1
|
Wang M, Xu X, Guo Y, Tao R, Hu C, Dong X, Huang Y, Zhu B. Polymorphisms involving the Pneumocystis jirovecii-related genes in AIDS patients in eastern China. INFECTION GENETICS AND EVOLUTION 2019; 75:103955. [PMID: 31284044 DOI: 10.1016/j.meegid.2019.103955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the genetic polymorphisms of mitochondrial large ribosomal subunit (mtLSU)-rRNA, dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), cytochrome b (CYB), and superoxide dismutase (SOD) genes and its correlation with clinical outcomes of Pneumocystis jirovecii pneumonia in acquired immune deficiency(AIDS) patients. METHODS Eighty AIDS patients with P. jirovecii pneumonia that were admitted to our hospital from 2016 to 2018 were included in this study. Their demographic information and clinical data were collected, as well as corresponding saliva specimens for PCR and sequencing of mtLSU-rRNA, DHFR, DHPS, CYB, and SOD genes to analyze genetic polymorphisms, different polymorphic combinations, and clinical outcomes. RESULTS Of the 80 saliva specimens, mtLSU-rRNA was successfully amplified and sequenced in 30 cases; CYB was successfully amplified and sequenced in 26 cases; and SOD, DHFR, and DHPS were successfully amplified and sequenced in 18 cases. These results indicate that The mtLSU-rRNA, CYB, and SOD genes were highly polymorphic. mt85T and CYB1 were the variants dominantly detected at the mtLSU-rRNA and CYB loci, respectively. The SOD1 and SOD2 variants (each in 50% of the cases) were detected at the SOD locus. Among the 18 cases that were successfully amplified and sequenced for DHFR and DHPS, three DHFR nonsense mutations and no DHPS mutation were observed. The mt85C, CYB1, SOD1, and DHFR312T genes harbored common polymorphisms (n = 4; 22.22%) and the mt85T, CYB1, SOD1, DHFR312T genes were associated with poor clinical outcomes. CONCLUSION The types of genetic polymorphisms and polymorphic combinations of mtLSU-rRNA, DHFR, DHPS, CYB, and SOD in P. jirovecii were related to the clinical outcomes of patients with P. jirovecii pneumonia in Zhejiang Province, China.
Collapse
Affiliation(s)
- Mengyan Wang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoke Xu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Yongzheng Guo
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Ran Tao
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Caiqin Hu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaotian Dong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Sokulska M, Kicia M, Wesołowska M, Piesiak P, Kowal A, Lobo ML, Kopacz Ż, Hendrich AB, Matos O. Genotyping of Pneumocystis jirovecii in colonized patients with various pulmonary diseases. Med Mycol 2017; 56:809-815. [DOI: 10.1093/mmy/myx121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Affiliation(s)
- Magdalena Sokulska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Wesołowska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Piesiak
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Luísa Lobo
- Unit of Medical Parasitology, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Żaneta Kopacz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej B Hendrich
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Matos
- Unit of Medical Parasitology, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Singh Y, Mirdha BR, Guleria R, Khalil S, Panda A, Chaudhry R, Mohan A, Kabra SK, Kumar L, Agarwal SK. Circulating genotypes of Pneumocystis jirovecii and its clinical correlation in patients from a single tertiary center in India. Eur J Clin Microbiol Infect Dis 2017; 36:1635-1641. [PMID: 28401321 DOI: 10.1007/s10096-017-2977-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The present study was carried out with the objectives of genotyping Pneumocystis jirovecii at three distinct loci, to identify the single nucleotide polymorphisms (SNPs), and to study its clinical implications in patients with Pneumocystis pneumonia (PCP). Analysis of genetic diversity in P. jirovecii from immunocompromised patients was carried out by genotyping at three distinct loci encoding mitochondrial large subunit rRNA (mtLSU rRNA), cytochrome b (CYB), and superoxide dismutase (SOD) using polymerase chain reaction (PCR) assays followed by direct DNA sequencing. Of the 300 patients enrolled in the present study, 31 (10.33%) were positive for PCP by a specific mtLSU rRNA nested PCR assay, whereas only 15 P. jirovecii could be amplified at the other two loci (SOD and CYB). These positives were further subjected to sequence typing. Important genotypic combinations between four SNPs (mt85, SOD110, SOD215, and CYB838) and clinical outcomes could be observed in the present study, and mt85A, mt85T, and SOD110C/SOD215T were frequently associated with "negative follow-up". These SNPs were also noted to be relatively more prevalent amongst circulating genotypes in our study population. The present study is the first of its kind from the Indian subcontinent and demonstrated that potential SNPs of P. jirovecii may possibly be attributed to the clinical outcome of PCP episodes in terms of severity or fatality in different susceptible populations likely to develop PCP during their course of illness.
Collapse
Affiliation(s)
- Y Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - B R Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - R Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - S Khalil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A Panda
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - R Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - L Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - S K Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Khalife S, Aliouat EM, Gantois N, Jakobczyk H, Demay F, Chabé M, Pottier M, Dabboussi F, Hamze M, Dei-Cas E, Standaert-Vitse A, Aliouat-Denis CM. Complementation of a manganese-dependent superoxide dismutase-deficient yeast strain with Pneumocystis carinii sod2 gene. Fungal Biol 2014; 118:885-95. [PMID: 25442292 DOI: 10.1016/j.funbio.2014.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022]
Abstract
Manganese-dependent superoxide dismutase (MnSOD) is one of the key enzymes involved in the cellular defense against oxidative stress. Previously, the Pneumocystis carinii sod2 gene (Pcsod2) was isolated and characterized. Based on protein sequence comparison, Pcsod2 was suggested to encode a putative MnSOD protein likely to be targeted into the mitochondrion. In this work, the Pcsod2 was cloned and expressed as a recombinant protein in EG110 Saccharomyces cerevisiae strain lacking the MnSOD-coding gene (Scsod2) in order to investigate the function and subcellular localization of P. carinii MnSOD (PcMnSOD). The Pcsod2 gene was amplified by PCR and cloned into the pYES2.1/V5-His-TOPO(®) expression vector. The recombinant construct was then transformed into EG110 strain. Once its expression had been induced, PcMnSOD was able to complement the growth defect of EG110 yeast cells that had been exposed to the redox-cycling compound menadione. N-term sequencing of the PcMnSOD protein allowed identifying the cleavage site of a mitochondrial targeting peptide. Immune-colocalization of PcMnSOD and yeast CoxIV further confirmed the mitochondrial localization of the PcMnSOD. Heterologous expression of PcMnSOD in yeast indicates that Pcsod2 encodes an active MnSOD, targeted to the yeast mitochondrion that allows the yeast cells to grow in the presence of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Sara Khalife
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Liban
| | - El Moukhtar Aliouat
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| | - Nausicaa Gantois
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France
| | - Hélène Jakobczyk
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France
| | - François Demay
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France
| | - Magali Chabé
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| | - Muriel Pottier
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| | - Fouad Dabboussi
- Laboratoire de Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Liban
| | - Monzer Hamze
- Laboratoire de Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Liban
| | - Eduardo Dei-Cas
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Univ Lille Nord de France, Univ Lille 2, Lille F-59045, France
| | - Annie Standaert-Vitse
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France.
| | - Cécile-Marie Aliouat-Denis
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| |
Collapse
|
5
|
Khalife S, Standaert-Vitse A, Gantois N, Jakobczyk H, Chabé M, Pottier M, Dei-Cas E, Aliouat E, Aliouat CM, Dabboussi F, Hamze M. Molecular cloning and functional characterization of Pneumocystis carinii MnSOD. J Mycol Med 2014. [DOI: 10.1016/j.mycmed.2014.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
|
7
|
Clinical relevance of multiple single-nucleotide polymorphisms in Pneumocystis jirovecii Pneumonia: development of a multiplex PCR-single-base-extension methodology. J Clin Microbiol 2011; 49:1810-5. [PMID: 21389160 DOI: 10.1128/jcm.02303-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PcP) is a major cause of respiratory illness in patients with AIDS. The identification of multiple single-nucleotide polymorphisms (SNPs) at three distinct P. jirovecii loci encoding dihydrofolate reductase (DHFR), mitochondrial large-subunit rRNA (mtLSU rRNA), and superoxide dismutase (SOD) was achieved using multiplex-PCR (MPCR) followed by direct sequencing and two single-base extension (SBE) techniques. Four SNPs (DHFR312, mt85, SOD215, and SOD110), correlated previously with parameters of disease, were amplified and genotyped simultaneously. The concordance of results between the standard sequencing technique (direct sequencing) and SBE analysis was 96.9% for the acrylamide gel electrophoresis and 98.4% for the capillary electrophoresis. The cross-genetic analysis established several statistical associations among the SNPs studied: mt85C-SOD110T, SOD110T-SOD215C, and SOD110C-SOD215T. These results were confirmed by cluster analysis. Data showed that among the isolates with low to moderate parasite burden, the highest percentages of DHFR312C, mt85C, SOD110T, and SOD215C were detected, whereas for high parasite burden cases the highest frequencies were observed among isolates with DHFR312T, mt85T, SOD110C, and SOD215T. The polymorphisms studied were shown to be suitable genetic targets potentially correlated with PcP clinical data that can be used as predictors of outcome in further studies to help clinical decision-making in the management of PcP. The MPCR/SBE protocol described for the first time in the present study was shown to be a rapid, highly accurate method for genotyping P. jirovecii SNPs encoded by different loci that could be used for epidemiological studies and as an additional procedure for the prognostic classification and diagnosis of PcP.
Collapse
|
8
|
Esteves F, Gaspar J, Marques T, Leite R, Antunes F, Mansinho K, Matos O. Identification of relevant single-nucleotide polymorphisms in Pneumocystis jirovecii: relationship with clinical data. Clin Microbiol Infect 2010; 16:878-84. [DOI: 10.1111/j.1469-0691.2009.03030.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Aliouat-Denis CM, Chabé M, Demanche C, Aliouat EM, Viscogliosi E, Guillot J, Delhaes L, Dei-Cas E. Pneumocystis species, co-evolution and pathogenic power. INFECTION GENETICS AND EVOLUTION 2008; 8:708-26. [DOI: 10.1016/j.meegid.2008.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/02/2008] [Accepted: 05/03/2008] [Indexed: 01/13/2023]
|
10
|
Fréalle E, Noël C, Viscogliosi E, Camus D, Dei-Cas E, Delhaes L. Manganese superoxide dismutase in pathogenic fungi: an issue with pathophysiological and phylogenetic involvements. ACTA ACUST UNITED AC 2005; 45:411-22. [PMID: 16055318 DOI: 10.1016/j.femsim.2005.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Manganese-containing superoxide dismutases (MnSODs) are ubiquitous metalloenzymes involved in cell defence against endogenous and exogenous reactive oxygen species. In fungi, using this essential enzyme for phylogenetic analysis of Pneumocystis and Ganoderma genera, and of species selected among Ascomycota, Basidiomycota and Zygomycota, provided interesting results in taxonomy and evolution. The role of mitochondrial and cytosolic MnSODs was explored in some pathogenic Basidiomycota yeasts (Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. gattii, Malassezia sympodialis), Ascomycota filamentous fungi (Aspergillus fumigatus), and Ascomycota yeasts (Candida albicans). MnSOD-based phylogenetic and pathogenic data are confronted in order to evaluate the roles of fungal MnSODs in pathophysiological mechanisms.
Collapse
|
11
|
Kutty G, Huang SN, Kovacs JA. Characterization of thioredoxin reductase genes (trr1) from Pneumocystis carinii and Pneumocystis jiroveci. Gene 2003; 310:175-83. [PMID: 12801645 DOI: 10.1016/s0378-1119(03)00549-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have characterized the thioredoxin reductase (trr1) genes from Pneumocystis carinii and Pneumocystis jiroveci, and have demonstrated that multiple copies of an approximately 500 base pair fragment of the trr1 gene are present in P. carinii, but not in P. jiroveci. Thioredoxin reductases encoded by the full-length genes have predicted molecular weights of approximately 35,000 and show high homology to yeast Trr1. An NADPH-binding domain with a putative redox active site CAVC as well as an flavin-adenine dinucleotide-binding domain are highly conserved in both proteins, which were 85% identical. The multicopy trr1 gene fragments in P. carinii are not transcribed or expressed. Duplication of the gene fragment likely occurred in conjunction with duplication of the kexin homologue, protease-1, which is located immediately upstream of the trr1 gene. Thioredoxin reductase, an enzyme implicated in the growth, survival and pathogenicity of certain microbes, could be a potential target for therapeutic intervention in Pneumocystis infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Ascomycota/enzymology
- Ascomycota/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Fungal Proteins/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Molecular Sequence Data
- Pneumocystis/enzymology
- Pneumocystis/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Schizosaccharomyces/enzymology
- Schizosaccharomyces/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Thioredoxin-Disulfide Reductase/genetics
- Thioredoxin-Disulfide Reductase/metabolism
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Building 10, Room 7D43, MSC 1662, Bethesda, MD 20892-1662, USA
| | | | | |
Collapse
|
12
|
Denis CM, Mazars E, Guyot K, Odberg-Ferragut C, Viscogliosi E, Dei-Cas E, Wakefield AE. Genetic divergence at the SODA locus of six different formae speciales of Pneumocystis carinii. Med Mycol 2000; 38:289-300. [PMID: 10975697 DOI: 10.1080/mmy.38.4.289.300] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genetic divergence at the SODA (manganese-dependent superoxide dismutase, MnSOD) locus were compared in six Pneumocystis carinii formae speciales isolated from mouse, rabbit, human, macaque and pig. A degenerate oligonucleotide primer strategy was designed to amplify 85-90% of the full-length SODA gene from P. carinii genomic DNA isolates. DNA sequence analysis revealed an A/T bias in the nucleotide composition (71-77.2%) and the presence of seven small introns (41-142 bp), interrupting each P. carinii open reading frame (ORF) at the same position. The MnSOD deduced amino acid sequences from all P. carinii isolates shared residues which were conserved within the MnSOD family and which are required for enzymatic activity and binding of the cofactor metal. Phylogenetic analysis including MnSOD sequences from representatives of the fungal phyla Basidiomycota and Ascomycota indicated that the P. carinii formae speciales form a monophyletic group that is related to the budding yeasts (subphylum Saccharomycotina, previously called class Hemiascomycetes) in the Ascomycota. In the whole Pneumocystis group, P. carinii f. sp. hominis, P. carinii f. sp. macacae and P. carinii f. sp. oryctolagi MnSOD sequences clustered together, as did the rat-derived P. carinii and P. carinii f. sp. muris sequences.
Collapse
Affiliation(s)
- C M Denis
- Department of Paediatrics, Institute of Molecular Medicine, University of Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
|