1
|
Bergman I, Lindström ES, Sassenhagen I. Ciliate Grazing on the Bloom-Forming Microalga Gonyostomum semen. MICROBIAL ECOLOGY 2024; 87:33. [PMID: 38236289 PMCID: PMC10796478 DOI: 10.1007/s00248-024-02344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
The freshwater raphidophyte Gonyostomum semen forms extensive summer blooms in northern European humic lakes. The development of these blooms might be facilitated by a lack of natural top-down control, as few zooplankton species are able to prey on these large algal cells (up to 100 μm) that expel trichocysts upon physical stress. In this study, we describe a small ciliate species (< 17 μm) that preys on G. semen by damaging the cell membrane until cytoplasm and organelles spill out. Sequencing of clonal cultures of the ciliate tentatively identified it as the prostomatid species Urotricha pseudofurcata. Grazing experiments illustrated that feeding by U. cf. pseudofurcata can significantly reduce cell concentrations of the microalga. However, differences in cell size and growth rate between two investigated ciliate strains resulted in noticeably different grazing pressure. Environmental sequencing data from five different lakes supported potential interactions between the two species. Urotricha cf. pseudofurcata might, thus, play an important role in aquatic ecosystems that are regularly dominated by G. semen, reducing the abundance of this bloom-forming microalga and enabling transfer of organic carbon to higher trophic levels.
Collapse
Affiliation(s)
- Ingrid Bergman
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | - Ingrid Sassenhagen
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.
- Biological Oceanography, Institute for Baltic Sea Research in Warnemünde, Seestraße 15, Rostock, 18119, Germany.
| |
Collapse
|
2
|
Wang C, Zhao L, Wei Y, Xu Z, Zhao Y, Zhao Y, Zhang W, Xiao T. Insights into the structure of the pelagic microbial food web in the oligotrophic tropical Western Pacific: Examining trophic interactions and relationship with abiotic variables. MARINE POLLUTION BULLETIN 2023; 197:115772. [PMID: 37988968 DOI: 10.1016/j.marpolbul.2023.115772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Microbial food webs (MFW) play an indispensable role in marine pelagic ecosystem, yet their composition and response to abiotic variables were poorly documented in the oligotrophic tropical Western Pacific. During winter of 2015, we conducted a survey to examine key components of MFW, including Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic prokaryotes (HP), heterotrophic/pigmented nanoflagellates and ciliates, across water column from surface to 2000 m. Each MFW component exhibited unique vertical distribution pattern, with abundance ratio varying over six and three orders of magnitude across Pico/Microplankton (1.6 ± 1.0 × 106) and Nano/Microplankton (3.2 ± 2.8 × 103), respectively. Furthermore, HP was main component for MFW in the bathypelagic (>1000 m) zone. Multivariate biota-environment analysis demonstrated that environmental variables, particularly temperature, significantly impacted MFW composition, suggesting that bottom-up control (resource availability) dominated the water column. Our study provides benchmark information for future environmental dynamics forcing on MFW in the oligotrophic tropical seas.
Collapse
Affiliation(s)
- Chaofeng Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yuanyuan Wei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanchu Zhao
- Ecological Environment Monitoring and Scientific Research Center of Haihe River Basin and Beihai Sea Area, Ministry of Ecological Environment, Tianjin 300170, China
| | - Yuan Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Determining Soil Microbial Communities and Their Influence on Ganoderma Disease Incidences in Oil Palm ( Elaeis guineensis) via High-Throughput Sequencing. BIOLOGY 2020; 9:biology9120424. [PMID: 33260913 PMCID: PMC7760618 DOI: 10.3390/biology9120424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary Biological and physicochemical soil factors involved in the incidence of the basal stem rot (BSR) disease in an oil palm (Elaeis guineensis) plantation in Malaysia were characterized. Blenheim soil with a low BSR disease incidence and Bernam soil with high BSR disease incidence were analyzed and observed to have differences in composition and diversity of soil prokaryotic and eukaryotic communities. Blenheim soil with a high pH and calcium was shown to have higher prokaryotic and eukaryotic diversity compared to Bernam soil. High abundances of rare metabolically diverse and versatile bacterial taxa, bacterial taxa that increased with the introduction of biocontrol agents, potential disease-suppressive bacteria, and bacterivorous flagellates were observed in Blenheim soil. In contrast, Bernam soil was predominantly characterized by potential disease-inducible bacterial taxa. A combination of both abiotic and biotic elements might be essential in driving disease-suppressive soil microbiome toward Ganoderma BSR in Blenheim soil. Abstract Basal stem rot (BSR), caused by Ganoderma boninense, is the most devastating oil palm disease in South East Asia, costing US$500 million annually. Various soil physicochemical parameters have been associated with an increase in BSR incidences. However, very little attention has been directed to understanding the relationship between soil microbiome and BSR incidence in oil palm fields. The prokaryotic and eukaryotic microbial diversities of two coastal soils, Blenheim soil (Typic Quartzipsamment—calcareous shell deposits, light texture) with low disease incidence (1.9%) and Bernam soil (Typic Endoaquept—non-acid sulfate) with high disease incidence (33.1%), were determined using the 16S (V3–V4 region) and 18S (V9 region) rRNA amplicon sequencing. Soil physicochemical properties (pH, electrical conductivity, soil organic matter, nitrogen, phosphorus, cation exchange capacity, exchangeable cations, micronutrients, and soil physical parameters) were also analyzed for the two coastal soils. Results revealed that Blenheim soil comprises higher prokaryotic and eukaryotic diversities, accompanied by higher pH and calcium content. Blenheim soil was observed to have a higher relative abundance of bacterial taxa associated with disease suppression such as Calditrichaeota, Zixibacteria, GAL15, Omnitrophicaeota, Rokubacteria, AKYG587 (Planctomycetes), JdFR-76 (Calditrichaeota), and Rubrobacter (Actinobacteria). In contrast, Bernam soil had a higher proportion of other bacterial taxa, Chloroflexi and Acidothermus (Actinobacteria). Cercomonas (Cercozoa) and Calcarisporiella (Ascomycota) were eukaryotes that are abundant in Blenheim soil, while Uronema (Ciliophora) and mammals were present in higher abundance in Bernam soil. Some of the bacterial taxa have been reported previously in disease-suppressive and -conducive soils as potential disease-suppressive or disease-inducible bacteria. Furthermore, Cercomonas was reported previously as potential bacterivorous flagellates involved in the selection of highly toxic biocontrol bacteria, which might contribute to disease suppression indirectly. The results from this study may provide valuable information related to soil microbial community structures and their association with soil characteristics and soil susceptibility to Ganoderma.
Collapse
|
4
|
Zarei M, Ghahfarokhi ME, Fazlara A, Bahrami S. Effect of the bacterial growth phase and coculture conditions on the interaction of Acanthamoeba castellanii with Shigella dysenteriae, Shigella flexneri, and Shigella sonnei. J Basic Microbiol 2019; 59:735-743. [PMID: 30980722 DOI: 10.1002/jobm.201900075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/11/2019] [Accepted: 03/23/2019] [Indexed: 11/05/2022]
Abstract
Shigella species and Acanthamoeba castellanii share the same ecological niches, and their interaction has been addressed in a limited number of research. However, there are still uncertain aspects and discrepant findings of this interaction. In the present study, the effects of the bacterial growth phase, cocultivation temperature and the type of culture media on the interaction of A. castellanii with Shigella dysenteriae, Shigella sonnei and Shigella flexneri were evaluated. In nutrient-poor page's amoeba saline (PAS) medium, the number of recovered bacteria and the uptake rates were significantly higher in stationary phase cells than logarithmic phase cells. However, no significant differences were observed in the number of recovered bacteria and the uptake rates between logarithmic and stationary phase cells in nutrient-rich peptone-yeast extract-glucose (PYG) medium. While the number of recovered bacteria was significantly higher in nutrient-rich than nutrient-poor media, in all the three Shigella species, the bacterial uptake rates were significantly higher in nutrient-poor than nutrient-rich media at both cocultivation temperatures. In both nutrient-poor and nutrient-rich media and at both cocultivation temperatures, the number of viable Shigella species after 24 h incubation were not influenced by the presence of A. castellanii. Although Shigella species did not proliferate in A. castellanii trophozoites, a considerable number of bacteria were survived in the trophozoites up to 15 days. From the public health perspective, the results of this study are important for further understanding of the nature of the interaction of these organisms and to deal with Shigella species in the environment.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojdeh Emami Ghahfarokhi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Somayeh Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Vaerewijck MJ, Baré J, Lambrecht E, Sabbe K, Houf K. Interactions of Foodborne Pathogens with Free-living Protozoa: Potential Consequences for Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Julie Baré
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Ellen Lambrecht
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology; Dept. of Biology, Ghent Univ; Belgium
| | - Kurt Houf
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| |
Collapse
|
6
|
Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these protozoa on bacterial biofilm structure and composition. Appl Environ Microbiol 2011; 77:4564-72. [PMID: 21602372 DOI: 10.1128/aem.02421-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protozoa are important components of microbial food webs, but protozoan feeding preferences and their effects in the context of bacterial biofilms are not well understood. The feeding interactions of two contrasting ciliates, the free-swimming filter feeder Tetrahymena sp. and the surface-associated predator Chilodonella sp., were investigated using biofilm-forming bacteria genetically modified to express fluorescent proteins. According to microscopy, both ciliates readily consumed cells from both Pseudomonas costantinii and Serratia plymuthica biofilms. When offered a choice between spatially separated biofilms, each ciliate showed a preference for P. costantinii biofilms. Experiments with bacterial cell extracts indicated that both ciliates used dissolved chemical cues to locate biofilms. Chilodonella sp. evidently used bacterial chemical cues as a basis for preferential feeding decisions, but it was unclear whether Tetrahymena sp. did also. Confocal microscopy of live biofilms revealed that Tetrahymena sp. had a major impact on biofilm morphology, forming holes and channels throughout S. plymuthica biofilms and reducing P. costantinii biofilms to isolated, grazing-resistant microcolonies. Grazing by Chilodonella sp. resulted in the development of less-defined trails through S. plymuthica biofilms and caused P. costantinii biofilms to become homogeneous scatterings of cells. It was not clear whether the observed feeding preferences for spatially separated P. costantinii biofilms over S. plymuthica biofilms resulted in selective targeting of P. costantinii cells in mixed biofilms. Grazing of mixed biofilms resulted in the depletion of both types of bacteria, with Tetrahymena sp. having a larger impact than Chilodonella sp., and effects similar to those seen in grazed single-species biofilms.
Collapse
|