1
|
Long H, Zufall RA. Diverse modes of reproduction in the marine free-living ciliate Glauconema trihymene. BMC Microbiol 2010; 10:108. [PMID: 20388205 PMCID: PMC2873486 DOI: 10.1186/1471-2180-10-108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 04/13/2010] [Indexed: 11/16/2022] Open
Abstract
Background Most free-living ciliates reproduce by equal fission or budding during vegetative growth. In certain ciliates, reproduction occurs inside the cyst wall, viz. reproductive cysts, but more complex reproductive strategies have generally been thought to be confined to parasitic or symbiotic species, e.g. Radiophrya spp. Results In addition to equal fission, asymmetric binary division and reproductive cysts were discovered in the free-living bacterivorous scuticociliate Glauconema trihymene Thompson, 1966. Asymmetric division is an innate physiological state that can be induced by sufficient food, and the higher the food concentration, the longer the asymmetric division persists. During asymmetric division, nuclear and somatic structures divide with transiently arrested cytokinesis and variable positioning of macronuclei. Phylogenetic analysis, based on the small subunit of ribosomal DNA (SSU rDNA) sequences, showed that the G. trihymene isolate studied here nests with typical scuticociliates and is paraphyletic to both the symbiotic apostome and astome ciliates, some of which also produce progeny by asymmetric division. Conclusions The asymmetric division in G. trihymene has no precedent among undisturbed free-living ciliates. The coexistence of multiple modes of reproduction may represent a previously undescribed reproductive strategy for ciliates living on food patches in coastal waters. This may also be indicative of similar reproductive strategies among other polyphenic ciliates, which have not been intensively studied. Asymmetric division provides a special opportunity for studying ciliates' phenotypic plasticity and may also illuminate the origins of multicellularity.
Collapse
Affiliation(s)
- Hongan Long
- Department of Biology and Biochemistry, University of Houston, Houston TX 77204-5001, USA.
| | | |
Collapse
|
2
|
Villalobo E, Moch C, Fryd-Versavel G, Fleury-Aubusson A, Morin L. Cysteine proteases and cell differentiation: excystment of the ciliated protist Sterkiella histriomuscorum. EUKARYOTIC CELL 2004; 2:1234-45. [PMID: 14665458 PMCID: PMC326638 DOI: 10.1128/ec.2.6.1234-1245.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The process of excystment of Sterkiella histriomuscorum (Ciliophora, Oxytrichidae) leads in a few hours, through a massive influx of water and the resorption of the cyst wall, from an undifferentiated resting cyst to a highly differentiated and dividing vegetative cell. While studying the nature of the genes involved in this process, we isolated three different cysteine proteases genes, namely, a cathepsin B gene, a cathepsin L-like gene, and a calpain-like gene. Excystation was selectively inhibited at a precise differentiating stage by cysteine proteases inhibitors, suggesting that these proteins are specifically required during the excystment process. Reverse transcription-PCR experiments showed that both genes display differential expression between the cyst and the vegetative cells. A phylogenetic analysis showed for the first time that the cathepsin B tree is paraphyletic and that the diverging S. histriomuscorum cathepsin B is closely related to its Giardia homologues, which take part in the cyst wall breakdown process. The deduced cathepsin L-like protein sequence displays the structural signatures and phylogenetic relationships of cathepsin H, a protein that is known only in plants and animals and that is involved in the degradation of extracellular matrix components in cancer diseases. The deduced calpain-like protein sequence does not display the calcium-binding domain of conventional calpains; it belongs to a diverging phylogenetic cluster that includes Aspergillus palB, a protein which is involved in a signal transduction pathway that is sensitive to ambient pH.
Collapse
Affiliation(s)
- Eduardo Villalobo
- Laboratoire de Biologie Cellulaire 4, Université de Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
3
|
Abstract
Studies of the ciliate cell cycle have moved from early examination of its biochemistry with heat-synchronized Tetrahymena through descriptive studies of Paramecium using small synchronous cell samples. These studies described what happens during the cell cycle and provided some initial insights into control, especially the idea that there was a point at which cells became committed to division. This early work was followed by an analytical phase in which the same small sample techniques, combined with gene mutations, were used to tease apart some major features of the regulation of cell growth kinetics, including regulation of macronuclear DNA content and regulation of cell size, the control of timing of initiation of macronuclear DNA synthesis, and the control of commitment to division in Paramecium. The availability of new molecular genetic approaches and new means of manipulating cells en masse made it possible to map out some of the basic features of the molecular biology of cell cycle regulation in ciliates. The challenge before us is to move beyond the 'me-too-ism' of validating the presence of basic molecular regulative machinery underlying the cell cycle in ciliates to a deeper analysis of the role of specific molecules in processes unique to ciliates or to analysis of the role of regulatory molecules in the control of cell process that can be uniquely well studied in ciliates.
Collapse
Affiliation(s)
- J D Berger
- Department of Zoology, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Abstract
Electric shock can create parabiotic fusions of living Tetrahymena cells. In this study, cells were mated and successful pairs were electrofused with either vegetatively growing cells or other mating pairs. In particular, we electrofused pairs from normal [diploid x diploid] matings with vegetatively dividing cells in G- or M-phase of the cell cycle. We also fused [diploid x diploid] conjugants with mating pairs involving an aneuploid partner [diploid x "star"], which typically undergo an abortive conjugal pathway termed genomic exclusion. Using such parabiotic fusions we identified and characterized two developmentally critical landmarks: 1) the "abort" signal, which is initiated in pairs with nuclear defects (this first becomes evident soon after the completion of Meiosis I or the beginning of Meiosis II); and 2) the "terminal commitment point", a developmental stage in normal [diploid x diploid] pairs after which conjugation no longer responds to a parabiotically transmitted abort signal (this correlates with the onset of the second postzygotic nuclear division). Finally we demonstrate that a conjugal-arrest-activity varies with the vegetative cell cycle, reaching its highest level of activity during M-phase and dropping just after cytokinesis.
Collapse
Affiliation(s)
- E S Cole
- Biology Department, St. Olaf College, Northfield, Minnesota 55057, USA.
| | | | | |
Collapse
|
5
|
Clerot J, Iftode F, Budin K, Jeanmaire-Wolf R, Coffe G, Fleury-Aubusson A. Fine oral filaments in Paramecium: a biochemical and immunological analysis. J Eukaryot Microbiol 2001; 48:234-45. [PMID: 12095113 DOI: 10.1111/j.1550-7408.2001.tb00310.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Paramecium, several kinds of the oral networks of fine filaments are defined at the ultrastructural level. Using the sodium chloride-treated oral apparatus of Paramecium as an antigen to produce monoclonal antibodies, we have begun to identify the proteins constituting these networks. Immunoblotting showed that all positive antibodies were directed against three bands (70-, 75-and 83-kD), which corresponded to quantitatively minor components of the antigen; there was no antibody specific for the quantitatively major components (58- and 62-kD). Immunolocalization with four of these antibodies directed against one or several of these three bands showed that these proteins are components of the fine filaments supporting the oral area; a decoration of the basal bodies and the outer lattice was also observed on the cortex. Immunofluorescence on interphase cells suggested that the three proteins colocalized on the left side of the oral apparatus, whereas only the 70-kD band was detected on the right side. During division, the antigens of the antibodies were detected at different stages after oral basal body assembly. The antibodies cross-reacted with the tetrins, which are oral filament-forming proteins in Tetrahymena, demonstrating that tetrin-related proteins are quantitatively minor components of the oral and the somatic cytoskeleton of Paramecium.
Collapse
Affiliation(s)
- J Clerot
- Laboratoire de Biologie Cellulaire 4, Université Paris XI, France
| | | | | | | | | | | |
Collapse
|
6
|
Adl SM, Berger JD. Timing of life cycle morphogenesis in synchronous samples of Sterkiella histriomuscorum. II. The sexual pathway. J Eukaryot Microbiol 2000; 47:443-9. [PMID: 11001141 DOI: 10.1111/j.1550-7408.2000.tb00073.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Isolates of Sterkiella (Oxytrichidae, Stichotrichia, Ciliata) are commonly used to study macronuclear development. These organisms respond to changes in food abundance variably by encystment-excystment, conjugation, cannibalism or rescaling cell size. An isolate of Sterkiella histriomuscorum (previously Oxytricha fallax and O. trifallax) is used because two complementary mating types are available. We provide observations on conjugation in cultures of this isolate. Using synchronous samples of conjugants, the timing of stages of nuclear divisions during conjugation was determined. Following ex-conjugant cultures over time, the onset of clonal aging and senescence is described. Cells become sexually mature after a brief period of "adolescence", during which time selfing is possible. Senescent cultures are less vigorous, unable to conjugate and encyst more readily. Excystment survival decreases with clonal age. These results can serve as reference for long-term cultures of this species and for analysing particular stages of developmental processes during conjugation.
Collapse
Affiliation(s)
- S M Adl
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
7
|
Marsh TC, Cole ES, Stuart KR, Campbell C, Romero DP. RAD51 is required for propagation of the germinal nucleus in Tetrahymena thermophila. Genetics 2000; 154:1587-96. [PMID: 10747055 PMCID: PMC1461009 DOI: 10.1093/genetics/154.4.1587] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RAD51, the eukaryote homolog of the Escherichia coli recA recombinase, participates in homologous recombination during mitosis, meiosis, and in the repair of double-stranded DNA breaks. The Tetrahymena thermophila RAD51 gene was recently cloned, and the in vitro activities and induction of Rad51p following DNA damage were shown to be similar to that of RAD51 from other species. This study describes the pattern of Tetrahymena RAD51 expression during both the cell cycle and conjugation. Tetrahymena RAD51 mRNA abundance is elevated during macronuclear S phase during vegetative cell growth and with both meiotic prophase and new macronuclear development during conjugation. Gene disruption of the macronuclear RAD51 locus leads to severe abnormalities during both vegetative growth and conjugation. rad51 nulls divide slowly and incur rapid deterioration of their micronuclear chromosomes. Conjugation of two rad51 nulls leads to an arrest early during prezygotic development (meiosis I). We discuss the potential usefulness of the ciliates' characteristic nuclear duality for further analyses of the potentially unique roles of Tetrahymena RAD51.
Collapse
Affiliation(s)
- T C Marsh
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
9
|
Maercker C, Kortwig H, Nikiforov MA, Allis CD, Lipps HJ. A nuclear protein involved in apoptotic-like DNA degradation in Stylonychia: implications for similar mechanisms in differentiating and starved cells. Mol Biol Cell 1999; 10:3003-14. [PMID: 10473642 PMCID: PMC25544 DOI: 10.1091/mbc.10.9.3003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.
Collapse
Affiliation(s)
- C Maercker
- Institute for Cell Biology, University of Witten/Herdecke, D-58448 Witten, Germany.
| | | | | | | | | |
Collapse
|
10
|
Blackburn E, Bhattacharyya A, Gilley D, Kirk K, Krauskopf A, McEachern M, Prescott J, Ware T. The telomere and telomerase: how do they interact? CIBA FOUNDATION SYMPOSIUM 1998; 211:2-13; discussion 15-9. [PMID: 9524748 DOI: 10.1002/9780470515433.ch2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tandemly repeated DNA sequence of telomeres is typically specified by the ribonucleoprotein enzyme telomerase. Telomerase copies part of its intrinsic RNA moiety to make one strand of the telomeric repeat DNA. Recent work has led to the concept of a telomere homeostasis system. We have been studying two key physical components of this system: the telomere itself and telomerase. Mutating the template sequence of telomerase RNA caused various phenotypes: (1) mutating specific residues in the ciliate Tetrahymena and two yeasts showed that they are required for critical aspects of telomerase action; (2) certain mutated telomeric sequences caused a previously unreported phenotype, i.e. a strong anaphase block in Tetrahymena micronuclei; and (3) certain template mutations in the telomerase RNA gene of the yeast Kluyveromyces lactis led to unregulated telomere elongation, which in some cases was directly related to loss of binding to K. lactis Rap1p. Using K. lactis carrying alterations in the genes for Rap1p and other silencing components, we proposed a general model for telomere length homeostasis: namely, that the structure and DNA length of the DNA-protein complex that comprises the telomere are key determinants of telomerase access, and hence the frequency of action of telomerase, at the telomere.
Collapse
Affiliation(s)
- E Blackburn
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cole ES, Cassidy-Hanley D, Hemish J, Tuan J, Bruns PJ. A mutational analysis of conjugation in Tetrahymena thermophila. 1. Phenotypes affecting early development: meiosis to nuclear selection. Dev Biol 1997; 189:215-32. [PMID: 9299115 DOI: 10.1006/dbio.1997.8648] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conjugation in the freshwater ciliate Tetrahymena thermophila involves a developmental program that models meiosis, fertilization, and early developmental events characteristic of multicellular eukaryotes. We describe a gallery of five early-acting conjugation mutations. These mutants, cnj1-5, exhibit phenotypes in which specific steps in the conjugal pathway have been altered or eliminated. Specifically, cnj1 and cnj2 fail to condense their micronuclear chromatin prior to each of the three prezygotic nuclear divisions. This results in nuclear division failure, failure to replicate DNA, and failure to initiate postzygotic development. The cnj3 mutant appears to exhibit a defect in chromosome separation during anaphase of mitosis. cnj4 mutants successfully carry out meiosis I, yet are unable to execute the second meiotic division and abort all further development. cnj5 mutants are unable to initiate either meiosis I or meiosis II, yet proceed to execute all subsequent developmental events. These mutant phenotypes are used to draw inferences regarding developmental dependencies that exist within the conjugation program.
Collapse
Affiliation(s)
- E S Cole
- Biology Department, St. Olaf College, Northfield, Minnesota 55057, USA.
| | | | | | | | | |
Collapse
|
12
|
Cole ES, Soelter TA. A mutational analysis of conjugation in Tetrahymena thermophila. 2. Phenotypes affecting middle and late development: third prezygotic nuclear division, pronuclear exchange, pronuclear fusion, and postzygotic development. Dev Biol 1997; 189:233-45. [PMID: 9299116 DOI: 10.1006/dbio.1997.8649] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conjugation following pair formation in Tetrahymena can be divided into three distinct sequences of events: prezygotic development, postzygotic development, and exconjugant development. The decision to proceed with postzygotic development is governed by a developmental checkpoint occurring sometime during the middle stages of conjugation. A second developmental decision is made to initiate pair separation and exconjugant development. This paper examines the phenotypes of five newly isolated conjugation mutants (cnj6-cnj10) which affect middle and late events within the conjugation program. cnj6 mutants exhibit normal nuclear behavior throughout development up to and including differentiation of new macronuclear anlagen. Pairs arrest at this developmental endpoint, unable to dissociate. cnj7 and cnj8 eliminate the third prezygotic nuclear division and the first postzygotic nuclear division. All subsequent developmental events appear normal. cnj9 eliminates the second postzygotic nuclear division, and subsequently, new macronuclei fail to develop despite parental macronuclear degradation. cnj10 results in a pleiotropic phenotype characterized by failure of numerous events which all appear to involve nuclear-cytoskeletal interactions. These defects include nuclear selection (anchoring nuclei to the exchange junction), pronuclear exchange, pronuclear fusion, and anchoring postzygotic nuclear division products to the posterior cell cortex. These mutant phenotypes are used to draw inferences regarding developmental dependencies that govern a cell's entry into the postzygotic and exconjugant developmental programs.
Collapse
Affiliation(s)
- E S Cole
- Biology Department, St. Olaf College, Northfield, Minnesota, 55057, USA.
| | | |
Collapse
|
13
|
TANG LIREN, ADL SINAM, BERGER JAMESD. A CDC2-Related Kinase is Associated with Macronuclear DNA Synthesis in Paramecium tetraurelia. J Eukaryot Microbiol 1997. [DOI: 10.1111/j.1550-7408.1997.tb05711.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Kirk KE, Harmon BP, Reichardt IK, Sedat JW, Blackburn EH. Block in anaphase chromosome separation caused by a telomerase template mutation. Science 1997; 275:1478-81. [PMID: 9045613 DOI: 10.1126/science.275.5305.1478] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Telomeres are essential for chromosome stability, but their functions at specific cell-cycle stages are unknown. Telomeres are now shown to have a role in chromosome separation during mitosis. In telomeric DNA mutants of Tetrahymena thermophila, created by expression of a telomerase RNA with an altered template sequence, division of the germline nucleus was severely delayed or blocked in anaphase. The mutant chromatids failed to separate completely at the midzone, becoming stretched to up to twice their normal length. These results suggest a physical block in mutant telomere separation.
Collapse
Affiliation(s)
- K E Kirk
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA
| | | | | | | | | |
Collapse
|