1
|
Limpitikul WB, Dick IE. Inactivation of CaV1 and CaV2 channels. J Gen Physiol 2025; 157:e202313531. [PMID: 39883005 PMCID: PMC11781272 DOI: 10.1085/jgp.202313531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression. For CaV1 and CaV2 channel families, inactivation proceeds via two distinct processes. Voltage-dependent inactivation (VDI) reduces Ca2+ entry through the channel in response to sustained or repetitive depolarization, while Ca2+-dependent inactivation (CDI) occurs in response to elevations in intracellular Ca2+ levels. These processes are critical for physiological function and undergo exquisite fine-tuning through multiple mechanisms. Here, we review known determinants and modulatory features of these two critical forms of channel regulation and their role in normal physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Roston TM, Bezzerides VJ, Roberts JD, Abrams DJ. Management of ultrarare inherited arrhythmia syndromes. Heart Rhythm 2025; 22:832-843. [PMID: 39154872 DOI: 10.1016/j.hrthm.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Ultrarare inherited arrhythmia syndromes are increasingly diagnosed as a result of increased awareness as well as increased availability and reduced cost of genetic testing. Yet by definition, their rarity and heterogeneous expression make development of evidence-based management strategies more challenging, typically employing strategies garnered from similar genetic cardiac disorders. For the most part, reliance on anecdotal experiences, expert opinion, and small retrospective cohort studies is the only means to diagnose and to treat these patients. Here we review the management of specific ultrarare inherited arrhythmic syndromes together with the genetic and molecular basis, which will become increasingly important with the development of targeted therapies to correct the biologic basis of these disorders.
Collapse
Affiliation(s)
- Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vassilios J Bezzerides
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Timothy KW, Bauer R, Larkin KA, Walsh EP, Abrams DJ, Gonzalez Corcia C, Valsamakis A, Pitt GS, Dick IE, Golden A. A Natural History Study of Timothy Syndrome. Orphanet J Rare Dis 2024; 19:433. [PMID: 39580446 PMCID: PMC11585941 DOI: 10.1186/s13023-024-03445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Timothy syndrome (OMIM #601005) is a rare disease caused by variants in the gene CACNA1C. Initially, Timothy syndrome was characterized by a cardiac presentation of long QT syndrome and syndactyly of the fingers and/or toes, all associated with the CACNA1C variant, Gly406Arg. However, subsequent identification of diverse variants in CACNA1C has expanded the clinical spectrum, revealing various cardiac and extra-cardiac manifestations. It remains underexplored whether individuals with the canonical Gly406Arg variants in mutually exclusive exon 8A (Timothy syndrome 1) or exon 8 (Timothy syndrome 2) exhibit overlapping symptoms. Moreover, case reports have indicated that some CACNA1C variants may produce a cardiac-selective form of Timothy syndrome often referred to as non-syndromic long QT type 8 or cardiac-only Timothy syndrome, however few reports follow up on these patients to confirm the cardiac selectivity of the phenotype over time. METHODS A survey was administered to the parents of patients with Timothy syndrome, querying a broad range of symptoms and clinical features. Study participants were organized into 5 separate categories based on genotype and initial diagnosis, enabling comparison between groups of patients which have been described differentially in the literature. RESULTS Our findings reveal that Timothy syndrome patients commonly exhibit both cardiac and extra-cardiac features, with long QT syndrome, neurodevelopmental impairments, hypoglycemia, and respiratory issues being frequently reported. Notably, the incidence of these features was similar across all patient categories, including those diagnosed with non-syndromic long QT type 8, suggesting that the 'non-syndromic' classification may be incomplete. CONCLUSIONS This study represents the first Natural History Study of Timothy syndrome, offering a comprehensive overview of the disease's clinical manifestations. We demonstrate that both cardiac and extra-cardiac features are prevalent across all patient groups, underscoring the syndromic nature of CACNA1C variants. While the critical role of long QT syndrome and cardiac arrhythmias in Timothy syndrome has been well recognized, our findings indicate that hypoglycemia and respiratory dysfunction also pose significant life-threatening risks, emphasizing the need for comprehensive therapeutic management of affected individuals.
Collapse
Affiliation(s)
- Katherine W Timothy
- The Timothy Syndrome Foundation, Charitable Organization, Brigham City, UT, USA
| | - Rosemary Bauer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kerry A Larkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, USA
| | - Edward P Walsh
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Dominic J Abrams
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | | | - Alexandra Valsamakis
- Clinical Development and Medical Affairs, Roche Diagnostics Solutions, Pleasanton, CA, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ivy E Dick
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Zhao Z, Zang X, Niu K, Song W, Wang X, Mügge A, Aweimer A, Hamdani N, Zhou X, Zhao Y, Akin I, El-Battrawy I. Impacts of gene variants on drug effects-the foundation of genotype-guided pharmacologic therapy for long QT syndrome and short QT syndrome. EBioMedicine 2024; 103:105108. [PMID: 38653189 PMCID: PMC11041837 DOI: 10.1016/j.ebiom.2024.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.
Collapse
Affiliation(s)
- Zhihan Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaobiao Zang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Kerun Niu
- Department of Orthopaedic, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Weifeng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xianqing Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Andreas Mügge
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
| | - Assem Aweimer
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghui Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Jiang C, Zhang Y. Current updates on arrhythmia within Timothy syndrome: genetics, mechanisms and therapeutics. Expert Rev Mol Med 2023; 25:e17. [PMID: 37132248 PMCID: PMC10407238 DOI: 10.1017/erm.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
Timothy syndrome (TS), characterised by multiple system malfunction especially the prolonged corrected QT interval and synchronised appearance of hand/foot syndactyly, is an extremely rare disease affecting early life with devastating arrhythmia. In this work, firstly, the various mutations in causative gene CACNA1C encoding cardiac L-type voltage-gated calcium channel (LTCC), regard with the genetic pathogeny and nomenclature of TS are reviewed. Secondly, the expression profile and function of CACNA1C gene encoding Cav1.2 proteins, and its gain-of-function mutation in TS leading to multiple organ disease phenotypes especially arrhythmia are discussed. More importantly, we focus on the altered molecular mechanism underlying arrhythmia in TS, and discuss about how LTCC malfunction in TS can cause disorganised calcium handling with excessive intracellular calcium and its triggered dysregulated excitation-transcription coupling. In addition, current therapeutics for TS cardiac phenotypes including LTCC blockers, beta-adrenergic blocking agents, sodium channel blocker, multichannel inhibitors and pacemakers are summarised. Eventually, the research strategy using patient-specific induced pluripotent stem cells is recommended as one of the promising future directions for developing therapeutic approaches. This review updates our understanding on the research progress and future avenues to study the genetics and molecular mechanism underlying the pathogenesis of devastating arrhythmia within TS, and provides novel insights for developing therapeutic measures.
Collapse
Affiliation(s)
- Congshan Jiang
- National Regional Children's Medical Centre (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| | - Yanmin Zhang
- National Regional Children's Medical Centre (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| |
Collapse
|
7
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Bamgboye MA, Traficante MK, Owoyemi J, DiSilvestre D, Vieira DCO, Dick IE. Impaired Ca V1.2 inactivation reduces the efficacy of calcium channel blockers in the treatment of LQT8. J Mol Cell Cardiol 2022; 173:92-100. [PMID: 36272554 PMCID: PMC10583761 DOI: 10.1016/j.yjmcc.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.
Collapse
Affiliation(s)
- Moradeke A Bamgboye
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Maria K Traficante
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Josiah Owoyemi
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Daiana C O Vieira
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Ivy E Dick
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
9
|
Hermida A, Jedraszak G, Kubala M, Bourgain M, Bodeau S, Hermida JS. Use of ranolazine as rescue therapy in a patient with Timothy syndrome type 2. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:447-448. [PMID: 34844894 DOI: 10.1016/j.rec.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France; EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France.
| | - Guillaume Jedraszak
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France; Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France
| | - Maciej Kubala
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Marion Bourgain
- Pediatric Cardiology Department, Amiens-Picardie University Hospital, Amiens, France
| | - Sandra Bodeau
- Laboratory of Pharmacology and Toxicology, Amiens-Picardie University Hospital, Amiens, France
| | - Jean-Sylvain Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
10
|
Hermida A, Jedraszak G, Kubala M, Bourgain M, Bodeau S, Hermida JS. Uso de ranolazina en paciente con síndrome de Timothy tipo 2. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
12
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Hermida A, Jedraszak G, Kubala M, Mathiron A, Berna P, Bennis Y, Hermida JS. Long-term follow-up of a patient with type 2 Timothy syndrome and the partial efficacy of mexiletine. Gene 2021; 777:145465. [PMID: 33524520 DOI: 10.1016/j.gene.2021.145465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 11/15/2022]
Abstract
We report a detailed case of type 2 TS due to a p.(Gly402Ser) mutation in exon 8 of the CACNA1C gene. The patient shows a marked prolongation of repolarization with a mean QTc of 540 ms. He shows no structural heart disease, syndactyly, or cranio-facial abnormalities. However, he shows developmental delays, without autism, and dental abnormalities. The cardiac phenotype is very severe, with a resuscitated cardiac arrest at 2.5 years of age, followed by 26 appropriate shocks during nine years of follow-up. Adding mexiletine to nadolol resulted in a reduction of the QTc and a slight decrease in the number of appropriate shocks.
Collapse
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France.
| | - Guillaume Jedraszak
- Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France; EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France
| | - Maciej Kubala
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Amel Mathiron
- Pediatric Cardiology Department, Amiens-Picardie University Hospital, Amiens, France
| | - Pascal Berna
- Department of Thoracic Surgery Service, Amiens-Picardie University Hospital, Amiens, France
| | - Youssef Bennis
- Laboratory of Pharmacology and Toxicology, Amiens-Picardie University Hospital, Amiens, France
| | - Jean-Sylvain Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
14
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Kushner J, Ferrer X, Marx SO. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J Innov Card Rhythm Manag 2019; 10:3874-3880. [PMID: 32494407 PMCID: PMC7252866 DOI: 10.19102/icrm.2019.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Calcium flowing through voltage-dependent calcium channels into cardiomyocytes mediates excitation–contraction coupling, controls action-potential duration and automaticity in nodal cells, and regulates gene expression. Proper surface targeting and basal and hormonal regulation of calcium channels are vital for normal cardiac physiology. In this review, we discuss the roles of voltage-gated calcium channels in the heart and the mechanisms by which these channels are regulated by physiological signaling pathways in health and disease.
Collapse
Affiliation(s)
- Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xavier Ferrer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Ortmans S, Daval C, Aguilar M, Compagno P, Cadrin-Tourigny J, Dyrda K, Rivard L, Tadros R. Pharmacotherapy in inherited and acquired ventricular arrhythmia in structurally normal adult hearts. Expert Opin Pharmacother 2019; 20:2101-2114. [DOI: 10.1080/14656566.2019.1669561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Staniel Ortmans
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charline Daval
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Aguilar
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Electrophysiology service, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Compagno
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julia Cadrin-Tourigny
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Katia Dyrda
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Lena Rivard
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Electrophysiology service, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafik Tadros
- Electrophysiology service, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Physiology and Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Han D, Xue X, Yan Y, Li G. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside. Exp Biol Med (Maywood) 2019; 244:960-971. [PMID: 31324123 DOI: 10.1177/1535370219863149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timothy syndrome is a rare disorder caused by CACNA1C gene mutations and characterized by multi-organ system dysfunctions, including ventricular arrhythmias, syndactyly, dysmorphic facial features, intermittent hypoglycemia, immunodeficiency, developmental delay, and autism. Because of the low morbidity and high mortality at a young age, it remains a huge challenge to establish a diagnosis and treatment system to manage Timothy syndrome patients. Here, we aim to provide a detailed review of Timothy syndrome, discuss the mechanisms underlying dysfunctional Cav1.2 due to CACNA1C mutations, and provide some new emerging evidences in treating Timothy syndrome from cell to bedside, promoting the management of this rare disease. Impact statement The knowledge of Timothy syndrome (TS) caused by dysfunctional Cav1.2 channel due to CACNA1C mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of TS develops. In this review, we focus on the TS-related dysfunctional Cav1.2 and the underlying mechanisms. We update TS-related CACNA1C mutations in a precise way over the past 20 years and summarize all reported TS patients based on their clinical presentations and molecular mechanisms, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying TS from cell to bedside, promoting the management of TS in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China.,2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Xiaolin Xue
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Yang Yan
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P.R. China*These authors contributed equally to this work and should be considered to share first authorship
| | - Guoliang Li
- 1 Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| |
Collapse
|
18
|
Bazoukis G, Tse G, Letsas KP, Thomopoulos C, Naka KK, Korantzopoulos P, Bazoukis X, Michelongona P, Papadatos SS, Vlachos K, Liu T, Efremidis M, Baranchuk A, Stavrakis S, Tsioufis C. Impact of ranolazine on ventricular arrhythmias - A systematic review. J Arrhythm 2018; 34:124-128. [PMID: 29657587 PMCID: PMC5891418 DOI: 10.1002/joa3.12031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ranolazine is a new medication for the treatment of refractory angina. However, except its anti-anginal properties, it has been found to act as an anti-arrhythmic. The aim of our systematic review is to present the existing data about the impact of ranolazine in ventricular arrhythmias. We searched MEDLINE and Cochrane databases as well clinicaltrials.gov until September 1, 2017 to find all studies (clinical trials, observational studies, case reports/series) reported data about the impact of ranolazine in ventricular arrhythmias. Our search revealed 14 studies (3 clinical trials, 2 observational studies, 8 case reports, 1 case series). These data reported a beneficial impact of ranolazine in ventricular tachycardia/fibrillation, premature ventricular beats, and ICD interventions in different clinical settings. The existing data highlight the anti-arrhythmic properties of ranolazine in ventricular arrhythmias.
Collapse
Affiliation(s)
- George Bazoukis
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Gary Tse
- Department of Medicine and TherapeuticsFaculty of MedicineChinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health SciencesFaculty of MedicineChinese University of Hong KongHong KongChina
| | - Konstantinos P. Letsas
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | | | - Katerina K. Naka
- Second Department of CardiologySchool of MedicineUniversity of IoanninaIoanninaGreece
| | | | - Xenophon Bazoukis
- Department of CardiologyGeneral Hospital of Ioannina, “G Hatzikosta”IoanninaGreece
| | - Paschalia Michelongona
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Stamatis S. Papadatos
- FacultyDepartment of Internal MedicineAthens School of MedicineSotiria General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Konstantinos Vlachos
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Tong Liu
- Department of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Michael Efremidis
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Adrian Baranchuk
- Division of Cardiology, Electrophysiology and PacingKingston General HospitalQueen's UniversityKingstonONCanada
| | | | - Costas Tsioufis
- First Cardiology ClinicHippokration HospitalUniversity of AthensAthensGreece
| |
Collapse
|
19
|
El-Sherif N, Turitto G, Boutjdir M. Congenital Long QT syndrome and torsade de pointes. Ann Noninvasive Electrocardiol 2017; 22. [PMID: 28670758 DOI: 10.1111/anec.12481] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Since its initial description by Jervell and Lange-Nielsen in 1957, the congenital long QT syndrome (LQTS) has been the most investigated cardiac ion channelopathy. A prolonged QT interval in the surface electrocardiogram is the sine qua non of the LQTS and is a surrogate measure of the ventricular action potential duration (APD). Congenital as well as acquired alterations in certain cardiac ion channels can affect their currents in such a way as to increase the APD and hence the QT interval. The inhomogeneous lengthening of the APD across the ventricular wall results in dispersion of APD. This together with the tendency of prolonged APD to be associated with oscillations at the plateau level, termed early afterdepolarizations (EADs), provides the substrate of ventricular tachyarrhythmia associated with LQTS, usually referred to as torsade de pointes (TdP) VT. This review will discuss the genetic, molecular, and phenotype characteristics of congenital LQTS as well as current management strategies and future directions in the field.
Collapse
Affiliation(s)
- Nabil El-Sherif
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA.,VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Gioia Turitto
- NewYork-Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Mohamed Boutjdir
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA.,VA NY Harbor Healthcare System, Brooklyn, NY, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Abstract
L-type calcium channel CaV1.2 plays an essential role in cardiac function. The gain-of-function mutations in CaV1.2 have been reported to be associated with Timothy syndrome, a disease characterized by QT prolongation and syndactyly. Previously we demonstrated that roscovitine, a cyclin-dependent kinase (CDK) inhibitor, could rescue the phenotypes in induced pluripotent stem cell-derived cardiomyocytes from Timothy syndrome patients. However, exactly how roscovitine rescued the phenotypes remained unclear. Here we report a mechanism potentially underlying the therapeutic effects of roscovitine on Timothy syndrome cardiomyocytes. Our results using roscovitine analogs and CDK inhibitors and constructs demonstrated that roscovitine exhibits its therapeutic effects in part by inhibiting CDK5. The outcomes of this study allowed us to identify a molecular mechanism whereby CaV1.2 channels are regulated by CDK5. This study provides insights into the regulation of cardiac calcium channels and the development of future therapeutics for Timothy syndrome patients. CDK5 Inhibition alleviates the phenotypes in Timothy syndrome cardiomyocytes CDK5 regulates the functions of CaV1.2 channels in cardiomyocytes
Collapse
|
21
|
Karagueuzian HS, Pezhouman A, Angelini M, Olcese R. Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Front Pharmacol 2017; 8:36. [PMID: 28220073 PMCID: PMC5292429 DOI: 10.3389/fphar.2017.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022] Open
Abstract
While recent advances clarified the molecular and cellular modes of action of antiarrhythmic drugs (AADs), their link to suppression of dynamical arrhythmia mechanisms remains only partially understood. The current classifications of AADs (Classes I, III, and IV) rely on blocking peak Na, K and L-type calcium currents (ICa,L), with Class II with dominant beta receptor blocking activity and Class V including drugs with diverse classes of actions. The discovery that the calcium and redox sensor, cardiac Ca/calmodulin-dependent protein kinase II (CaMKII) enhances both the late Na (INa-L) and the late ICa,L in patients at high risk of VT/VF provided a new and a rational AAD target. Pathological rise of either or both of INa-L and late ICa,L are demonstrated to promote cellular early afterdepolarizations (EADs) and EAD-mediated triggered activity that can initiate VT/VF in remodeled hearts. Selective inhibition of the INa-L without affecting their peak transients with the highly specific prototype drug, GS-967 suppresses these EAD-mediated VT/VFs. As in the case of INa-L, selective inhibition of the late ICa,L without affecting its peak with the prototype drug, roscovitine suppressed oxidative EAD-mediated VT/VF. These findings indicate that specific blockers of the late inward currents without affecting their peaks (gating modifiers), offer a new and effective AAD class action i.e., “Class VI.” The development of safe drugs with selective Class VI actions provides a rational and effective approach to treat VT/VF particularly in cardiac conditions associated with enhanced CaMKII activity such as heart failure.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Arash Pezhouman
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Riccardo Olcese
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Physiology, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
22
|
Dick IE, Joshi-Mukherjee R, Yang W, Yue DT. Arrhythmogenesis in Timothy Syndrome is associated with defects in Ca(2+)-dependent inactivation. Nat Commun 2016; 7:10370. [PMID: 26822303 PMCID: PMC4740114 DOI: 10.1038/ncomms10370] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Timothy Syndrome (TS) is a multisystem disorder, prominently featuring cardiac action potential prolongation with paroxysms of life-threatening arrhythmias. The underlying defect is a single de novo missense mutation in CaV1.2 channels, either G406R or G402S. Notably, these mutations are often viewed as equivalent, as they produce comparable defects in voltage-dependent inactivation and cause similar manifestations in patients. Yet, their effects on calcium-dependent inactivation (CDI) have remained uncertain. Here, we find a significant defect in CDI in TS channels, and uncover a remarkable divergence in the underlying mechanism for G406R versus G402S variants. Moreover, expression of these TS channels in cultured adult guinea pig myocytes, combined with a quantitative ventricular myocyte model, reveals a threshold behaviour in the induction of arrhythmias due to TS channel expression, suggesting an important therapeutic principle: a small shift in the complement of mutant versus wild-type channels may confer significant clinical improvement. Timothy Syndrome (TS) is a multisystem disorder caused by two mutations leading to dysfunction of the CaV1.2 channel. Here, Dick et al. uncover a major and mechanistically divergent effect of both mutations on Ca2+/calmodulin-dependent inactivation of CaV1.2 channels, suggesting genetic variant-tailored therapy for TS treatment.
Collapse
Affiliation(s)
- Ivy E Dick
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Rosy Joshi-Mukherjee
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Wanjun Yang
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - David T Yue
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
23
|
Abstract
In the last decade, there have been considerable advances in the understanding of the pathophysiology of malignant ventricular tachyarrhythmias (VT) and sudden cardiac death (SCD). Over 80% of SCD occurs in patients with organic heart disease. However, approximately 10%-15% of SCD occurs in the presence of structurally normal heart, and the majority of these patients are young. In this group of patients, changes in genes encoding cardiac ion channels produce modifications of the function of the channel resulting in an electrophysiological substrate of VT and SCD. Collectively, these disorders are referred to as cardiac ion channelopathies. The four major syndromes in this group are: the long QT syndrome (LQTS), the Brugada syndrome (BrS), the short QT syndrome (SQTS), and the catecholaminergic polymorphic ventricular tachycardia (CPVT). Each of these syndromes includes multiple subtypes with different and sometimes complex cardiac ion channel genetic abnormalities. Many are associated with other somatic and neurological abnormalities besides the risk of VT and SCD. The current management of cardiac ion channelopathies can be summarized as follows: (1) in symptomatic patients, the implantable cardioverter defibrillator (ICD) is the only viable option; (2) in asymptomatic patients, risk stratification is necessary, followed by either the ICD, pharmacotherapy, or a combination of both. A genotype-specific approach to pharmacotherapy requires a thorough understanding of the molecular-cellular basis of arrhythmogenesis in cardiac ion channelopathies as well as the specific drug profile.
Collapse
|
24
|
Herrera JA, Ward CS, Pitcher MR, Percy AK, Skinner S, Kaufmann WE, Glaze DG, Wehrens XHT, Neul JL. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs. Dis Model Mech 2015; 8:363-71. [PMID: 25713300 PMCID: PMC4381335 DOI: 10.1242/dmm.020131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/12/2015] [Indexed: 12/11/2022] Open
Abstract
One quarter of deaths associated with Rett syndrome (RTT), an X-linked neurodevelopmental disorder, are sudden and unexpected. RTT is associated with prolonged QTc interval (LQT), and LQT-associated cardiac arrhythmias are a potential cause of unexpected death. The standard of care for LQT in RTT is treatment with β-adrenergic antagonists; however, recent work indicates that acute treatment of mice with RTT with a β-antagonist, propranolol, does not prevent lethal arrhythmias. In contrast, acute treatment with the Na+ channel blocker phenytoin prevented arrhythmias. Chronic dosing of propranolol may be required for efficacy; therefore, we tested the efficacy of chronic treatment with either propranolol or phenytoin on RTT mice. Phenytoin completely abolished arrhythmias, whereas propranolol showed no benefit. Surprisingly, phenytoin also normalized weight and activity, but worsened breathing patterns. To explore the role of Na+ channel blockers on QT in people with RTT, we performed a retrospective analysis of QT status before and after Na+ channel blocker antiepileptic therapies. Individuals with RTT and LQT significantly improved their QT interval status after being started on Na+ channel blocker antiepileptic therapies. Thus, Na+ channel blockers should be considered for the clinical management of LQT in individuals with RTT.
Collapse
Affiliation(s)
- José A Herrera
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Christopher S Ward
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Meagan R Pitcher
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel G Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Neul
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
van Hoeijen DA, Blom MT, Tan HL. Cardiac sodium channels and inherited electrophysiological disorders: an update on the pharmacotherapy. Expert Opin Pharmacother 2014; 15:1875-87. [PMID: 24992280 DOI: 10.1517/14656566.2014.936380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Since the recognition of inherited sodium (Na(+)) channel disease, the cardiac Na(+) channel has been extensively studied. Both loss-of-function and gain-of-function mutations of the cardiac Na(+) channel are associated with cardiac arrhythmia and sudden cardiac death. Pathophysiological mechanisms that may induce arrhythmia are unravelled and include alterations in biophysical properties due to the mutation in SCN5A, drug use and circumstantial factors. Insights into the mechanisms of inherited Na(+) channel disease may result in tailored therapy. However, due to the complexity of cardiac electrical activity and pathophysiological mechanisms, pharmacotherapy in cardiac Na(+) channel disease remains challenging. AREAS COVERED This review discusses various mechanisms involved in inherited Na(+) channel disorders, focussing on Brugada syndrome (Brs) and long QT syndrome type 3 (LQTS3). It aims to provide an overview of developments in pharmacotherapy, discussing both treatment and which drugs to avoid to prevent arrhythmia. EXPERT OPINION Altered biophysical properties of cardiac Na(+) channels are the basis of arrhythmias in patients with inherited Na(+) channel diseases such as BrS and LQTS3. The effects of such biophysical derangements are strongly modulated by concomitant factors. Tailored drug therapy is required to prevent arrhythmia and is best achieved by educating patients affected by Na(+) channel disorders.
Collapse
Affiliation(s)
- Daniel A van Hoeijen
- University of Amsterdam, Academic Medical Center, Department of Cardiology , P.O. Box 22660, 1100 DD, Amsterdam , The Netherlands +0031 20 566 3264 ; +0031 20 566 9131 ;
| | | | | |
Collapse
|
26
|
Fröhler S, Kieslich M, Langnick C, Feldkamp M, Opgen-Rhein B, Berger F, Will JC, Chen W. Exome sequencing helped the fine diagnosis of two siblings afflicted with atypical Timothy syndrome (TS2). BMC MEDICAL GENETICS 2014; 15:48. [PMID: 24773605 PMCID: PMC4038115 DOI: 10.1186/1471-2350-15-48] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Long-QT syndrome (LQTS) causes a prolongation of the QT-interval in the ECG leading to life threatening tachyarrhythmia and ventricular fibrillation. One atypical form of LQTS, Timothy syndrome (TS), is associated with syndactyly, immune deficiency, cognitive and neurological abnormalities as well as distinct cranio-facial abnormalities. CASE PRESENTATION On a family with both children diagnosed with clinical LQTS, we performed whole exome sequencing to comprehensively screen for causative mutations after a targeted candidate gene panel screen for Long-QT syndrome target genes failed to identify any underlying genetic defect. Using exome sequencing, we identified in both affected children, a p.402G > S mutation in exon 8 of the CACNA1C gene, a voltage-dependent Ca2+ channel. The mutation was inherited from their father, a mosaic mutation carrier. Based on this molecular finding and further more careful clinical examination, we refined the diagnosis to be Timothy syndrome (TS2) and thereby were able to present new therapeutic approaches. CONCLUSIONS Our study highlights the difficulties in accurate diagnosis of patients with rare diseases, especially those with atypical clinical manifestation. Such challenge could be addressed with the help of comprehensive and unbiased mutation screening, such as exome sequencing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joachim C Will
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str, 10, Berlin 13125, Germany.
| | | |
Collapse
|
27
|
Remme CA, Wilde AAM. Targeting sodium channels in cardiac arrhythmia. Curr Opin Pharmacol 2013; 15:53-60. [PMID: 24721654 DOI: 10.1016/j.coph.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 12/15/2022]
Abstract
Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical, genetic and biophysical characteristics of cardiac sodium channel disease have been extensively studied, limited progress has been made in the development of treatment strategies targeting sodium channels. Classical non-selective sodium channel blockers have only limited clinical applicability, while more selective inhibitors of the late sodium current constitute a more promising treatment option. Because of our insufficient understanding of their complexity and subcellular diversity, other specific therapeutic targets for modulating sodium channels remain elusive. The current status and future potential of targeting sodium channels in cardiac arrhythmias are discussed.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
28
|
Late sodium current inhibition in acquired and inherited ventricular (dys)function and arrhythmias. Cardiovasc Drugs Ther 2013; 27:91-101. [PMID: 23292167 DOI: 10.1007/s10557-012-6433-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The late sodium current has been increasingly recognized for its mechanistic role in various cardiovascular pathologies, including angina pectoris, myocardial ischemia, atrial fibrillation, heart failure and congenital long QT syndrome. Although relatively small in magnitude, the late sodium current (I(NaL)) represents a functionally relevant contributor to cardiomyocyte (electro)physiology. Many aspects of I(NaL) itself are as yet still unresolved, including its distribution and function in different cell types throughout the heart, and its regulation by sodium channel accessory proteins and intracellular signalling pathways. Its complexity is further increased by a close interrelationship with the peak sodium current and other ion currents, hindering the development of inhibitors with selective and specific properties. Thus, increased knowledge of the intricacies of the complex nature of I(NaL) during distinct cardiovascular conditions and its potential as a pharmacological target is essential. Here, we provide an overview of the functional and electrophysiological effects of late sodium current inhibition on the level of the ventricular myocyte, and its potential cardioprotective and anti-arrhythmic efficacy in the setting of acquired and inherited ventricular dysfunction and arrhythmias.
Collapse
|
29
|
Gao Y, Xue X, Hu D, Liu W, Yuan Y, Sun H, Li L, Timothy KW, Zhang L, Li C, Yan GX. Inhibition of Late Sodium Current by Mexiletine. Circ Arrhythm Electrophysiol 2013; 6:614-22. [PMID: 23580742 DOI: 10.1161/circep.113.000092] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuanfeng Gao
- Heart Center, Peking University People's Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cohen-Kutner M, Yahalom Y, Trus M, Atlas D. Calcineurin Controls Voltage-Dependent-Inactivation (VDI) of the Normal and Timothy Cardiac Channels. Sci Rep 2012; 2:366. [PMID: 22511998 PMCID: PMC3328044 DOI: 10.1038/srep00366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/22/2012] [Indexed: 12/25/2022] Open
Abstract
Ca2+-entry in the heart is tightly controlled by Cav1.2 inactivation, which involves Ca2+-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) components. Timothy syndrome, a subtype-form of congenital long-QT syndrome, results from a nearly complete elimination of VDI by the G406R mutation in the α11.2 subunit of Cav1.2. Here, we show that a single (A1929P) or a double mutation (H1926A-H1927A) within the CaN-binding site at the human C-terminal tail of α11.2, accelerate the inactivation rate and enhances VDI of both wt and Timothy channels. These results identify the CaN-binding site as the long-sought VDI-regulatory motif of the cardiac channel. The substantial increase in VDI and the accelerated inactivation caused by the selective inhibitors of CaN, cyclosporine A and FK-506, which act at the same CaN-binding site, further support this conclusion. A reversal of enhanced-sympathetic tone by VDI-enhancing CaN inhibitors could be beneficial for improving Timothy syndrome complications such as long-QT and autism.
Collapse
|
31
|
Krause U, Gravenhorst V, Kriebel T, Ruschewski W, Paul T. A rare association of long QT syndrome and syndactyly: Timothy syndrome (LQT 8). Clin Res Cardiol 2011; 100:1123-7. [PMID: 21915623 PMCID: PMC3222804 DOI: 10.1007/s00392-011-0358-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/25/2011] [Indexed: 02/06/2023]
|
32
|
Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res 2011; 108:607-18. [PMID: 21372292 DOI: 10.1161/circresaha.110.224279] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The L-type cardiac calcium channel (LTCC) plays a prominent role in the electric and mechanical function of the heart. Mutations in the LTCC have been associated with a number of inherited cardiac arrhythmia syndromes, including Timothy, Brugada, and early repolarization syndromes. Elucidation of the genetic defects associated with these syndromes has led to a better understanding of molecular and cellular mechanisms and the development of novel therapeutic approaches to dealing with the arrhythmic manifestations. This review provides an overview of the molecular structure and function of the LTCC, the genetic defects in these channels known to contribute to inherited disorders, and the underlying molecular and cellular mechanisms contributing to the development of life-threatening arrhythmias.
Collapse
Affiliation(s)
- Carlo Napolitano
- Executive Director and Director of Research, Gordon K. Moe Scholar, Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY 13501, USA.
| | | |
Collapse
|