1
|
Rhouma M, Lachapelle V, Comeau G, Quessy S, Zanabria R, Provost F, Italiano C, Holley R, Smillie J, Brockhoff E, Bosch ML, Collins S, Dumas A, Chorfi Y, Costa M, Gaucher ML, Racicot M. Identification and selection of animal health and food safety-related risk factors to be included in the Canadian Food Inspection Agency's risk assessment model for livestock feed mills. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Leiva A, Granados-Chinchilla F, Redondo-Solano M, Arrieta-González M, Pineda-Salazar E, Molina A. Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poult Sci 2018; 97:2159-2169. [PMID: 29562297 PMCID: PMC5972599 DOI: 10.3382/ps/pey058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Animal by-product rendering establishments are still relevant industries worldwide. Animal by-product meal safety is paramount to protect feed, animals, and the rest of the food chain from unwanted contamination. As microbiological contamination may arise from inadequate processing of slaughterhouse waste and deficiencies in good manufacturing practices within the rendering facilities, we conducted an overall establishment's inspection, including the product in several parts of the process.An evaluation of the Good Manufacturing Practices (GMP) was carried out, which included the location and access (i.e., admission) to the facilities, integrated pest management programs, physical condition of the facilities (e.g., infrastructure), equipments, vehicles and transportation, as well as critical control points (i.e., particle size and temperature set at 50 mm, 133°C at atmospheric pressure for 20 min, respectively) recommended by the OIE and the European Commission. The most sensitive points according to the evaluation are physical structure of the facilities (avg 42.2%), access to the facilities (avg 48.6%), and cleaning procedures (avg 51.4%).Also, indicator microorganisms (Salmonella spp., Clostridium spp., total coliforms, E. coli, E. coli O157:H7) were used to evaluate the safety in different parts of the animal meal production process. There was a prevalence of Salmonella spp. of 12.9, 14.3, and 33.3% in Meat and Bone Meal (MBM), poultry by-products, and fish meal, respectively. However, there were no significant differences (P = 0.73) in the prevalence between the different animal meals, according to the data collected.It was also observed that renderings associated with the poultry industry (i.e., 92.0%) obtained the best ratings overall, which reflects a satisfactory development of this sector and the integration of its production system as a whole.
Collapse
Affiliation(s)
- A Leiva
- Research Center in Animal Nutrition (CINA), University of Costa Rica
| | | | - M Redondo-Solano
- Research Center in Tropical Diseases (CIET) and Department of Microbiology, University of Costa Rica
| | - M Arrieta-González
- Research Center in Tropical Diseases (CIET) and Department of Microbiology, University of Costa Rica
| | - E Pineda-Salazar
- Research Center in Tropical Diseases (CIET) and Department of Microbiology, University of Costa Rica
| | - A Molina
- Research Center in Animal Nutrition (CINA), University of Costa Rica.,Department of Animal Science, University of Costa Rica
| |
Collapse
|
3
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Adkin A, Greiner M, Marchis D, Prado M, Da Silva Felicio T, Ortiz-Pelaez A, Simmons M. Updated quantitative risk assessment (QRA) of the BSE risk posed by processed animal protein (PAP). EFSA J 2018; 16:e05314. [PMID: 32625957 PMCID: PMC7009728 DOI: 10.2903/j.efsa.2018.5314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
EFSA was requested: to assess the impact of a proposed quantitative real-time polymerase chain reaction (qPCR) 'technical zero' on the limit of detection of official controls for constituents of ruminant origin in feed, to review and update the 2011 QRA, and to estimate the cattle bovine spongiform encephalopathy (BSE) risk posed by the contamination of feed with BSE-infected bovine-derived processed animal protein (PAP), should pig PAP be re-authorised in poultry feed and vice versa, using both light microscopy and ruminant qPCR methods, and action limits of 100, 150, 200, 250 and 300 DNA copies. The current qPCR cannot discriminate between legitimately added bovine material and unauthorised contamination, or determine if any detected ruminant material is associated with BSE infectivity. The sensitivity of the surveillance for the detection of material of ruminant origin in feed is currently limited due to the heterogeneous distribution of the material, practicalities of sampling and test performance. A 'technical zero' will further reduce it. The updated model estimated a total BSE infectivity four times lower than that estimated in 2011, with less than one new case of BSE expected to arise each year. In the hypothetical scenario of a whole carcass of an infected cow entering the feed chain without any removal of specified risk material (SRM) or reduction of BSE infectivity via rendering, up to four new cases of BSE could be expected at the upper 95th percentile. A second model estimated that at least half of the feed containing material of ruminant origin will not be detected or removed from the feed chain, if an interpretation cut-off point of 100 DNA copies or more is applied. If the probability of a contaminated feed sample increased to 5%, with an interpretation cut-off point of 300 DNA copies, there would be a fourfold increase in the proportion of all produced feed that is contaminated but not detected.
Collapse
|
4
|
Abstract
More than 250 different foodborne diseases have been described to date, annually affecting about one-third of the world's population. The incidence of foodborne diseases has been underreported and underestimated, and the asymptomatic presentation of some of the illnesses, worldwide heterogeneities in reporting, and the alternative transmission routes of certain pathogens are among the factors that contribute to this. Globalization, centralization of the food supply, transportation of food products progressively farther from their places of origin, and the multitude of steps where contamination may occur have made it increasingly challenging to investigate foodborne and waterborne outbreaks. Certain foodborne pathogens may be transmitted directly from animals to humans, while others are transmitted through vectors, such as insects, or through food handlers, contaminated food products or food-processing surfaces, or transfer from sponges, cloths, or utensils. Additionally, the airborne route may contribute to the transmission of certain foodborne pathogens. Complicating epidemiological investigations, multiple transmission routes have been described for some foodborne pathogens. Two types of transmission barriers, primary and secondary, have been described for foodborne pathogens, each of them providing opportunities for preventing and controlling outbreaks. Primary barriers, the most effective sites of prophylactic intervention, prevent pathogen entry into the environment, while secondary barriers prevent the multiplication and dissemination of pathogens that have already entered the environment. Understanding pathogen dynamics, monitoring transmission, and implementing preventive measures are complicated by the phenomenon of superspreading, which refers to the concept that, at the level of populations, a minority of hosts is responsible for the majority of transmission events.
Collapse
|
5
|
Murayama Y, Yoshioka M, Okada H, Takata E, Masujin K, Iwamaru Y, Shimozaki N, Yamamura T, Yokoyama T, Mohri S, Tsutsumi Y. Subcritical Water Hydrolysis Effectively Reduces the In Vitro Seeding Activity of PrPSc but Fails to Inactivate the Infectivity of Bovine Spongiform Encephalopathy Prions. PLoS One 2015; 10:e0144761. [PMID: 26675475 PMCID: PMC4682654 DOI: 10.1371/journal.pone.0144761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022] Open
Abstract
The global outbreak of bovine spongiform encephalopathy (BSE) has been attributed to the recycling of contaminated meat and bone meals (MBMs) as feed supplements. The use of MBMs has been prohibited in many countries; however, the development of a method for inactivating BSE prions could enable the efficient and safe use of these products as an organic resource. Subcritical water (SCW), which is water heated under pressure to maintain a liquid state at temperatures below the critical temperature (374°C), exhibits strong hydrolytic activity against organic compounds. In this study, we examined the residual in vitro seeding activity of protease-resistant prion protein (PrPSc) and the infectivity of BSE prions after SCW treatments. Spinal cord homogenates prepared from BSE-infected cows were treated with SCW at 230–280°C for 5–7.5 min and used to intracerebrally inoculate transgenic mice overexpressing bovine prion protein. Serial protein misfolding cyclic amplification (sPMCA) analysis detected no PrPSc in the SCW-treated homogenates, and the mice treated with these samples survived for more than 700 days without any signs of disease. However, sPMCA analyses detected PrPSc accumulation in the brains of all inoculated mice. Furthermore, secondary passage mice, which inoculated with brain homogenates derived from a western blotting (WB)-positive primary passage mouse, died after an average of 240 days, similar to mice inoculated with untreated BSE-infected spinal cord homogenates. The PrPSc accumulation and vacuolation typically observed in the brains of BSE-infected mice were confirmed in these secondary passage mice, suggesting that the BSE prions maintained their infectivity after SCW treatment. One late-onset case, as well as asymptomatic but sPMCA-positive cases, were also recognized in secondary passage mice inoculated with brain homogenates from WB-negative but sPMCA-positive primary passage mice. These results indicated that SCW-mediated hydrolysis was insufficient to eliminate the infectivity of BSE prions under the conditions tested.
Collapse
Affiliation(s)
- Yuichi Murayama
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Miyako Yoshioka
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- Research Area of Pathology and Pathophysiology, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Eri Takata
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Kentaro Masujin
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yoshifumi Iwamaru
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Noriko Shimozaki
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Tomoaki Yamamura
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Shirou Mohri
- Influenza/Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuji Tsutsumi
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
6
|
Scientific Opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1947] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|