tyrosine phosphorylation of Syk, Vav1, Btk, and PLCγ2 in response to collagen, which subsequently led to increased intracellular calcium levels, degranulation, and integrin αIIbβ3 activation. Consistent with these findings, GPx1/catalase double-deficiency accelerated the thrombotic response in FeCl3-injured carotid arteries. INNOVATION The present study is the first to demonstrate that SHP-2 is targeted by ROS produced in collagen-stimulated platelets and suggests that a novel mechanism for the regulation of platelet activation by ROS is due to oxidative inactivation of SHP-2. CONCLUSION We conclude that collagen-induced ROS production leads to SHP-2 oxidation, which promotes platelet activation by upregulating tyrosine phosphorylation-based signal transduction.
Collapse
Affiliation(s)
- Ji Yong Jang
- 1 Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University , Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
CD31 is a key coinhibitory receptor in the development of immunogenic dendritic cells. Proc Natl Acad Sci U S A 2014; 111:E1101-10. [PMID: 24616502 DOI: 10.1073/pnas.1314505111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD31 is a transhomophilic tyrosine-based inhibitory motif receptor and is expressed by both dendritic cells (DCs) and T lymphocytes. Previous studies have established that the engagement of CD31 drives immune-inhibitory signaling in T lymphocytes, but the effect exerted by CD31 signaling in DCs remains elusive. Here, we show that CD31 is a key coinhibitory receptor on stimulated DCs, favoring the development of tolerogenic functions and finally resulting in T-cell tolerance. The disruption of CD31 signaling favored the immunogenic maturation and migration of resident DCs to the draining lymph nodes. In contrast, sustaining the CD31/SHP-1 signaling during DC maturation resulted in reduced NF-κB nuclear translocation, expression of costimulatory molecules, and production of immunogenic cytokines (e.g., IL-12, IL-6), whereas the expression of TGF-β and IL-10 were increased. More importantly, CD31-conditioned DCs purified from the draining lymph nodes of ovalbumin-immunized mice favored the generation of antigen-specific regulatory T cells (CD25(+) forkhead box P3(+)) at the expense of effector (IFN-γ(+)) cells upon coculture with naive ovalbumin-specific CD4(+) T lymphocytes ex vivo. Finally, the adoptive transfer of CD31-conditioned myelin oligodendrocyte glycoprotein-loaded DCs carried immune tolerance against the subsequent development of MOG-induced experimental autoimmune encephalomyelitis in vivo. The key coinhibitory role exerted by CD31 on DCs highlighted by the present study may have important implications both in settings where the immunogenic function of DCs is desirable, such as infection and cancer, and in settings where tolerance-driving DCs are preferred, such as autoimmune diseases and transplantation.
Collapse
|
23
|
Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 2013; 11:1800-13. [PMID: 24015866 DOI: 10.1111/jth.12359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 08/31/2023]
Abstract
Platelet activation must be tightly controlled in order to allow platelets to respond rapidly to vascular injury and prevent thrombosis from occurring. Protein-tyrosine phosphorylation is one of the main ways in which activation signals are transmitted in platelets. Although much is known about the protein-tyrosine kinases (PTKs) that initiate and propagate activation signals, relatively little is known about the protein-tyrosine phosphatases (PTPs) that modulate these signals in platelets. PTPs are a family of enzymes that dephosphorylate tyrosine residues in proteins and regulate signals transmitted within cells. PTPs have been implicated in a variety of pathological conditions, including cancer, diabetes and autoimmunity, but their functions in hemostasis and thrombosis remain largely undefined. Exciting new findings from a number of groups have revealed that PTPs are in fact critical regulators of platelet activation and thrombosis. The primary aim of this review is to highlight the unique and important functions of PTPs in regulating platelet activity. Establishing the functions of PTPs in platelets is essential to better understand the molecular basis of thrombosis and may lead to the development of improved antithrombotic therapies.
Collapse
Affiliation(s)
- Y A Senis
- Centre for Cardiovascular and Respiratory Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
24
|
Abstract
Statins are widely prescribed cholesterol-lowering drugs that are a first-line treatment of coronary artery disease and atherosclerosis, reducing the incidence of thrombotic events such as myocardial infarction and stroke. Statins have been shown to reduce platelet activation, although the mechanism(s) through which this occurs is unclear. Because several of the characteristic effects of statins on platelets are shared with those elicited by the inhibitory platelet adhesion receptor PECAM-1 (platelet endothelial cell adhesion molecule-1), we investigated a potential connection between the influence of statins on platelet function and PECAM-1 signaling. Statins were found to inhibit a range of platelet functional responses and thrombus formation in vitro and in vivo. Notably, these effects of statins on platelet function in vitro and in vivo were diminished in PECAM-1(-/-) platelets. Activation of PECAM-1 signaling results in its tyrosine phosphorylation, the recruitment and activation of tyrosine phosphatase SHP-2, the subsequent binding of phosphoinositol 3-kinase (PI3K), and diminished PI3K signaling. Statins resulted in the stimulation of these events, leading to the inhibition of Akt activation. Together, these data provide evidence for a fundamental role of PECAM-1 in the inhibitory effects of statins on platelet activation, which may explain some of the pleiotropic actions of these drugs.
Collapse
|
25
|
Sahebkar A, Morris DR, Biros E, Golledge J. Association of single nucleotide polymorphisms in the gene encoding platelet endothelial cell adhesion molecule-1 with the risk of myocardial infarction: a systematic review and meta-analysis. Thromb Res 2013; 132:227-33. [PMID: 23906939 DOI: 10.1016/j.thromres.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) within the platelet endothelial cell adhesion molecule-1 (PECAM-1) gene have been proposed as predisposing factors for myocardial infarction (MI) but published reports have given conflicting findings. OBJECTIVE The present study aimed to clarify the association between SNPs in PECAM-1 and MI using a meta-analysis of published studies. METHODS Medline, HuGE Navigator and SCOPUS Library databases were searched to identify case-control studies which examined the association of SNPs in PECAM-1 and MI. Data were extracted using standardized methods. Combined odds ratios (OR) with 95% confidence intervals (CI) for the association of SNPs with MI were calculated using a random effect approach and under additive, dominant and recessive models of inheritance. RESULTS A total of 7 studies comprising 3886 cases and 4097 controls fulfilled the inclusion criteria. Three SNPs in PECAM-1 were investigated, namely rs668 (Leu125Val), rs12953 (Ser563Asn) and rs1131012 (Arg670Gly). The GG genotype of rs1131012 was associated with a reduced risk of MI under a recessive (OR: 0.81; 95%CI: 0.69-0.94; p=0.010), but not additive and dominant models (p>0.05). This association was robust in sensitivity analyses and not subject to heterogeneity. No significant association was detected between rs668 and rs12953 with MI under any of the inheritance models. CONCLUSION The results of the current meta-analysis suggest that homozygous polymorphic genotype (GG) of the rs1131012 SNP may confer protection against MI. The impact of this variant on the expression and function of PECAM-1 needs to be elucidated in future investigations.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
26
|
Brass LF, Tomaiuolo M, Stalker TJ. Harnessing the platelet signaling network to produce an optimal hemostatic response. Hematol Oncol Clin North Am 2013; 27:381-409. [PMID: 23714305 DOI: 10.1016/j.hoc.2013.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Once released into the circulation by megakaryocytes, circulating platelets can undergo rapid activation at sites of vascular injury and resist unwarranted activation, which can lead to heart attacks and strokes. Historically, the signaling mechanisms underlying the regulation of platelet activation have been approached as a collection of individual pathways unique to agonist. This review takes a different approach, casting platelet activation as the product of a signaling network, in which activating and restraining mechanisms interact in a flexible network that regulates platelet adhesiveness, cohesion between platelets, granule secretion, and the formation of a stable hemostatic thrombus.
Collapse
Affiliation(s)
- Lawrence F Brass
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
27
|
Abstract
Abstract
Understanding the cellular mechanisms of platelet activation and their pharmacologic modulation is of major interest for basic and clinical research. Here we introduce a comprehensive human platelet repository (PlateletWeb) for systems biologic analysis of platelets in the functional context of integrated networks. Functional, drug, and pathway associations provide a first systemic insight into various aspects of platelet functionality and pharmacologic regulation. Detailed manual curation of recent platelet proteome and transcriptome studies yielded more than 5000 platelet proteins. Integration of protein-protein interactions with kinase-substrate relationships unraveled the platelet signaling network involving more than 70% of all platelet proteins. Analysis of the platelet kinome in the context of the kinase phylogenetic background revealed an over-representation of tyrosine kinase substrates. The extraction and graphical visualization of specific subnetworks allow identification of all major signaling modules involved in activation and inhibition. An in-depth analysis of DOK1 signaling identifies putative signal modulators of the integrin network. Through integration of various information sources and high curation standards, the PlateletWeb knowledge base offers the systems biologic background for the investigation of signal transduction in human platelets (http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de).
Collapse
|
28
|
Abstract
This chapter summarizes current ideas about the intracellular signaling that drives platelet responses to vascular injury. After a brief overview of platelet activation intended to place the signaling pathways into context, the first section considers the early events of platelet activation leading up to integrin activation and platelet aggregation. The focus is on the G protein-mediated events utilized by agonists such as thrombin and ADP, and the tyrosine kinase-based signaling triggered by collagen. The second section considers the events that occur after integrin engagement, some of which are dependent on close physical contact between platelets. A third section addresses the regulatory events that help to avoid unprovoked or excessive platelet activation, after which the final section briefly considers individual variations in platelet reactivity and the role of platelet signaling in the innate immune response and embryonic development.
Collapse
Affiliation(s)
- Timothy J Stalker
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Three classes of inhibitors of platelet aggregation have demonstrated substantial clinical benfits. Aspirin acts by irreversibly inhibiting COX-1 and therefore blocking the synthesis of proaggregatory thromboxane A (2) (TxA(2)). The indirect acting (ticlopidine, clopidogrel, prasugrel) and the direct acting (ticagrelor) antagonists of P2Y(12) block the thrombus stabilizing activity of ADP. Parenteral GP IIb-IIIa inhibitors directly block platelet-platelet interactions. Despite well-established benefits, all antiplatelet agents have important limitations: increased bleeding and gastrointestinal toxicities (aspirin), high incidence of thrombotic thrombocytopenic purpura (ticlopidine), potentially nonresponders (clopidogrel), severe bleeding (prasugrel, GP IIb-IIIa antagonists) and "complicated" relationships with aspirin ticagrelor). In this chapter, we present the genetic and pharmacological evidence that supports the development and expectations associated with novel antiplatelet strategies directed at intrasignaling pathways.
Collapse
Affiliation(s)
- Patrick Andre
- Portola Pharmaceuticals Inc, 270 E. Grand Avenue, Suite 22 South, San Francisco, CA 94080, USA.
| |
Collapse
|
30
|
Jones CI, Moraes LA, Gibbins JM. Regulation of platelet biology by platelet endothelial cell adhesion molecule-1. Platelets 2011; 23:331-5. [PMID: 22035359 DOI: 10.3109/09537104.2011.626091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation.
Collapse
Affiliation(s)
- Chris I Jones
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.
| | | | | |
Collapse
|
31
|
Brass LF, Wannemacher KM, Ma P, Stalker TJ. Regulating thrombus growth and stability to achieve an optimal response to injury. J Thromb Haemost 2011; 9 Suppl 1:66-75. [PMID: 21781243 PMCID: PMC3422128 DOI: 10.1111/j.1538-7836.2011.04364.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An optimal platelet response to injury can be defined as one in which blood loss is restrained and haemostasis is achieved without the penalty of further tissue damage caused by unwarranted vascular occlusion. This brief review considers some of the ways in which thrombus growth and stability can be regulated so that an optimal platelet response can be achieved in vivo. Three related topics are considered. The first focuses on intracellular mechanisms that regulate the early events of platelet activation downstream of G protein coupled receptors for agonists such as thrombin, thromboxane A(2) and ADP. The second considers the ways in which signalling events that are dependent on stable contacts between platelets can influence the state of platelet activation and thus affect thrombus growth and stability. The third focuses on the changes that are experienced by platelets as they move from their normal environment in freely-flowing plasma to a very different environment within the growing haemostatic plug, an environment in which the narrowing gaps and junctions between platelets not only facilitate communication, but also increasingly limit both the penetration of plasma and the exodus of platelet-derived bioactive molecules.
Collapse
Affiliation(s)
- L F Brass
- Department of Medicine and Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|