1
|
Qian X, Jiang Y, Yang Y, Zhang Y, Xu N, Xu B, Pei K, Yu Z, Wu W. Recent advances of miR-23 in human diseases and growth development. Noncoding RNA Res 2025; 11:220-233. [PMID: 39896346 PMCID: PMC11787465 DOI: 10.1016/j.ncrna.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
MicroRNA (miRNA) is broadly manifested in eukaryotes and serves as a critical function in biological development and disease occurrence. With the rapid advancement of experimental research tools, researchers have discovered functional correlations among different miRNA isoforms and clusters within the same miRNA family. As a highly conserved member in the miR-23-27-24 cluster, miR-23 exhibits different isoforms and participates in various essential development. Although the miR-23-27-24 cluster has overlapping target sites, their differential expression can demonstrate independent biological functions. Furthermore, the untapped effects of miR-23 on organisms, whether as a functional cluster or a single regulator, has not been systematically elucidated yet. In this review article, we analyze the genomic location of miR-23 and its sequence variances among its isoforms or family members while summarizing its regulatory functions in metabolic diseases, immune responses, cardiovascular diseases, cancer, organ development as well as nervous system function. This review highlights the significant role of miR-23 as a biomarker for disease diagnosis and a key regulatory factor in pathogenesis, which can help us comprehend the diverse functions of miRNAs and provide a theoretical reference for the functional differences among miRNA isoforms.
Collapse
Affiliation(s)
- Xu Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yadi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yukun Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
3
|
Chowdhury D, Nayeem M, Vanderven HA, Sarker S. Role of miRNA in Highly Pathogenic H5 Avian Influenza Virus Infection: An Emphasis on Cellular and Chicken Models. Viruses 2024; 16:1102. [PMID: 39066264 PMCID: PMC11281567 DOI: 10.3390/v16071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The avian influenza virus, particularly the H5N1 strain, poses a significant and ongoing threat to both human and animal health. Recent outbreaks have affected domestic and wild birds on a massive scale, raising concerns about the virus' spread to mammals. This review focuses on the critical role of microRNAs (miRNAs) in modulating pro-inflammatory signaling pathways during the pathogenesis of influenza A virus (IAV), with an emphasis on highly pathogenic avian influenza (HPAI) H5 viral infections. Current research indicates that miRNAs play a significant role in HPAI H5 infections, influencing various aspects of the disease process. This review aims to synthesize recent findings on the impact of different miRNAs on immune function, viral cytopathogenicity, and respiratory viral replication. Understanding these mechanisms is essential for developing new therapeutic strategies to combat avian influenza and mitigate its effects on both human and animal populations.
Collapse
Affiliation(s)
- Dibakar Chowdhury
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Md. Nayeem
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh;
| | - Hillary A. Vanderven
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
4
|
Lozano-Velasco E, Garcia-Padilla C, Carmona-Garcia M, Gonzalez-Diaz A, Arequipa-Rendon A, Aranega AE, Franco D. MEF2C Directly Interacts with Pre-miRNAs and Distinct RNPs to Post-Transcriptionally Regulate miR-23a-miR-27a-miR-24-2 microRNA Cluster Member Expression. Noncoding RNA 2024; 10:32. [PMID: 38804364 PMCID: PMC11130849 DOI: 10.3390/ncrna10030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer of complexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting both transcriptional and post-transcriptional regulation. microRNAs represent the most studied and abundantly expressed subtype of small non-coding RNAs, and their functional roles have been widely documented. On the other hand, our knowledge of the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA expression is still incipient. We recently demonstrated that MEF2C is able to transactivate the long, but not short, regulatory element upstream of the miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression and silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster members without affecting pri-miRNA expression levels, thus supporting additional MEF2C-driven regulatory mechanisms. Within this study, we demonstrated a complex post-transcriptional regulatory mechanism directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members, distinctly involving different domains of the MEF2C transcription factor and the physical interaction with pre-miRNAs and Ksrp, HnRNPa3 and Ddx17 transcripts.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Miguel Carmona-Garcia
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Alba Gonzalez-Diaz
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Angela Arequipa-Rendon
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
5
|
Zhang Y, Chu Y, Lin S, Xiong Y, Wei DQ. ReHoGCNES-MDA: prediction of miRNA-disease associations using homogenous graph convolutional networks based on regular graph with random edge sampler. Brief Bioinform 2024; 25:bbae103. [PMID: 38517693 PMCID: PMC10959163 DOI: 10.1093/bib/bbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Numerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we introduced a computational framework named ReHoGCNES, designed for prospective miRNA-disease association prediction (ReHoGCNES-MDA). This method constructs homogenous graph convolutional network with regular graph structure (ReHoGCN) encompassing disease similarity network, miRNA similarity network and known MDA network and then was tested on four experimental tasks. A random edge sampler strategy was utilized to expedite processes and diminish training complexity. Experimental results demonstrate that the proposed ReHoGCNES-MDA method outperforms both homogenous graph convolutional network and heterogeneous graph convolutional network with non-regular graph structure in all four tasks, which implicitly reveals steadily degree distribution of a graph does play an important role in enhancement of model performance. Besides, ReHoGCNES-MDA is superior to several machine learning algorithms and state-of-the-art methods on the MDA prediction. Furthermore, three case studies were conducted to further demonstrate the predictive ability of ReHoGCNES. Consequently, 93.3% (breast neoplasms), 90% (prostate neoplasms) and 93.3% (prostate neoplasms) of the top 30 forecasted miRNAs were validated by public databases. Hence, ReHoGCNES-MDA might serve as a dependable and beneficial model for predicting possible MDAs.
Collapse
Affiliation(s)
- Yufang Zhang
- School of Mathematical Sciences and SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, China
| | - Yanyi Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China
| | - Dong-Qing Wei
- Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Martín-Bórnez M, Falcón D, Morrugares R, Siegfried G, Khatib AM, Rosado JA, Galeano-Otero I, Smani T. New Insights into the Reparative Angiogenesis after Myocardial Infarction. Int J Mol Sci 2023; 24:12298. [PMID: 37569674 PMCID: PMC10418963 DOI: 10.3390/ijms241512298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) causes massive loss of cardiac myocytes and injury to the coronary microcirculation, overwhelming the limited capacity of cardiac regeneration. Cardiac repair after MI is finely organized by complex series of procedures involving a robust angiogenic response that begins in the peri-infarcted border area of the infarcted heart, concluding with fibroblast proliferation and scar formation. Efficient neovascularization after MI limits hypertrophied myocytes and scar extent by the reduction in collagen deposition and sustains the improvement in cardiac function. Compelling evidence from animal models and classical in vitro angiogenic approaches demonstrate that a plethora of well-orchestrated signaling pathways involving Notch, Wnt, PI3K, and the modulation of intracellular Ca2+ concentration through ion channels, regulate angiogenesis from existing endothelial cells (ECs) and endothelial progenitor cells (EPCs) in the infarcted heart. Moreover, cardiac repair after MI involves cell-to-cell communication by paracrine/autocrine signals, mainly through the delivery of extracellular vesicles hosting pro-angiogenic proteins and non-coding RNAs, as microRNAs (miRNAs). This review highlights some general insights into signaling pathways activated under MI, focusing on the role of Ca2+ influx, Notch activated pathway, and miRNAs in EC activation and angiogenesis after MI.
Collapse
Affiliation(s)
- Marta Martín-Bórnez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Débora Falcón
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Rosario Morrugares
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Geraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France (A.-M.K.)
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France (A.-M.K.)
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003 Caceres, Spain;
| | - Isabel Galeano-Otero
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
7
|
Mavreli D, Theodora M, Avgeris M, Papantoniou N, Antsaklis P, Daskalakis G, Kolialexi A. First Trimester Maternal Plasma Aberrant miRNA Expression Associated with Spontaneous Preterm Birth. Int J Mol Sci 2022; 23:14972. [PMID: 36499299 PMCID: PMC9735892 DOI: 10.3390/ijms232314972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Spontaneous Preterm Delivery (sPTD) is one of the leading causes of perinatal mortality and morbidity worldwide. The present case−control study aims to detect miRNAs differentially expressed in the first trimester maternal plasma with the view to identify predictive biomarkers for sPTD, between 320/7 and 366/7 weeks, that will allow for timely interventions for this serious pregnancy complication. Small RNA sequencing (small RNA-seq) of five samples from women with a subsequent sPTD and their matched controls revealed significant down-regulation of miR-23b-5p and miR-125a-3p in sPTD cases compared to controls, whereas miR-4732-5p was significantly overexpressed. Results were confirmed by qRT-PCR in an independent cohort of 29 sPTD cases and 29 controls. Statistical analysis demonstrated that miR-125a is a promising early predictor for sPTL (AUC: 0.895; 95% CI: 0.814-0.972; p < 0.001), independent of the confounding factors tested, providing a useful basis for the development of a novel non-invasive predictive test to assist clinicians in estimating patient-specific risk.
Collapse
Affiliation(s)
- Danai Mavreli
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Mariana Theodora
- 1st Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry–Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 106 79 Athens, Greece
| | - Nikolas Papantoniou
- 1st Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Panagiotis Antsaklis
- 1st Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Aggeliki Kolialexi
- Department of Genetics, Institute of Child Health, 106 79 Athens, Greece
| |
Collapse
|
8
|
Hu Y, Zhang C, Fan Y, Zhang Y, Wang Y, Wang C. Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:519-530. [PMID: 36302626 PMCID: PMC9614396 DOI: 10.4196/kjpp.2022.26.6.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.
Collapse
Affiliation(s)
- Yanchao Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China
| | - Chunyan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China
| | - Yajie Fan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China
| | - Yan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China
| | - Yiwen Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China
| | - Congxia Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China,Correspondence Congxia Wang, E-mail:
| |
Collapse
|
9
|
Llop D, Ibarretxe D, Plana N, Rosales R, Taverner D, Masana L, Vallvé JC, Paredes S. A panel of plasma microRNAs improves the assessment of surrogate markers of cardiovascular disease in rheumatoid arthritis patients. Rheumatology (Oxford) 2022; 62:1677-1686. [PMID: 36048908 DOI: 10.1093/rheumatology/keac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) present increased risk of cardiovascular (CV) disease compared with the general population. Moreover, CV risk factors that have causal relationship with atherosclerosis do not seem to fully explain the accelerated process that they exhibit. We evaluated the association of a 10 microRNAs panel with surrogate markers of subclinical arteriosclerosis (carotid intima media thickness (cIMT), carotid plaque presence (cPP), pulse wave velocity (PWV) and distensibility) in a cohort of RA patients. METHODS 199 patients with RA were included. Surrogate markers of arteriosclerosis were measured with My Lab 60 X-Vision sonographer. MicroRNAs were extracted from plasma and quantified with qPCR. Multivariate models and classification methods were performed. RESULTS Multivariate models showed that microRNAs-24 (β = 15.48), 125a (β = 9.93), 132 (β = 11.52), 146 (β = 15.12), 191 (β = 13.25) and 223 (β = 13.30) were associated with cIMT globally. MicroRNA-24 (OR = 0.41), 146 (OR = 0.36) and Let7a (OR = 0.23) were associated with cPP in men. Including the microRNAs in a PLS-DA model properly classified men with and without cPP. MicroRNA-96 (β = -0.28) was associated with PWV in male patients. Finally, several miRNAs were also associated with cIMT, cPP and arterial stiffness in the high DAS28 group and in the earlier tertile groups of disease duration. CONCLUSION Plasmatic expression of microRNA-24, 96, 103, 125a, 132, 146, 191, 223 and Let7a were associated with surrogate markers of CV disease and could be predictors of CV risk in patients with RA.
Collapse
Affiliation(s)
- Didac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Daiana Ibarretxe
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Núria Plana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Lluís Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Joan Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Silvia Paredes
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| |
Collapse
|
10
|
Carter N, Mathiesen AH, Miller N, Brown M, Colunga Biancatelli RML, Catravas JD, Dobrian AD. Endothelial cell-derived extracellular vesicles impair the angiogenic response of coronary artery endothelial cells. Front Cardiovasc Med 2022; 9:923081. [PMID: 35928931 PMCID: PMC9343725 DOI: 10.3389/fcvm.2022.923081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the most prominent cause of death of adults in the United States with coronary artery disease being the most common type of CVD. Following a myocardial event, the coronary endothelium plays an important role in the recovery of the ischemic myocardium. Specifically, endothelial cells (EC) must be able to elicit a robust angiogenic response necessary for tissue revascularization and repair. However, local or distant cues may prevent effective revascularization. Extracellular vesicles (EV) are produced by all cells and endothelium is a rich source of EVs that have access to the main circulation thereby potentially impacting local and distant tissue function. Systemic inflammation associated with conditions such as obesity as well as the acute inflammatory response elicited by a cardiac event can significantly increase the EV release by endothelium and alter their miRNA, protein or lipid cargo. Our laboratory has previously shown that EVs released by adipose tissue endothelial cells exposed to chronic inflammation have angiostatic effects on naïve adipose tissue EC in vitro. Whether the observed effect is specific to EVs from adipose tissue endothelium or is a more general feature of the endothelial EVs exposed to pro-inflammatory cues is currently unclear. The objective of this study was to investigate the angiostatic effects of EVs produced by EC from the coronary artery and adipose microvasculature exposed to pro-inflammatory cytokines (PIC) on naïve coronary artery EC. We have found that EVs from both EC sources have angiostatic effects on the coronary endothelium. EVs produced by cells in a pro-inflammatory environment reduced proliferation and barrier function of EC without impacting cellular senescence. Some of these functional effects could be attributed to the miRNA cargo of EVs. Several miRNAs such as miR-451, let-7, or miR-23a impact on multiple pathways responsible for proliferation, cellular permeability and angiogenesis. Collectively, our data suggests that EVs may compete with pro-angiogenic cues in the ischemic myocardium therefore slowing down the repair response. Acute treatments with inhibitors that prevent endogenous EV release immediately after an ischemic event may contribute to better efficacy of therapeutic approaches using functionalized exogenous EVs or other pro-angiogenic approaches.
Collapse
Affiliation(s)
- Nigeste Carter
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Allison H. Mathiesen
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Noel Miller
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Michael Brown
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| | - Anca D. Dobrian
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, United States
- *Correspondence: Anca D. Dobrian,
| |
Collapse
|
11
|
Jayachandran P, Koshy L, Sudhakaran PR, Nair GM, Gangaprasad AN, Nair AJ. 1, 25-(OH) 2D 3 protects against ER stress and miRNA dysregulation in Mus musculus neurons. Genes Genomics 2022; 44:1565-1576. [PMID: 35567716 DOI: 10.1007/s13258-022-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The pathophysiology of neurodegenerative diseases (NDDs) is closely associated with cellular oxidative stress which can result in the accumulation of toxic proteins in the endoplasmic reticulum (ER) leading to ER stress and subsequent unfolded protein response (UPR) signaling, a mechanism that aggravate these disorders. Vitamin D has been suggested to have important neuroprotective role and its administration has been shown to reduce neuronal injury, neurotoxicity and oxidative stress in various animal systems. OBJECTIVE The current study was undertaken to examine the effect of vitamin D3 on UPR in ER stress induced Mus musculus neuronal cells. METHODS Mus musculus cortical and hippocampal primary neuronal cultures were pretreated with 1,25-dihydroxyvitamin D3 (1, 25-(OH)2D3), the active form of vitamin D, followed by ER stress induction with a chemical ER stress inducer thapsigargin and with an advanced glycated protein, AGE-BSA. The UPR genes and related microRNAs (miRNA) expressions were analyzed mainly using real-time PCR. RESULTS The experiment resulted in the suppression of ER stress marker BiP and UPR pathway genes such as Perk, Ire1α, Chop and Puma which mediate cellular apoptosis indicating the protective effect of 1, 25-(OH)2D3 against neuronal ER stress. Further studies into the molecular aspects showed that ER stress mediated down-regulated expression of microRNAs (miRNAs) such as mmu-miR-24, 27b, 124, 224, 290, 351 and 488 which are known to regulate the UPR pathway genes were also reduced with vitamin pretreatment, of which the miRNAs miR-24 and 27b which shares the same cluster are potentially involved in various human diseases. CONCLUSION This study emphasizes the therapeutic role of vitamin D in reducing neuronal ER stress and the need for maintaining sufficient amount of this vitamin in our diet.
Collapse
Affiliation(s)
- Parvathy Jayachandran
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, 695 581, India.
| | - Linda Koshy
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, 695 581, India
| | - Perumana R Sudhakaran
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, 695 581, India
| | - Govindapillai Mohanadasan Nair
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, 695 581, India
| | - Appukuttan Nair Gangaprasad
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, 695 581, India
- Department of Botany, University of Kerala, Thiruvananthapuram, 695 581, India
| | - Ananthakrishnan Jayakumaran Nair
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, 695 581, India
| |
Collapse
|
12
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
13
|
Iwańczyk S, Lehmann T, Cieślewicz A, Radziemski A, Malesza K, Wrotyński M, Jagodziński P, Grygier M, Lesiak M, Araszkiewicz A. Circulating microRNAs in patients with aneurysmal dilatation of coronary arteries. Exp Ther Med 2022; 23:404. [PMID: 35619635 PMCID: PMC9115642 DOI: 10.3892/etm.2022.11331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
To understand the mechanism underlying coronary artery abnormal dilatation (CAAD), the present study identified and compared the expression of circulating microRNAs (miRNAs) in three groups of patients. Group 1 included 20 patients with CAAD, Group 2 included 20 patients with angiographically confirmed coronary artery disease (CAD), and Group 3 included 20 patients with normal coronary arteries (control). miRNAs were isolated from plasma samples and were profiled using PCR arrays and miRCURY LNA Serum/Plasma Focus PCR Panels. The present study demonstrated that the plasma miRNA levels were significantly different in Group 1 compared with in Group 2 and Group 3 (fold change >2 and P<0.05). The comparison of Group 1 with Group 3 identified 21 significantly upregulated and two downregulated miRNAs in patients with CAAD compared with in the control group. Moreover, six upregulated and two downregulated miRNAs were identified in patients with CAD compared with in the controls. The third comparison revealed four upregulated and three downregulated miRNAs in Group 1, when compared with patients with CAD. In conclusion, the present study identified a specific signature of plasma miRNAs, which were upregulated and downregulated in patients with CAAD compared with in patients with CAD and control individuals.
Collapse
Affiliation(s)
- Sylwia Iwańczyk
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | - Tomasz Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Artur Cieślewicz
- Department of Clinical Pharmacology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | - Artur Radziemski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | - Katarzyna Malesza
- Department of Clinical Pharmacology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | - Michał Wrotyński
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | - Paweł Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Marek Grygier
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61‑848 Poznań, Poland
| | | |
Collapse
|
14
|
RFLMDA: A Novel Reinforcement Learning-Based Computational Model for Human MicroRNA-Disease Association Prediction. Biomolecules 2021; 11:biom11121835. [PMID: 34944479 PMCID: PMC8699433 DOI: 10.3390/biom11121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Numerous studies have confirmed that microRNAs play a crucial role in the research of complex human diseases. Identifying the relationship between miRNAs and diseases is important for improving the treatment of complex diseases. However, traditional biological experiments are not without restrictions. It is an urgent necessity for computational simulation to predict unknown miRNA-disease associations. In this work, we combine Q-learning algorithm of reinforcement learning to propose a RFLMDA model, three submodels CMF, NRLMF, and LapRLS are fused via Q-learning algorithm to obtain the optimal weight S. The performance of RFLMDA was evaluated through five-fold cross-validation and local validation. As a result, the optimal weight is obtained as S (0.1735, 0.2913, 0.5352), and the AUC is 0.9416. By comparing the experiments with other methods, it is proved that RFLMDA model has better performance. For better validate the predictive performance of RFLMDA, we use eight diseases for local verification and carry out case study on three common human diseases. Consequently, all the top 50 miRNAs related to Colorectal Neoplasms and Breast Neoplasms have been confirmed. Among the top 50 miRNAs related to Colon Neoplasms, Gastric Neoplasms, Pancreatic Neoplasms, Kidney Neoplasms, Esophageal Neoplasms, and Lymphoma, we confirm 47, 41, 49, 46, 46 and 48 miRNAs respectively.
Collapse
|
15
|
Higa R, Leonardi ML, Jawerbaum A. Intrauterine Programming of Cardiovascular Diseases in Maternal Diabetes. Front Physiol 2021; 12:760251. [PMID: 34803741 PMCID: PMC8595320 DOI: 10.3389/fphys.2021.760251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal diabetes is a prevalent pathology that increases the risk of cardiovascular diseases in the offspring, the heart being one of the main target organs affected from the fetal stage until the adult life. Metabolic, pro-oxidant, and proinflammatory alterations in the fetal heart constitute the first steps in the adverse fetal programming of cardiovascular disease in the context of maternal diabetes. This review discusses both human and experimental studies addressing putative mechanisms involved in this fetal programming of heart damage in maternal diabetes. These include cardiac epigenetic changes, alterations in cardiac carbohydrate and lipid metabolism, damaging effects caused by a pro-oxidant and proinflammatory environment, alterations in the cardiac extracellular matrix remodeling, and specific signaling pathways. Putative actions to prevent cardiovascular impairments in the offspring of mothers with diabetes are also discussed.
Collapse
Affiliation(s)
- Romina Higa
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratory of Reproduction and Metabolism, CONICET-Universidad de Buenos Aires, CEFYBO, Buenos Aires, Argentina
| | - María Laura Leonardi
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratory of Reproduction and Metabolism, CONICET-Universidad de Buenos Aires, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratory of Reproduction and Metabolism, CONICET-Universidad de Buenos Aires, CEFYBO, Buenos Aires, Argentina
| |
Collapse
|
16
|
Lybech LKM, Calabró M, Briuglia S, Drago A, Crisafulli C. Suicide Related Phenotypes in a Bipolar Sample: Genetic Underpinnings. Genes (Basel) 2021; 12:genes12101482. [PMID: 34680877 PMCID: PMC8535342 DOI: 10.3390/genes12101482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Suicide in Bipolar Disorder (BD) is a relevant clinical concern. Genetics may shape the individual risk for suicide behavior in BD, together with known clinical factors. The lack of consistent replication in BD may be associated with its multigenetic component. In the present contribution we analyzed a sample of BD individuals (from STEP-BD database) to identify the genetic variants potentially associated with three different suicide-related phenotypes: (1) a feeling that the life was not worth living; (2) fantasies about committing a violent suicide; (3) previous attempted suicide. The sample under analysis included 1115 BD individuals. None of the SNPs reached genome-wide significance. However, a trend of association was evidenced for rs2767403, an intron variant of AOPEP gene, in association with phenotype #1 (p = 5.977 × 10−6). The molecular pathway analysis showed a significant enrichment in all the investigated phenotypes on pathways related to post synaptic signaling, neurotransmission and neurodevelopment. Further, NOTCH signaling or the γ-aminobutyric acid (GABA)-ergic signaling were found to be associated with specific suicide-related phenotypes. The present investigation contributes to the hypothesis that the genetic architecture of suicide behaviors in BD is related to alteration of entire pathways rather than single genes. In particular, our molecular pathway analysis points on some specific molecular events that could be the focus of further research in this field.
Collapse
Affiliation(s)
- Line K. M. Lybech
- Unit for Psychiatric Research, Psychiatry, Aalborg University Hospital, DK-9100 Aalborg, Denmark;
| | - Marco Calabró
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (S.B.)
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (S.B.)
| | - Antonio Drago
- Unit for Psychiatric Research, Psychiatry, Aalborg University Hospital, DK-9100 Aalborg, Denmark;
- Correspondence: (A.D.); (C.C.); Tel.: +45-97-64-30-00 (A.D.); +39-(0)9-0221-3373 (C.C.)
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (S.B.)
- Correspondence: (A.D.); (C.C.); Tel.: +45-97-64-30-00 (A.D.); +39-(0)9-0221-3373 (C.C.)
| |
Collapse
|
17
|
The Role of microRNAs in NK Cell Development and Function. Cells 2021; 10:cells10082020. [PMID: 34440789 PMCID: PMC8391642 DOI: 10.3390/cells10082020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical use of natural killer (NK) cells is at the forefront of cellular therapy. NK cells possess exceptional antitumor cytotoxic potentials and can generate significant levels of proinflammatory cytokines. Multiple genetic manipulations are being tested to augment the anti-tumor functions of NK cells. One such method involves identifying and altering microRNAs (miRNAs) that play essential roles in the development and effector functions of NK cells. Unique miRNAs can bind and inactivate mRNAs that code for cytotoxic proteins. MicroRNAs, such as the members of the Mirc11 cistron, downmodulate ubiquitin ligases that are central to the activation of the obligatory transcription factors responsible for the production of inflammatory cytokines. These studies reveal potential opportunities to post-translationally enhance the effector functions of human NK cells while reducing unwanted outcomes. Here, we summarize the recent advances made on miRNAs in murine and human NK cells and their relevance to NK cell development and functions.
Collapse
|
18
|
Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9935671. [PMID: 34368362 PMCID: PMC8337102 DOI: 10.1155/2021/9935671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Endovascular repair including percutaneous transluminal angioplasty (PTA) and stent implantation has become the standard approach for the treatment of peripheral arterial disease; however, restenosis is still the main limited complication for the long-term success of the endovascular repair. Endothelial denudation and regeneration, inflammatory response, and neointimal hyperplasia are major pathological processes occurring during in-stent restenosis (ISR). MicroRNAs exhibit great potential in regulating several vascular biological events in different cell types and have been identified as novel therapeutic targets as well as biomarkers for ISR prevention. This review summarized recent experimental and clinical studies on the role of miRNAs in ISR modification, with the aim of unraveling the underlying mechanism and potential therapeutic strategy of ISR.
Collapse
|
19
|
Ji BY, You ZH, Wang Y, Li ZW, Wong L. DANE-MDA: Predicting microRNA-disease associations via deep attributed network embedding. iScience 2021; 24:102455. [PMID: 34041455 PMCID: PMC8141887 DOI: 10.1016/j.isci.2021.102455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Predicting the microRNA-disease associations by using computational methods is conductive to the efficiency of costly and laborious traditional bio-experiments. In this study, we propose a computational machine learning-based method (DANE-MDA) that preserves integrated structure and attribute features via deep attributed network embedding to predict potential miRNA-disease associations. Specifically, the integrated features are extracted by using deep stacked auto-encoder on the diverse orders of matrixes containing structure and attribute information and are then trained by using random forest classifier. Under 5-fold cross-validation experiments, DANE-MDA yielded average accuracy, sensitivity, and AUC at 85.59%, 84.23%, and 0.9264 in term of HMDD v3.0 dataset, and 83.21%, 80.39%, and 0.9113 in term of HMDD v2.0 dataset, respectively. Additionally, case studies on breast, colon, and lung neoplasms related disease show that 47, 47, and 46 of the top 50 miRNAs can be predicted and retrieved in the other database.
Collapse
Affiliation(s)
- Bo-Ya Ji
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Yi Wang
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Leon Wong
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| |
Collapse
|
20
|
Cui H, Yang A, Zhou H, Wang Y, Luo J, Zhou J, Liu T, Li P, Zhou J, Hu E, He Z, Hu W, Tang T. Thrombin-induced miRNA-24-1-5p upregulation promotes angiogenesis by targeting prolyl hydroxylase domain 1 in intracerebral hemorrhagic rats. J Neurosurg 2021; 134:1515-1526. [PMID: 32413855 DOI: 10.3171/2020.2.jns193069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Thrombin is a unique factor that triggers post-intracerebral hemorrhage (ICH) angiogenesis by increasing hypoxia-inducible factor-1α (HIF-1α) at the protein level. However, HIF-1α mRNA remains unchanged. MicroRNAs (miRNAs) mediate posttranscriptional regulation by suppressing protein translation from mRNAs. This study aimed to determine if miRNAs might be involved in thrombin-induced angiogenesis after ICH by targeting HIF-1α or its upstream prolyl hydroxylase domains (PHDs). METHODS The study was divided into two parts. In part 1, rats received an injection of thrombin into the right globus pallidus. An miRNA array combined with miRNA target prediction, luciferase activity assay, and miRNA mimic/inhibitor transfection were used to identify candidate miRNAs and target genes. Part 2 included experiments 1 and 2. In experiment 1, rats were randomly divided into the sham group, ICH group, and ICH+hirudin-treated (thrombin inhibitor) group. In experiment 2, the rats were randomly divided into the sham group, ICH group, ICH+antagomir group, ICH+antagomir-control group, and ICH+vehicle group. Western blotting and quantitative real-time polymerase chain reaction were used to determine the expression of protein and miRNA, respectively. The coexpression of miR-24-1-5p (abbreviated to miR-24) and von Willebrand factor was detected by in situ hybridization and immunohistochemical analysis. The angiogenesis was evaluated by double-labeling immunofluorescence. Neurological function was evaluated by body weight, modified Neurological Severity Scores, and corner turn and foot-fault tests. RESULTS In part 1, it was shown that miR-24, which is predicted to target PHD1, was upregulated (fold-change of 1.83) after thrombin infusion, and that the miR-24 mimic transfection decreased luciferase activity and downregulated PHD1 expression (p < 0.05). miR-24 inhibitor transfection increased PHD1 expression (p < 0.05). In part 2, it was shown that miR-24 was expressed in endothelial cells. The HIF-1α protein level and proliferating cell nuclear antigen-positive (PCNA+) nuclei in vessels were increased, while the PHD1 protein level was decreased after ICH, and these effects were reversed by hirudin (p < 0.05). The antagomiR-24-treated rats exhibited a markedly lower body weight and significantly poorer recovery from neurological deficit compared with those in ICH groups (p < 0.05). AntagomiR-24 intervention also led to lower miR-24 expression, a higher PHD1 protein level, and fewer PCNA+ nuclei in vessels compared with those in ICH groups (p < 0.05). CONCLUSIONS The present study suggests that thrombin reduces HIF-1α degradation and initiates angiogenesis by increasing miR-24, which targets PHD1 after ICH.
Collapse
Affiliation(s)
| | - Ali Yang
- 2Department of Neurology, Henan Province People's Hospital, Zhengzhou; and
| | - Huajun Zhou
- 3Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yang Wang
- 1Institute of Integrative Medicine and
| | | | - Jun Zhou
- 4Institute of Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Tao Liu
- 1Institute of Integrative Medicine and
| | | | - Jing Zhou
- 1Institute of Integrative Medicine and
| | - En Hu
- 1Institute of Integrative Medicine and
| | - Zehui He
- 1Institute of Integrative Medicine and
| | - Wang Hu
- 1Institute of Integrative Medicine and
| | - Tao Tang
- 1Institute of Integrative Medicine and
| |
Collapse
|
21
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
22
|
Luxán G, Dimmeler S. The vasculature: a therapeutic target in heart failure? Cardiovasc Res 2021; 118:53-64. [PMID: 33620071 PMCID: PMC8752358 DOI: 10.1093/cvr/cvab047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
It is well established that the vasculature plays a crucial role in maintaining oxygen and nutrients supply to the heart. Increasing evidence further suggest that the microcirculation has additional roles in supporting a healthy microenvironment. Heart failure is well known to be associated with changes and functional impairment of the microvasculature. The specific ablation of protective signals in endothelial cells in experimental models is sufficient to induce heart failure. Therefore, restoring a healthy endothelium and microcirculation may be a valuable therapeutic strategy to treat heart failure. The present review article will summarize the current understanding of the vascular contribution to heart failure with reduced or preserved ejection fraction. Novel therapeutic approaches including next generation pro-angiogenic therapies and non-coding RNA therapeutics, as well as the targeting of metabolites or metabolic signaling, vascular inflammation and senescence will be discussed.
Collapse
Affiliation(s)
- Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| |
Collapse
|
23
|
Prediction of miRNA-Disease Association Using Deep Collaborative Filtering. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6652948. [PMID: 33681362 PMCID: PMC7929672 DOI: 10.1155/2021/6652948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
The existing studies have shown that miRNAs are related to human diseases by regulating gene expression. Identifying miRNA association with diseases will contribute to diagnosis, treatment, and prognosis of diseases. The experimental identification of miRNA-disease associations is time-consuming, tremendously expensive, and of high-failure rate. In recent years, many researchers predicted potential associations between miRNAs and diseases by computational approaches. In this paper, we proposed a novel method using deep collaborative filtering called DCFMDA to predict miRNA-disease potential associations. To improve prediction performance, we integrated neural network matrix factorization (NNMF) and multilayer perceptron (MLP) in a deep collaborative filtering framework. We utilized known miRNA-disease associations to capture miRNA-disease interaction features by NNMF and utilized miRNA similarity and disease similarity to extract miRNA feature vector and disease feature vector, respectively, by MLP. At last, we merged outputs of the NNMF and MLP to obtain the prediction matrix. The experimental results indicate that compared with other existing computational methods, our method can achieve the AUC of 0.9466 based on 10-fold cross-validation. In addition, case studies show that the DCFMDA can effectively predict candidate miRNAs for breast neoplasms, colon neoplasms, kidney neoplasms, leukemia, and lymphoma.
Collapse
|
24
|
Loss of miR-23b/27b/24-1 Cluster Impairs Glucose Tolerance via Glycolysis Pathway in Mice. Int J Mol Sci 2021; 22:ijms22020550. [PMID: 33430468 PMCID: PMC7826568 DOI: 10.3390/ijms22020550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023] Open
Abstract
Alterations in miRNAs are associated with many metabolic disorders, such as type 2 diabetes (T2DM). The miR-23b/27b/24-1 cluster contains miR-23b, miR-27b, and miR-24-1, which are located within 881 bp on chromosome 9. Studies examining the roles of miR-23b, miR-27b, and miR-24-1 have demonstrated their multifaceted functions in variable metabolic disorders. However, their joint roles in metabolism in vivo remain elusive. To investigate this subject, we constructed miR-23b/27b/24-1 cluster knockout (KO) mice. Compared with wild-type (WT) mice, the KO mice exhibited impaired glucose tolerance, which was accompanied by a reduction in the respiratory exchange rate (RER). These alterations were more noticeable after a high-fat diet (HFD) induction. Hepatic metabolomic results showed decreased expression of reduced nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide (NAD), phosphoenolpyruvic acid (PEP), and phosphoric acid, which are involved in the glycolysis pathway. The transcriptomic results indicated that genes involved in glycolysis showed a downregulation trend. qPCR and Western blot revealed that pyruvate kinase (PKLR), the key rate-limiting enzyme in glycolysis, was significantly reduced after the deletion of the miR-23b/27b/24-1 cluster. Together, these observations suggest that the miR-23b/27b/24-1 cluster is involved in the regulation of glucose homeostasis via the glycolysis pathway.
Collapse
|
25
|
Jayachandran P, Koshy L, Sudhakaran PR, Nair GM, Gangaprasad A, Nair AJ. Dysregulation of miRNA and its reversal with l-ascorbic acid during AGE-BSA induced ER stress in Mus musculus neuronal cells. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Wei Y, Han B, Dai W, Guo S, Zhang C, Zhao L, Gao Y, Jiang Y, Kong X. Exposure to ozone impacted Th1/Th2 imbalance of CD 4+ T cells and apoptosis of ASMCs underlying asthmatic progression by activating lncRNA PVT1-miR-15a-5p/miR-29c-3p signaling. Aging (Albany NY) 2020; 12:25229-25255. [PMID: 33223504 PMCID: PMC7803560 DOI: 10.18632/aging.104124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
This investigation attempted to elucidate whether lncRNA PVT1-led miRNA axes participated in aggravating ozone-triggered asthma progression. One hundred and sixty-eight BALB/c mice were evenly divided into saline+air group, ovalbumin+air group, saline+ozone group and ovalbumin+ozone group. Correlations were evaluated between PVT1 expression and airway smooth muscle function/inflammatory cytokine release among the mice models. Furthermore, pcDNA3.1-PVT1 and si-PVT1 were, respectively, transfected into CD4+T cells and airway smooth muscle cells (ASMCs), and activities of the cells were observed. Ultimately, a cohort of asthma patients was recruited to estimate the diagnostic performance of PVT1. It was demonstrated that mice of ovalbumin+ozone group were associated with higher PVT1 expression, thicker trachea/airway smooth muscle and smaller ratio of Th1/Th2-like cytokines than mice of ovalbumin+air group and saline+ozone group (P<0.05). Moreover, pcDNA3.1-PVT1 significantly brought down Th1/Th2 ratio in CD4+ T cells by depressing miR-15a-5p expression and activating PI3K-Akt-mTOR signaling (P<0.05). The PVT1 also facilitated ASMC proliferation by sponging miR-29c-3p and motivating PI3K-Akt-mTOR signaling (P<0.05). Additionally, PVT1 seemed promising in diagnosis of asthma, with favorable sensitivity (i.e. 0.844) and specificity (i.e. 0.978). Conclusively, lncRNA PVT1-miR-15a-5p/miR-29c-3p-PI3K-Akt-mTOR axis was implicated in ozone-induced asthma development by promoting ASMC proliferation and Th1/Th2 imbalance.
Collapse
Affiliation(s)
- Yangyang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofen Han
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shufang Guo
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Caiping Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lixuan Zhao
- Department of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Gao
- Department of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
27
|
Upregulation of miRNA-23a-3p rescues high glucose-induced cell apoptosis and proliferation inhibition in cardiomyocytes. In Vitro Cell Dev Biol Anim 2020; 56:866-877. [PMID: 33197036 PMCID: PMC7723946 DOI: 10.1007/s11626-020-00518-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Maternal hyperglycemia potentially inhibits the development of the fetal heart by suppressing cardiomyocyte proliferation and promoting apoptosis. Different studies have indicated that miRNAs are key regulators of cardiomyocyte proliferation, differentiation, and apoptosis and play a protective role in a variety of cardiovascular diseases. However, the biological function of miRNA-23a in hyperglycemia-related cardiomyocyte injury is not fully understood. The present study investigated the effect of miRNA-23a-3p on cell proliferation and apoptosis in a myocardial injury model induced by high glucose. H9c2 cardiomyocytes were exposed to high glucose to establish an in vitro myocardial injury model and then transfected with miRNA-23a-3p mimics. After miRNA-23a-3p transfection, lens-free microscopy was used to dynamically monitor cell numbers and confluence and calculate the cell cycle duration. CCK-8 and EdU incorporation assays were performed to detect cell proliferation. Flow cytometry was used to measured cell apoptosis. Upregulation of miRNA-23a-3p significantly alleviated high glucose-induced cell apoptosis and cell proliferation inhibition (p < 0.01 and p < 0.0001, respectively). The cell cycle of the miRNA-23a-3p mimics group was significantly shorter than that of the negative control group (p < 0.01). The expression of cell cycle–activating and apoptosis inhibition-associated factors Ccna2, Ccne1, and Bcl-2 was downregulated by high glucose and upregulated by miRNA-23a-3p overexpression in high glucose-injured H9c2 cells. miRNA-23a-3p mimics transfection before high glucose treatment had a significantly greater benefit than transfection after high glucose treatment (p < 0.0001), and the rescue effect of miRNA-23a-3p increased as the concentration increased. This study suggests that miRNA-23a-3p exerted a dose- and time-dependent protective effect on high glucose-induced H9c2 cardiomyocyte injury.
Collapse
|
28
|
Circulating miRNA-23b and miRNA-143 Are Potential Biomarkers for In-Stent Restenosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2509039. [PMID: 33015157 PMCID: PMC7519453 DOI: 10.1155/2020/2509039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
In-stent restenosis (ISR) is one of the main complications in patients undergoing percutaneous coronary angioplasty, and microRNAs participate in the contractile-to-synthetic phenotypic switch of vascular smooth muscle cells, a hallmark of restenosis development. MicroRNAs (miRNAs) can be released into circulation from injured tissues, enticing a potential role as noninvasive biomarkers. We aimed to evaluate circulating levels of miRNA-23b, miRNA-143, and miRNA-145 as diagnostic markers of ISR. 142 patients with coronary artery disease undergoing successful angioplasty and a follow-up angiography were included. Subjects were classified according to the degree of obstruction at the angioplasty site into cases (≥50%) or controls (<50%). Total RNA was isolated from plasma to quantify circulating miRNAs levels, and the ROC curves were constructed. Among circulating miRNAs assessed, miRNA-23b and miRNA-143 were significantly lower in cases (miRNA-23b: 18.4x10−5 and miRNA-143: 13.7x10−5) than controls (miRNA-23b: 5.2x10−5, p < 0.0001; miRNA-143: 4.0x10−5, p < 0.0001). Plasma levels of miRNA-145 showed no significant differences. The analysis of the ROC curves showed an area under the curve for miRNA-23b of 0.71 (95% CI: 0.62-0.80, p < 0.0001) and 0.69 for miRNA-143 (95% CI: 0.60-0.78; p < 0.0001). Our data suggest that plasma levels of miRNA-23b and miRNA-143 could be useful as noninvasive biomarkers of ISR.
Collapse
|
29
|
Khan MS, Yamashita K, Sharma V, Ranjan R, Dosdall DJ. RNAs and Gene Expression Predicting Postoperative Atrial Fibrillation in Cardiac Surgery Patients Undergoing Coronary Artery Bypass Grafting. J Clin Med 2020; 9:jcm9041139. [PMID: 32316120 PMCID: PMC7231013 DOI: 10.3390/jcm9041139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Postoperative atrial fibrillation (POAF) is linked with increased morbidity, mortality rate and financial liability. About 20–50% of patients experience POAF after coronary artery bypass graft (CABG) surgery. Numerous review articles and meta-analyses have investigated links between patient clinical risk factors, demographic conditions, and pre-, peri- and post-operative biomarkers to forecast POAF incidence in CABG patients. This narrative review, for the first time, summarize the role of micro-RNAs, circular-RNAs and other gene expressions that have shown experimental evidence to accurately predict the POAF incidence in cardiac surgery patients after CABG. We envisage that identifying specific genomic markers for predicting POAF might be a significant step for the prevention and effective management of this type of post-operative complication and may provide critical perspective into arrhythmogenic substrate responsible for POAF.
Collapse
Affiliation(s)
- Muhammad Shuja Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
| | - Kennosuke Yamashita
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
| | - Vikas Sharma
- Division of Cardiothoracic Surgery, The University of Utah-Health, Salt Lake City, UT 84132, USA;
| | - Ravi Ranjan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
| | - Derek James Dosdall
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
- Division of Cardiothoracic Surgery, The University of Utah-Health, Salt Lake City, UT 84132, USA;
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: ; Tel.: +1-801-587-2036
| |
Collapse
|
30
|
Peng LH, Zhou LQ, Chen X, Piao X. A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression. Front Bioeng Biotechnol 2020; 8:40. [PMID: 32117922 PMCID: PMC7015868 DOI: 10.3389/fbioe.2020.00040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
As increasing experimental studies have shown that microRNAs (miRNAs) are closely related to multiple biological processes and the prevention, diagnosis and treatment of human diseases, a growing number of researchers are focusing on the identification of associations between miRNAs and diseases. Identifying such associations purely via experiments is costly and demanding, which prompts researchers to develop computational methods to complement the experiments. In this paper, a novel prediction model named Ensemble of Kernel Ridge Regression based MiRNA-Disease Association prediction (EKRRMDA) was developed. EKRRMDA obtained features of miRNAs and diseases by integrating the disease semantic similarity, the miRNA functional similarity and the Gaussian interaction profile kernel similarity for diseases and miRNAs. Under the computational framework that utilized ensemble learning and feature dimensionality reduction, multiple base classifiers that combined two Kernel Ridge Regression classifiers from the miRNA side and disease side, respectively, were obtained based on random selection of features. Then average strategy for these base classifiers was adopted to obtain final association scores of miRNA-disease pairs. In the global and local leave-one-out cross validation, EKRRMDA attained the AUCs of 0.9314 and 0.8618, respectively. Moreover, the model’s average AUC with standard deviation in 5-fold cross validation was 0.9275 ± 0.0008. In addition, we implemented three different types of case studies on predicting miRNAs associated with five important diseases. As a result, there were 90% (Esophageal Neoplasms), 86% (Kidney Neoplasms), 86% (Lymphoma), 98% (Lung Neoplasms), and 96% (Breast Neoplasms) of the top 50 predicted miRNAs verified to have associations with these diseases.
Collapse
Affiliation(s)
- Li-Hong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Li-Qian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Piragasam RS, Hussain SF, Chaulk SG, Siddiqi ZA, Fahlman RP. Label-free proteomic analysis reveals large dynamic changes to the cellular proteome upon expression of the miRNA-23a-27a-24-2 microRNA cluster. Biochem Cell Biol 2020; 98:61-69. [DOI: 10.1139/bcb-2019-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In deciphering the regulatory networks of gene expression controlled by the small non-coding RNAs known as microRNAs (miRNAs), a major challenge has been with the identification of the true mRNA targets by these RNAs within the context of the enormous numbers of predicted targets for each of these small RNAs. To facilitate the system-wide identification of miRNA targets, a variety of system wide methods, such as proteomics, have been implemented. Here we describe the utilization of quantitative label-free proteomics and bioinformatics to identify the most significant changes to the proteome upon expression of the miR-23a-27a-24-2 miRNA cluster. In light of recent work leading to the hypothesis that only the most pronounced regulatory events by miRNAs may be physiologically relevant, our data reveal that label-free analysis circumvents the limitations of proteomic labeling techniques that limit the maximum differences that can be quantified. The result of our analysis identifies a series of novel candidate targets that are reduced in abundance by more than an order of magnitude upon the expression of the miR-23a-27a-24-2 cluster.
Collapse
Affiliation(s)
- Ramanaguru S. Piragasam
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - S. Faraz Hussain
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Steven G. Chaulk
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Zaeem A. Siddiqi
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P. Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
32
|
Wu M, Yang Y, Wang H, Ding J, Zhu H, Xu Y. IMPMD: An Integrated Method for Predicting Potential Associations Between miRNAs and Diseases. Curr Genomics 2020; 20:581-591. [PMID: 32581646 PMCID: PMC7290057 DOI: 10.2174/1389202920666191023090215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background With the rapid development of biological research, microRNAs (miRNAs) have increasingly attracted worldwide attention. The increasing biological studies and scientific experiments have proven that miRNAs are related to the occurrence and development of a large number of key biological processes which cause complex human diseases. Thus, identifying the association between miRNAs and disease is helpful to diagnose the diseases. Although some studies have found considerable associations between miRNAs and diseases, there are still a lot of associations that need to be identified. Experimental methods to uncover miRNA-disease associations are time-consuming and expensive. Therefore, effective computational methods are urgently needed to predict new associations. Methodology In this work, we propose an integrated method for predicting potential associations between miRNAs and diseases (IMPMD). The enhanced similarity for miRNAs is obtained by combination of functional similarity, gaussian similarity and Jaccard similarity. To diseases, it is obtained by combination of semantic similarity, gaussian similarity and Jaccard similarity. Then, we use these two enhanced similarities to construct the features and calculate cumulative score to choose robust features. Finally, the general linear regression is applied to assign weights for Support Vector Machine, K-Nearest Neighbor and Logistic Regression algorithms. Results IMPMD obtains AUC of 0.9386 in 10-fold cross-validation, which is better than most of the previous models. To further evaluate our model, we implement IMPMD on two types of case studies for lung cancer and breast cancer. 49 (Lung Cancer) and 50 (Breast Cancer) out of the top 50 related miRNAs are validated by experimental discoveries. Conclusion We built a software named IMPMD which can be freely downloaded from https://github.com/Sunmile/IMPMD.
Collapse
Affiliation(s)
- Meiqi Wu
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Yingxi Yang
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Hui Wang
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Jun Ding
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Huan Zhu
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| | - Yan Xu
- 1Department of Information and Computer Science, University of Science and Technology Beijing, Beijing100083, China; 2Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; 3Institute of Computing Technology, Chinese Academy of Sciences, Beijing100080, China
| |
Collapse
|
33
|
Raggi F, Cangelosi D, Becherini P, Blengio F, Morini M, Acquaviva M, Belli ML, Panizzon G, Cervo G, Varesio L, Eva A, Bosco MC. Transcriptome analysis defines myocardium gene signatures in children with ToF and ASD and reveals disease-specific molecular reprogramming in response to surgery with cardiopulmonary bypass. J Transl Med 2020; 18:21. [PMID: 31924244 PMCID: PMC6954611 DOI: 10.1186/s12967-020-02210-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tetralogy of Fallot (ToF) and Atrial Septal Defects (ASD) are the most common types of congenital heart diseases and a major cause of childhood morbidity and mortality. Cardiopulmonary bypass (CPB) is used during corrective cardiac surgery to support circulation and heart stabilization. However, this procedure triggers systemic inflammatory and stress response and consequent increased risk of postoperative complications. The aim of this study was to define the molecular bases of ToF and ASD pathogenesis and response to CPB and identify new potential biomarkers. METHODS Comparative transcriptome analysis of right atrium specimens collected from 10 ToF and 10 ASD patients was conducted before (Pre-CPB) and after (Post-CPB) corrective surgery. Total RNA isolated from each sample was individually hybridized on Affymetrix HG-U133 Plus Array Strips containing 38,500 unique human genes. Differences in the gene expression profiles and functional enrichment/network analyses were assessed using bioinformatic tools. qRT-PCR analysis was used to validate gene modulation. RESULTS Pre-CPB samples showed significant differential expression of a total of 72 genes, 28 of which were overexpressed in ToF and 44 in ASD. According to Gene Ontology annotation, the mostly enriched biological processes were represented by matrix organization and cell adhesion in ToF and by muscle development and contractility in ASD specimens. GSEA highlighted the specific enrichment of hypoxia gene sets in ToF samples, pointing to a role for hypoxia in disease pathogenesis. The post-CPB myocardium exhibited significant alterations in the expression profile of genes related to transcription regulation, growth/apoptosis, inflammation, adhesion/matrix organization, and oxidative stress. Among them, only 70 were common to the two disease groups, whereas 110 and 24 were unique in ToF and ASD, respectively. Multiple functional interactions among differentially expressed gene products were predicted by network analysis. Interestingly, gene expression changes in ASD samples followed a consensus hypoxia profile. CONCLUSION Our results provide a comprehensive view of gene reprogramming in right atrium tissues of ToF and ASD patients before and after CPB, defining specific molecular pathways underlying disease pathophysiology and myocardium response to CPB. These findings have potential translational value because they identify new candidate prognostic markers and targets for tailored cardioprotective post-surgical therapies.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy
| | - Pamela Becherini
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy.,Department of Internal Medicine, University of Genova, Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy.,INSERM U955 Equipe 16, Creteil, France
| | - Martina Morini
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy
| | - Massimo Acquaviva
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy.,Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology INSPE, Ospedale San Raffaele, Milano, Italy
| | - Maria Luisa Belli
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy.,Cytomorphology Laboratory, Heamo-Onco-TMO Department, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Giuseppe Panizzon
- Department of Cardiology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Giuseppe Cervo
- Department of Cardiology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCSS Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova, Italy.
| |
Collapse
|
34
|
The Expression Profile of MicroRNAs in Small and Large Abdominal Aortic Aneurysms. Cardiol Res Pract 2019; 2019:8645840. [PMID: 31885906 PMCID: PMC6914980 DOI: 10.1155/2019/8645840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Abdominal aortic aneurysms (AAA) are relatively frequent in elderly population, and their ruptures are related with high mortality rate. There are no actually used laboratory markers predicting the AAA development, course, and rupture. MicroRNAs are small noncoding molecules involved in posttranscriptional gene expression regulation, influencing processes on cell and tissue levels, and are actually in focus due to their potential to become diagnostic or prognostic markers in various diseases. Methods Tissue samples of AAA patients and healthy controls were collected, from which miRNA was isolated. Microarray including the complete panel of 2549 miRNAs was used to find expression miRNA profiles that were analysed in three subgroups: small (N = 10) and large (N = 6) aneurysms and healthy controls (N = 5). Fold changes between expression in aneurysms and normal tissue were calculated including corresponding p values, adjusted to multiple comparisons. Results Six miRNAs were found to be significantly dysregulated in small aneurysms (miR-7158-5p, miR-658, miR-517-5p, miR-122-5p, miR-326, and miR-3180) and 162 in large aneurysms, in comparison with the healthy control. Ten miRNAs in large aneurysms with more than two-fold significant change in expression were identified: miR-23a-3p, miR-24-3p, miR-27a-3p, miR-27b-3p, miR-30d-5p, miR-193a-3p, miR-203a-3p, miR-365a-3p, miR-4291, and miR-3663-3p and all, but the last one was downregulated in aneurysmal walls. Conclusion We confirmed some previously identified miRNAs (miR-23/27/24 family, miR-193a, and miR-30) as associated with AAA pathogenesis. We have found other, yet in AAA unidentified miRNAs (miR-203a, miR-3663, miR-365a, and miR-4291) for further analyses, to investigate more closely their possible role in pathogenesis of aneurysms. If their role in AAA development is proved significant in future, they can become potential markers or treatment targets.
Collapse
|
35
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
36
|
Nanbakhsh A, Srinivasamani A, Holzhauer S, Riese MJ, Zheng Y, Wang D, Burns R, Reimer MH, Rao S, Lemke A, Tsaih SW, Flister MJ, Lao S, Dahl R, Thakar MS, Malarkannan S. Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells. Cancer Immunol Res 2019; 7:1647-1662. [PMID: 31515257 DOI: 10.1158/2326-6066.cir-18-0934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as Mirc11 (which includes miRNA-23a, miRNA-24a, and miRNA-27a) in NK cell-mediated proinflammatory responses. Absence of Mirc11 did not alter the development or the antitumor cytotoxicity of NK cells. However, loss of Mirc11 reduced generation of proinflammatory factors in vitro and interferon-γ-dependent clearance of Listeria monocytogenes or B16F10 melanoma in vivo by NK cells. These functional changes resulted from Mirc11 silencing ubiquitin modifiers A20, Cbl-b, and Itch, allowing TRAF6-dependent activation of NF-κB and AP-1. Lack of Mirc11 caused increased translation of A20, Cbl-b, and Itch proteins, resulting in deubiquitylation of scaffolding K63 and addition of degradative K48 moieties on TRAF6. Collectively, our results describe a function of Mirc11 that regulates generation of proinflammatory cytokines from effector lymphocytes.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Anupallavi Srinivasamani
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongwei Zheng
- Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Demin Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Michael H Reimer
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shirng-Wern Tsaih
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael J Flister
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard Dahl
- Indiana University School of Medicine, South Bend, Indiana
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin. .,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
37
|
Brandenburger T, Salgado Somoza A, Devaux Y, Lorenzen JM. Noncoding RNAs in acute kidney injury. Kidney Int 2019; 94:870-881. [PMID: 30348304 DOI: 10.1016/j.kint.2018.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 02/09/2023]
Abstract
Acute kidney injury (AKI) is an important health issue concerning ∼50% of patients treated in intensive care units. AKI mainly occurs after sepsis, acute ischemia, nephrotoxicity, or hypoxia and leads to severe damage of the kidney and to an increased risk of mortality. The diagnosis of AKI is currently based on creatinine urea levels and diuresis. Yet, novel markers may improve the accuracy of this diagnosis at an early stage of the disease, thereby allowing early prevention and therapy, ultimately leading to a reduction in the need for renal replacement therapy and decreased mortality. Non-protein-coding RNAs or noncoding RNAs are central players in development and disease. They are important regulatory molecules that allow a fine-tuning of gene expression and protein synthesis. This regulation is necessary to maintain homeostasis, and its dysregulation is often associated with disease development. Noncoding RNAs are present in the kidney and in body fluids and their expression is modulated during AKI. This review article assembles the current knowledge of the role of noncoding RNAs, including microRNAs, long noncoding RNAs and circular RNAs, in the pathogenesis of AKI. Their potential as biomarkers and therapeutic targets as well as the challenges to translate research findings to clinical application are discussed. Although microRNAs have entered clinical testing, preclinical and clinical trials are needed before long noncoding RNAs and circular RNAs may be considered as useful biomarkers or therapeutic targets of AKI.
Collapse
Affiliation(s)
- Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.
| | - Antonio Salgado Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Jin A, Bao R, Roth M, Liu L, Yang X, Tang X, Yang X, Sun Q, Lu S. microRNA-23a contributes to asthma by targeting BCL2 in airway epithelial cells and CXCL12 in fibroblasts. J Cell Physiol 2019; 234:21153-21165. [PMID: 31020662 DOI: 10.1002/jcp.28718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The deregulated cross-talk between airway epithelial cells with subepithelial fibroblasts during inflammation drives the pathogenesis of asthma. Bioinformatics analysis and luciferase activity assay suggested that B cell lymphoma-2 (BCL2) and CXC ligand 12 (CXCL12) are potential targets of miR-23a. The aim of this study was to elucidate the effect of microRNA-23a (miR-23a) on BCL2, and CXCL12 in asthma. In E3 rats, miR-23a was upregulated in lung tissues after antigen-induced pulmonary inflammation during acute and chronic inflammation. Immunohistochemistry showed downregulation of BCL2 in the epithelium and of CXCL12 in subepithelial fibroblasts and smooth muscle cells. Treatment of isolated cells with miR-23a mimic or inhibitor modified the expression of BCL2 and of CXCL12 in the expected cell type-specific manner. Moreover, in epithelial cells, interleukin-4 upregulated miR-23a expression and thereby decreased the expression of BCL2, while increasing the caspase-3 expression, which was followed by apoptosis. In fibroblasts, the expression of miR-23a was increased by thymic stromal lymphopoietin (TSLP). Consequently, the CXCL12 expression was abrogated. The phosphorylation of CREB was also downregulated by TSLP through the action of miR-23a. This study describes a novel mechanism, where miR-23a is an important cell type-specific regulator for asthma-associated airway wall remodeling parameter. Thus, miR-23a may present a potential new target for the therapy of asthma.
Collapse
Affiliation(s)
- Ai Jin
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rujuan Bao
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Department of Blood Transfusion, Tangdu Hospital, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, People's Republic of China
| | - Michael Roth
- Department of Biomedicine, Pneumology and Pulmonary Cell Research, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Li Liu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xuemei Tang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Biomedicine, Pneumology and Pulmonary Cell Research, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
39
|
Jeong G, Kwon DH, Shin S, Choe N, Ryu J, Lim YH, Kim J, Park WJ, Kook H, Kim YK. Long noncoding RNAs in vascular smooth muscle cells regulate vascular calcification. Sci Rep 2019; 9:5848. [PMID: 30971745 PMCID: PMC6458154 DOI: 10.1038/s41598-019-42283-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/27/2019] [Indexed: 01/10/2023] Open
Abstract
Vascular calcification is characterized by the accumulation of hydroxyapatite crystals, which is a result of aberrant mineral metabolism. Although many clinical studies have reported its adverse effects on cardiovascular morbidity, the molecular mechanism of vascular calcification, especially the involvement of long noncoding RNAs (lncRNAs), is not yet reported. From the transcriptomic analysis, we discovered hundreds of lncRNAs differentially expressed in rat vascular smooth muscle cells (VSMCs) treated with inorganic phosphate, which mimics vascular calcification. We focused on Lrrc75a-as1 and elucidated its transcript structure and confirmed its cytoplasmic localization. Our results showed that calcium deposition was elevated after knockdown of Lrrc75a-as1, while its overexpression inhibited calcium accumulation in A10 cells. In addition, Lrrc75a-as1 attenuated VSMCs calcification by decreasing the expression of osteoblast-related factors. These findings suggest that Lrrc75a-as1 acts as a negative regulator of vascular calcification, and may serve as a possible therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Geon Jeong
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhee Ryu
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Yeong-Hwan Lim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea. .,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea. .,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea. .,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea. .,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| |
Collapse
|
40
|
Wang L, You ZH, Chen X, Li YM, Dong YN, Li LP, Zheng K. LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput Biol 2019; 15:e1006865. [PMID: 30917115 PMCID: PMC6464243 DOI: 10.1371/journal.pcbi.1006865] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 04/15/2019] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
Emerging evidence has shown microRNAs (miRNAs) play an important role in human disease research. Identifying potential association among them is significant for the development of pathology, diagnose and therapy. However, only a tiny portion of all miRNA-disease pairs in the current datasets are experimentally validated. This prompts the development of high-precision computational methods to predict real interaction pairs. In this paper, we propose a new model of Logistic Model Tree for predicting miRNA-Disease Association (LMTRDA) by fusing multi-source information including miRNA sequences, miRNA functional similarity, disease semantic similarity, and known miRNA-disease associations. In particular, we introduce miRNA sequence information and extract its features using natural language processing technique for the first time in the miRNA-disease prediction model. In the cross-validation experiment, LMTRDA obtained 90.51% prediction accuracy with 92.55% sensitivity at the AUC of 90.54% on the HMDD V3.0 dataset. To further evaluate the performance of LMTRDA, we compared it with different classifier and feature descriptor models. In addition, we also validate the predictive ability of LMTRDA in human diseases including Breast Neoplasms, Breast Neoplasms and Lymphoma. As a result, 28, 27 and 26 out of the top 30 miRNAs associated with these diseases were verified by experiments in different kinds of case studies. These experimental results demonstrate that LMTRDA is a reliable model for predicting the association among miRNAs and diseases.
Collapse
Affiliation(s)
- Lei Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, China
- * E-mail: (ZHY); (XC)
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
- * E-mail: (ZHY); (XC)
| | - Yang-Ming Li
- Department of Electrical Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, United States of America
| | - Ya-Nan Dong
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Li-Ping Li
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, China
| | - Kai Zheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, China
| |
Collapse
|
41
|
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol 2019; 25:227-236. [PMID: 29547400 DOI: 10.1097/moh.0000000000000424] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Since the first discovery of microRNAs (miRNAs) in 1993, the involvement of miRNAs in different aspects of vascular disease has emerged as an important research field. In this review, we summarize the fundamental roles of miRNAs in controlling endothelial cell functions and their implication with several aspects of vascular dysfunction. RECENT FINDINGS MiRNAs have been found to be critical modulators of endothelial homeostasis. The dysregulation of miRNAs has been linked to endothelial dysfunction and the development and progression of vascular disease which and open new opportunities of using miRNAs as potential therapeutic targets for vascular disease. SUMMARY Further determination of miRNA regulatory circuits and defining miRNAs-specific target genes remains key to future miRNA-based therapeutic applications toward vascular disease prevention. Many new and unanticipated roles of miRNAs in the control of endothelial functions will assist clinicians and researchers in developing potential therapeutic applications.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Role of miRNA in the Regulatory Mechanisms of Estrogens in Cardiovascular Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6082387. [PMID: 30671171 PMCID: PMC6317101 DOI: 10.1155/2018/6082387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are a worldwide health problem and are the leading cause of mortality in developed countries. Together with experimental data, the lower incidence of cardiovascular diseases in women than in men of reproductive age points to the influence of sex hormones at the cardiovascular level and suggests that estrogens play a protective role against cardiovascular disease and that this role is also modified by ageing. Estrogens affect cardiovascular function via their specific estrogen receptors to trigger gene expression changes at the transcriptional level. In addition, emerging studies have proposed a role for microRNAs in the vascular effects mediated by estrogens. miRNAs regulate gene expression by repressing translational processes and have been estimated to be involved in the regulation of approximately 30% of all protein-coding genes in mammals. In this review, we highlight the current knowledge of the role of estrogen-sensitive miRNAs, and their influence in regulating vascular ageing.
Collapse
|
43
|
Chen X, Wang CC, Yin J, You ZH. Novel Human miRNA-Disease Association Inference Based on Random Forest. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:568-579. [PMID: 30439645 PMCID: PMC6234518 DOI: 10.1016/j.omtn.2018.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/30/2018] [Accepted: 10/05/2018] [Indexed: 01/23/2023]
Abstract
Since the first microRNA (miRNA) was discovered, a lot of studies have confirmed the associations between miRNAs and human complex diseases. Besides, obtaining and taking advantage of association information between miRNAs and diseases play an increasingly important role in improving the treatment level for complex diseases. However, due to the high cost of traditional experimental methods, many researchers have proposed different computational methods to predict potential associations between miRNAs and diseases. In this work, we developed a computational model of Random Forest for miRNA-disease association (RFMDA) prediction based on machine learning. The training sample set for RFMDA was constructed according to the human microRNA disease database (HMDD) version (v.)2.0, and the feature vectors to represent miRNA-disease samples were defined by integrating miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. The Random Forest algorithm was first employed to infer miRNA-disease associations. In addition, a filter-based method was implemented to select robust features from the miRNA-disease feature set, which could efficiently distinguish related miRNA-disease pairs from unrelated miRNA-disease pairs. RFMDA achieved areas under the curve (AUCs) of 0.8891, 0.8323, and 0.8818 ± 0.0014 under global leave-one-out cross-validation, local leave-one-out cross-validation, and 5-fold cross-validation, respectively, which were higher than many previous computational models. To further evaluate the accuracy of RFMDA, we carried out three types of case studies for four human complex diseases. As a result, 43 (esophageal neoplasms), 46 (lymphoma), 47 (lung neoplasms), and 48 (breast neoplasms) of the top 50 predicted disease-related miRNAs were verified by experiments in different kinds of case studies. The results of cross-validation and case studies indicated that RFMDA is a reliable model for predicting miRNA-disease associations.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi 830011, China.
| |
Collapse
|
44
|
Liu L, Cheng Z, Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease. Pathol Res Pract 2018; 214:1873-1878. [DOI: 10.1016/j.prp.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
|
45
|
Endothelial Cell Aging: How miRNAs Contribute? J Clin Med 2018; 7:jcm7070170. [PMID: 29996516 PMCID: PMC6068727 DOI: 10.3390/jcm7070170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) form monolayers and line the interior surfaces of blood vessels in the entire body. In most mammalian systems, the capacity of endothelial cells to divide is limited and endothelial cells are prone to be senescent. Aging of ECs and resultant endothelial dysfunction lead to a variety of vascular diseases such as atherosclerosis, diabetes mellites, hypertension, and ischemic injury. However, the mechanism by which ECs get old and become senescent and the impact of endothelial senescence on the vascular function are not fully understood. Recent research has unveiled the crucial roles of miRNAs, which are small non-coding RNAs, in regulating endothelial cellular functions, including nitric oxide production, vascular inflammation, and anti-thromboformation. In this review, how senescent-related miRNAs are involved in controlling the functions of ECs will be discussed.
Collapse
|
46
|
Wang W, Wang Y, Liu W, van Wijnen AJ. Regulation and biological roles of the multifaceted miRNA-23b (MIR23B). Gene 2017; 642:103-109. [PMID: 29101066 DOI: 10.1016/j.gene.2017.10.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are important short endogenous non-coding RNAs that have critical biological roles by acting as post-transcriptional regulators of gene expression. Chromosomal region 9q22.32 encodes the miR-23b/27b/24-1 cluster and produces miR-23b, which is a pleiotropic modulator in many developmental processes and pathological conditions. Expression of miR-23b is actively suppressed and induced in response to many different stimuli. We discuss the biological functions and transcriptional regulation of this multifaceted miRNA in different tumor types, during development, upon viral infection, as well as in various clinical disorders, immune responses, as well as cardiovascular and thyroid functions. The combined body of work suggests that miR-23b expression is modulated by a diverse array of stimuli in cells from different lineages and participates in multiple gene regulatory feedback loops. Elevation of miR-23b levels appears to instruct cells to limit their proliferative and migratory potential, while promoting the acquisition of specialized phenotypes or protection from invading viruses and parasites. In contrast, loss of miR-23b can deregulate normal tissue homeostasis by removing constraints on cell cycle progression and cell motility. Collectively, the findings on miR-23b indicate that it is a very potent post-transcriptional regulator of growth and differentiation during development, multiple cancers and other biological processes. Understanding the regulation and activity of miR-23b has significant diagnostic value in many biological disorders and may identify cellular pathways that are amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Wang
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopaedics, Changzhou No. 2 People's Hospital, Nanjing Medical University, 29 Xinglong Alley, Jiangsu, China
| | - Weijun Liu
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
47
|
Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med 2017; 40:1719-1730. [PMID: 29039486 PMCID: PMC5716433 DOI: 10.3892/ijmm.2017.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the regulation of endothelial cell (EC) microRNAs (miRNAs) altered by heat stress, miRNA microarrays and bioinformatics methods were used to determine changes in miRNA profiles and the pathophysiological characteristics of differentially expressed miRNAs. A total of 31 differentially expressed miRNAs were identified, including 20 downregulated and 11 upregulated miRNAs. Gene Ontology (GO) enrichment analysis revealed that the validated targets of the differentially expressed miRNAs were significantly enriched in gene transcription regulation. The pathways were also significantly enriched in the Kyoto Encyclopedia of Genes and Genomes analysis, and most were cancer-related, including the mitogen-activated protein kinase signaling pathway, pathways involved in cancer, the Wnt signaling pathway, the Hippo signaling pathway, proteoglycans involved in cancer and axon guidance. The miRNA-gene and miRNA-GO network analyses revealed several hub miRNAs, genes and functions. Notably, miR-3613-3p played a dominant role in both networks. MAP3K2, MGAT4A, TGFBR1, UBE2R2 and SMAD4 were most likely to be controlled by the altered miRNAs in the miRNA-gene network. The miRNA-GO network analysis revealed significantly complicated associations between miRNAs and different functions, and that the significantly enriched functions targeted by the differentially expressed miRNAs were mostly involved in regulating gene transcription. The present study demonstrated that miRNAs are involved in the pathophysiology of heat-treated ECs. Understanding the functions of miRNAs may provide novel insights into the molecular mechanisms underlying the heat-induced pathophysiology of ECs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Siya Xu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
48
|
Suzuki HI, Katsura A, Mihira H, Horie M, Saito A, Miyazono K. Regulation of TGF-β-mediated endothelial-mesenchymal transition by microRNA-27. J Biochem 2017; 161:417-420. [PMID: 28338957 PMCID: PMC5412016 DOI: 10.1093/jb/mvx017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Multiple microRNAs (miRNAs) regulate epithelial-mesenchymal transition and endothelial-mesenchymal transition (EndMT). Here we report that microRNA-27b (miR-27b) positively regulates transforming growth factor-β (TGF-β)-induced EndMT of MS-1 mouse pancreatic microvascular endothelial cells. TGF-β induced miR-23b/24-1/27b expression, and inhibition of miR-27 suppressed TGF-β-mediated induction of mesenchymal genes. Genome-wide miRNA target analysis revealed that miR-27 targets Elk1, which acts as a competitive inhibitor of myocardin-related transcription factor-serum response factor signalling and as a myogenic repressor. miR-27b was also found to regulate several semaphorin receptors including Neuropilin 2, Plexin A2 and Plexin D1. These results suggest important roles of miR-27 in TGF-β-driven EndMT.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, 76-417, Cambridge, MA 02139, USA
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Mihira
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Feldman A, Moreira DAR, Gun C, Wang HTL, Hirata MH, de Freitas Germano J, Leite GGS, Farsky P. Analysis of Circulating miR-1, miR-23a, and miR-26a in Atrial Fibrillation Patients Undergoing Coronary Bypass Artery Grafting Surgery. Ann Hum Genet 2017; 81:99-105. [PMID: 28422282 DOI: 10.1111/ahg.12188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 01/04/2023]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia after cardiac surgery. From a pathophysiological point of view, a myriad of factors such as trauma, atrial dilation, ischemia, mechanical myopericarditis, autonomic imbalance, loss of connexins, AF nest remodeling, inflammation, sutures, and dysfunction caused by postextracorporeal circulation can contribute to postoperative atrial fibrillation (POAF) resulting in a longer hospital stay and consequently higher cost. Recent studies showed that short fragments of RNA, called microRNA (miRNA), can contribute to the development of several cardiovascular diseases, including AF. The aim of this study was to evaluate the levels of circulating miRNAs (miR-1, -23a, and -26a) that can be involved in POAF. Patients submitted to coronary artery bypass graft surgery were grouped in POAF (24 patients) and without POAF (24 patients). Results showed older age, longer clamp-time, and more days in the intensive care unit as well as a longer total hospital stay in the POAF group. Preoperative levels of circulating miRNAs were similar. Analysis of miRNAs revealed significantly lower circulating levels of miRNA-23a (P = 0.02) and -26a (P = 0.01) in the POAF group during the postoperative period. Receiver operating characteristic (ROC) analysis showed the area under the ROC curve of miR-23a and miR-26a for predicting FA was 0.63 (95% confidence interval [CI]: 0.51-0.74; P = 0.02) and 0.66 (95% CI: 0.55-0.77; P = 0.01), respectively. Our data suggests that circulating miRNA-23a and -26a may be involved in the underlying biology of postoperative AF development.
Collapse
Affiliation(s)
- Andre Feldman
- Instituto Dante Pazzanese de Cardiologia Sao Paulo, São Paulo, BR
| | | | - Carlos Gun
- Instituto Dante Pazzanese de Cardiologia Sao Paulo, São Paulo, BR
| | - Hui-Tzu Lin Wang
- Instituto Dante Pazzanese de Cardiologia Sao Paulo, São Paulo, BR
| | | | | | | | - Pedro Farsky
- Instituto Dante Pazzanese de Cardiologia Sao Paulo, São Paulo, BR
| |
Collapse
|
50
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017. [DOI: 10.1210/er.2016-1122.2017.1.test] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|