1
|
Inuggi A, Marenco G, Bode J, Bovio A, Versaggi S, Favilla L, Pereira da Silva B, Picci RL, Amore M, Serafini G, Escelsior A. Possible compensatory role of cerebellum in bipolar disorder. A cortical thickness study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01952-3. [PMID: 39741206 DOI: 10.1007/s00406-024-01952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Recent studies suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). Here, we aimed to characterize the structural alterations of cerebellar lobules in BD, evaluating their possible relation with those occurring in the rest of the brain. One-hundred-fifty-five type I BD patients were recruited and compared with one-hundred-nineteen controls subjects. Cerebral cortical thickness (CT) was evaluated vertex-wise, while cerebellar CT at the level of its twelve lobules. A widespread pattern of cortical thinning was found in several clusters of BD patients. In the cerebellum, we found an anterior thinning (lobule I_II, III, X) and a posterior thickening (crus I, crus II, lobule VI and lobule IX) of its lobules in BD. Exploring the relation between cerebral and cerebellar CT changes in BD patients, after correcting for age and disease duration, the CT of a large subset of cerebral regions, found thinned in BD, were also inversely correlated with the thickening of cerebellar lobule IX. We speculate that this lobule may undergo adaptive changes to compensate the widespread cortical thinning which characterizes BD syndrome. Such a compensatory adaptation of the cerebellum would be similar to that found in other neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Silvio Versaggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Rocco Luigi Picci
- Dipartimento Di Salute Mentale E Dipendenze Patologiche, ASL3, Liguria, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| |
Collapse
|
2
|
Honea RA, Wilkins H, Hunt SL, Kueck PJ, Burns JM, Swerdlow RH, Morris JK. TOMM40 may mediate GFAP, neurofilament light Protein, pTau181, and brain morphometry in aging. AGING BRAIN 2024; 7:100134. [PMID: 39760103 PMCID: PMC11699468 DOI: 10.1016/j.nbas.2024.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
A growing amount of data has implicated the TOMM40 gene in the risk for Alzheimer's disease (AD), neurodegeneration, and accelerated aging. No studies have investigated the relationship of TOMM40 rs2075650 ('650) on the structural complexity of the brain or plasma markers of neurodegeneration. We used a comprehensive approach to quantify the impact of TOMM40 '650 on brain morphology and multiple cortical attributes in cognitively unimpaired (CU) individuals. We also tested whether the presence of the risk allele, G, of TOMM40 '650 was associated with plasma markers of amyloid, tau, and neurodegeneration and if there were interactions with age and sex, controlling for the effects of APOE ε4. We found that the TOMM40 '650 G-allele was associated with decreased sulcal depth, increased gyrification index, and decreased gray matter volume. NfL, GFAP, and pTau181 had independent and age-associated increases in individuals with a G-allele. Our data suggest that TOMM40 '650 is associated with aging-related plasma biomarkers and brain structure variation in temporal-limbic circuits.
Collapse
Affiliation(s)
- Robyn A. Honea
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Heather Wilkins
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Suzanne L. Hunt
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Paul J. Kueck
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
3
|
Chen Z, Xie Q, Wang J, Wang Y, Zhang H, Li C, Wang Y, Cong L, Tang S, Hou T, Song L, Du Y, Qiu C. Mapping grey matter and cortical thickness alterations associated with subjective cognitive decline and mild cognitive impairment among rural-dwelling older adults in China: A population-based study. Neuroimage Clin 2024; 44:103691. [PMID: 39488196 PMCID: PMC11566878 DOI: 10.1016/j.nicl.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND The structural brain alterations for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are poorly defined. We sought to characterize grey matter volume (GMV) and cortical thickness associated with SCD and MCI among rural-dwelling older adults in China. METHODS This population-based cross-sectional study included 1072 dementia-free participants from the brain MRI sub-study of MIND-China (2018-2020). We defined MCI following the Petersen's criteria, and SCD as the self-rated Ascertain Dementia 8-item Questionnaire score ≥ 2. Data were analyzed using voxel-based morphometry (VBM), surface-based morphometry analysis (SBM), and logistic regression models. RESULTS SCD was defined in 243 persons and MCI in 246 individuals. The VBM analysis showed that MCI (vs. normal cognition) was significantly associated with reduced GMV in brain regions such as the bilateral parahippocampus, bilateral hippocampus, and bilateral fusiform (P < 0.05), but SCD exhibited no significant differences with normal cognition in GMV (P > 0.05). The ROI-wise SBM analysis revealed that SCD was significantly associated with cortical thinning in the right paracentral sulcus, left caudal middle frontal gyrus, and left entorhinal cortex (P < 0.05) and that MCI was significantly associated with cortical thinning in the left temporal lobe, left frontal lobe, bilateral parietal lobe and bilateral fusiform (P < 0.05). CONCLUSIONS The brain regions with reduced GMV or cortical thickness in older adults gradually expand from normal cognition through SCD to MCI, suggesting that characterizing structural brain alterations may help define the cognitive spectrum at the pre-dementia phase. These findings have potential implications for understanding the neuropathological process of cognitive deterioration in aging.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Qianqian Xie
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Yan Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Huisi Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Chunyan Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Yongxiang Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Lin Cong
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Shi Tang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Tingting Hou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Lin Song
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| | - Yifeng Du
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| | - Chengxuan Qiu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Song Y, Xu T, Chen X, Wang N, Sun Z, Chen J, Xia J, Tian W. Brain structural changes in diabetic retinopathy patients: a combined voxel-based morphometry and surface-based morphometry study. Brain Imaging Behav 2024; 18:1131-1143. [PMID: 39172355 DOI: 10.1007/s11682-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The aim of this study was to investigate alterations in gray matter structure among individuals diagnosed with diabetic retinopathy (DR). This study included a cohort of 32 diabetic patients with retinopathy (DR group, n = 32) and 38 healthy adults (HC group, n = 38). Both cohorts underwent comprehensive psychological and cognitive assessments alongside structural magnetic resonance imaging. The brain's gray matter volume and morphology were analyzed using voxel-based morphometry (VBM) and surface-based morphometry (SBM). Partial correlation analysis was employed to investigate the associations between differences in gray matter volume (GMV) across diverse brain regions and the outcomes of cognitive psychological tests as well as clinical indicators. The VBM results revealed that, in comparison to the healthy control (HC) group, patients with diabetic retinopathy (DR) exhibited reduced gray matter volume (GMV) in the right fusiform gyrus, inferior frontal gyrus, opercular part, and left hippocampus; conversely, an increase in GMV was observed in the right thalamus. The SBM results indicated cortical thinning in the left caudal anterior cingulate cortex, left superior frontal gyrus, left parahippocampal gyrus, and bilateral lingual gyrus in the DR group. Sulcal depth (SD) exhibited increased values in the bilateral rostral middle frontal gyrus, superior frontal gyrus, frontal pole, left precentral gyrus, postcentral gyrus, lateral orbitofrontal gyrus, and right paracentral gyrus. Local gyrification indices (LGIs) decreased in the left caudal middle frontal gyrus and superior frontal gyrus. The fractal dimension (FD) decreased in the posterior cingulate gyrus and isthmus of the cingulate gyrus. The left hippocampal gray matter volume (GMV) in patients with diabetic retinopathy was negatively correlated with disease duration (r = -0.478, p = 0.008) and self-rating depression scale (SAS) score (r = -0.381, p = 0.038). The structural alterations in specific brain regions of individuals with DR, which may contribute to impairments in cognition, emotion, and behavior, provide valuable insights into the neurobiological basis underlying these dysfunctions.
Collapse
Affiliation(s)
- Yaqi Song
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, China
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Tianye Xu
- Graduate School of Dalian Medical University, Dalian, Liaoning, 116044, China
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Xiujuan Chen
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Ning Wang
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Zhongru Sun
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Jinhua Chen
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Jianguo Xia
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China.
| | - Weizhong Tian
- Department of Medical Imaging, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
5
|
Chaudhary S, Roy A, Summers C, Ahles T, Li CSR, Chao HH. Androgen deprivation increases frontopolar cortical thickness in prostate cancer patients: an effect of early neurodegeneration? Am J Cancer Res 2024; 14:3652-3664. [PMID: 39113873 PMCID: PMC11301281 DOI: 10.62347/wola8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Androgen deprivation therapy (ADT) has been associated with adverse effects on the brain. ADT leads to altered testosterone levels that may affect brain morphology as well as cognition. Considering the reliability of cortical thickness (CT) as a marker of cognitive and brain changes, e.g., in Alzheimer's disease, we assessed the impacts of ADT on CT and working memory. Thirty men with non-metastatic prostate cancer receiving ADT and 32 patients not receiving ADT (controls or CON), matched in age and years of education, participated in N-back task and quality-of-life (QoL) assessments as well as brain imaging at baseline and prospectively at 6 months. Imaging data were processed with published routines to estimate CT and the results of a group by time flexible factorial analysis were evaluated at a corrected threshold. ADT and CON did not differ in N-back performance or QoL across time points. Relative to CON, patients receiving ADT showed significantly higher frontopolar cortex (FPC) CT at 6-month follow-up vs. baseline. Follow-up vs. baseline FPC CT change correlated negatively with changes in 2-back correct response rate and in testosterone levels across all participants. In mediation analysis, FPC CT change mediated the association between testosterone level change and 2-back accuracy rate change. Increases in FPC CT following 6 months of ADT may reflect early neurodegenerative changes in response to androgen deprivation. While no significant impact on working memory or QoL was observed over 6 months, further research of longer duration of treatment is warranted to unravel the full spectrum of cognitive and neural consequences of ADT in prostate cancer patients.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| | - Alicia Roy
- VA Connecticut Healthcare SystemWest Haven, CT, USA
| | | | - Tim Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer CenterNew York, NY, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
- Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew Haven, CT, USA
- Wu Tsai Institute, Yale UniversityNew Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare SystemWest Haven, CT, USA
- Department of Medicine and Yale Comprehensive Cancer Center, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
6
|
Luders E, Gaser C, Spencer D, Thankamony A, Hughes I, Simpson H, Srirangalingam U, Gleeson H, Hines M, Kurth F. Cortical gyrification in women and men and the (missing) link to prenatal androgens. Eur J Neurosci 2024; 60:3995-4003. [PMID: 38733283 PMCID: PMC11260240 DOI: 10.1111/ejn.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Previous studies have reported sex differences in cortical gyrification. Since most cortical folding is principally defined in utero, sex chromosomes as well as gonadal hormones are likely to influence sex-specific aspects of local gyrification. Classic congenital adrenal hyperplasia (CAH) causes high levels of androgens during gestation in females, whereas levels in males are largely within the typical male range. Therefore, CAH provides an opportunity to study the possible effects of prenatal androgens on cortical gyrification. Here, we examined the vertex-wise absolute mean curvature-a common estimate for cortical gyrification-in individuals with CAH (33 women and 20 men) and pair-wise matched controls (33 women and 20 men). There was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex in five cortical regions, where gyrification was increased in women compared to men. These regions were located on the lateral surface of the brain, specifically left middle frontal (rostral and caudal), right inferior frontal, left inferior parietal, and right occipital. There was no cortical region where gyrification was increased in men compared to women. Our findings do not only confirm prior reports of increased cortical gyrification in female brains but also suggest that cortical gyrification is not significantly affected by prenatal androgen exposure. Instead, cortical gyrification might be determined by sex chromosomes either directly or indirectly-the latter potentially by affecting the underlying architecture of the cortex or the size of the intracranial cavity, which is smaller in women.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women’s and Children’s Health, Uppsala University, Uppsala 75237, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07747, Germany
- German Center for Mental Health (DZPG), Germany
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Cambridge CB23RQ, UK
| | - Ajay Thankamony
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
- Weston Centre for Paediatric Endocrinology & Diabetes, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - Helen Simpson
- Department of Endocrinology and Diabetes, University College Hospital London, London NW12BU, UK
| | | | | | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge CB23RQ, UK
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Departments of Neuroradiology and Radiology, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
7
|
Dubol M, Stiernman L, Sundström-Poromaa I, Bixo M, Comasco E. Cortical morphology variations during the menstrual cycle in individuals with and without premenstrual dysphoric disorder. J Affect Disord 2024; 355:470-477. [PMID: 38552916 DOI: 10.1016/j.jad.2024.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/16/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is hypothesized to stem from maladaptive neural sensitivity to ovarian steroid hormone fluctuations. Recently, we found thinner cortices in individuals with PMDD, compared to healthy controls, during the symptomatic phase. Here, we aimed at investigating whether such differences illustrate state-like characteristics specific to the symptomatic phase, or trait-like features defining PMDD. METHODS Patients and controls were scanned using structural magnetic resonance imaging during the mid-follicular and late-luteal phase of the menstrual cycle. Group-by-phase interaction effects on cortical architecture metrics (cortical thickness, gyrification index, cortical complexity, and sulcal depth) were assessed using surface-based morphometry. RESULTS Independently of menstrual cycle phase, a main effect of diagnostic group on surface metrics was found, primarily illustrating thinner cortices (0.3 < Cohen's d > 1.1) and lower gyrification indices (0.4 < Cohen's d > 1.0) in patients compared to controls. Furthermore, menstrual cycle-specific effects were detected across all participants, depicting a decrease in cortical thickness (0.4 < Cohen's d > 1.7) and region-dependent changes in cortical folding metrics (0.4 < Cohen's d > 2.2) from the mid-follicular to the late luteal phase. LIMITATIONS Small effects (d = 0.3) require a larger sample size to be accurately characterized. CONCLUSIONS These findings provide initial evidence of trait-like cortical characteristics of the brain of individuals with premenstrual dysphoric disorder, together with indications of menstrual cycle-related variations in cortical architecture in patients and controls. Further investigations exploring whether these differences constitute stable vulnerability markers or develop over the years may help understand PMDD etiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden
| | | | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
8
|
Scheliga S, Dohrn MF, Habel U, Lampert A, Rolke R, Lischka A, van den Braak N, Spehr M, Jo HG, Kellermann T. Reduced Gray Matter Volume and Cortical Thickness in Patients With Small-Fiber Neuropathy. THE JOURNAL OF PAIN 2024; 25:104457. [PMID: 38211845 DOI: 10.1016/j.jpain.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Small-fiber neuropathy (SFN) is defined by degeneration or dysfunction of peripheral sensory nerve endings. Central correlates have been identified on the level of gray matter volume (GMV) and cortical thickness (CT) changes. However, across SFN etiologies knowledge about a common structural brain signature is still lacking. Therefore, we recruited 26 SFN patients and 25 age- and sex-matched healthy controls to conduct voxel-based- and surface-based morphometry. Across all patients, we found reduced GMV in widespread frontal regions, left caudate, insula and superior parietal lobule. Surface-based morphometry analysis revealed reduced CT in the right precentral gyrus of SFN patients. In a region-based approach, patients had reduced GMV in the left caudate. Since pathogenic gain-of-function variants in voltage-gated sodium channels (Nav) have been associated with SFN pathophysiology, we explored brain morphological patterns in a homogenous subsample of patients carrying rare heterozygous missense variants. Whole brain- and region-based approaches revealed GMV reductions in the bilateral caudate for Nav variant carriers. Further research is needed to analyze the specific role of Nav variants for structural brain alterations. Together, we conclude that SFN patients have specific GMV and CT alterations, potentially forming potential new central biomarkers for this condition. Our results might help to better understand underlying or compensatory mechanisms of chronic pain perception in the future. PERSPECTIVE: This study reveals structural brain changes in small-fiber neuropathy (SFN) patients, particularly in frontal regions, caudate, insula, and parietal lobule. Notably, individuals with SFN and specific Nav variants exhibit bilateral caudate abnormalities. These findings may serve as potential central biomarkers for SFN and provide insights into chronic pain perception mechanisms.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Annette Lischka
- Institute for Human Genetics and Genomic Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | | | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University, Institute for Biology II, Aachen, Germany
| | - Han-Gue Jo
- School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, South Korea
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
9
|
Berger L, Mouthon M, Jost LB, Schwab S, Aybek S, Annoni JM. Does Diglossia Impact Brain Structure? Data from Swiss German Early Diglossic Speakers. Brain Sci 2024; 14:304. [PMID: 38671956 PMCID: PMC11048535 DOI: 10.3390/brainsci14040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bilingualism has been reported to shape the brain by inducing cortical changes in cortical and subcortical language and executive networks. Similar yet different to bilingualism, diglossia is common in Switzerland, where the German-speaking population switches between an everyday spoken Swiss German (CH-GER) dialect and the standard German (stGER) used for reading and writing. However, no data are available for diglossia, defined as the use of different varieties or dialects of the same language, regarding brain structure. The aim of our study is to investigate if the presence of this type of diglossia has an impact on the brain structure, similar to the effects seen in bilingualism. (2) Methods: T1-weighted anatomical MRI scans of participants were used to compare the grey matter density and grey matter volume of 22 early diglossic CH-GER-speaking and 20 non-diglossic French-speaking right-handed university students, matched for age, linguistics and academic background. The images were processed with Statistical Parametric Mapping SPM12 and analyzed via voxel- and surface-based morphometry. (3) Results: A Bayesian ANCOVA on the whole brain revealed no differences between the groups. Also, for the five regions of interest (i.e., planum temporale, caudate nucleus, ACC, DLPFC and left interior parietal lobule), no differences in the cortical volume or thickness were found using the same statistical approach. (4) Conclusion: The results of this study may suggest that early diglossia does not shape the brain structure in the same manner as bilingualism.
Collapse
Affiliation(s)
- Lea Berger
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.B.); (M.M.); (L.B.J.); (S.A.)
- Lucern Regional Hospital Sursee, 6210 Sursee, Switzerland
| | - Michael Mouthon
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.B.); (M.M.); (L.B.J.); (S.A.)
| | - Lea B. Jost
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.B.); (M.M.); (L.B.J.); (S.A.)
| | - Sandra Schwab
- Department of French, Faculty of Art, University of Bern, 3012 Bern, Switzerland;
| | - Selma Aybek
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.B.); (M.M.); (L.B.J.); (S.A.)
- Functional Neurological Disorder (FND) Research Group, Department of Clinical Neuroscience, Faculty of Science and Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jean-Marie Annoni
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.B.); (M.M.); (L.B.J.); (S.A.)
| |
Collapse
|
10
|
Sang F, Zhao S, Li Z, Yang Y, Chen Y, Zhang Z. Cortical thickness reveals sex differences in verbal and visuospatial memory. Cereb Cortex 2024; 34:bhae067. [PMID: 38451300 DOI: 10.1093/cercor/bhae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 03/08/2024] Open
Abstract
Although previous studies have reported the sex differences in behavior/cognition and the brain, the sex difference in the relationship between memory abilities and the underlying neural basis in the aging process remains unclear. In this study, we used a machine learning model to estimate the association between cortical thickness and verbal/visuospatial memory in females and males and then explored the sex difference of these associations based on a community-elderly cohort (n = 1153, age ranged from 50.42 to 86.67 years). We validated that females outperformed males in verbal memory, while males outperformed females in visuospatial memory. The key regions related to verbal memory in females include the medial temporal cortex, orbitofrontal cortex, and some regions around the insula. Further, those regions are more located in limbic, dorsal attention, and default-model networks, and are associated with face recognition and perception. The key regions related to visuospatial memory include the lateral prefrontal cortex, anterior cingulate gyrus, and some occipital regions. They overlapped more with dorsal attention, frontoparietal and visual networks, and were associated with object recognition. These findings imply the memory performance advantage of females and males might be related to the different memory processing tendencies and their associated network.
Collapse
Affiliation(s)
- Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Zilin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Yiru Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Escelsior A, Inuggi A, Sterlini B, Bovio A, Marenco G, Bode J, Favilla L, Tardito S, Altosole T, Pereira da Silva B, Fenoglio D, Filaci G, Amore M, Serafini G. T-cell immunophenotype correlations with cortical thickness and white matter microstructure in bipolar disorder. J Affect Disord 2024; 348:179-190. [PMID: 38154587 DOI: 10.1016/j.jad.2023.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Inflammation and immunological alterations, such as T-cell and cytokine changes, are implicated in bipolar disorder (BD), with some evidence linking them to brain structural changes (e.g., cortical thickness (CT), gray matter (GM) volume and white matter (WM) microstructure). However, the connection between specific peripheral cell types, such as T-cells, and neuroimaging in BD remains scarcely investigated. AIMS OF THE STUDY This study aims to explore the link between T-cell immunophenotype and neuroradiological findings in BD. METHODS Our study investigated 43 type I BD subjects (22 depressive, 21 manic) and 26 healthy controls (HC), analyzing T lymphocyte immunophenotype and employing neuroimaging to assess CT for GM and fractional anisotropy (FA) for WM. RESULTS In lymphocyte populations, BD patients exhibited elevated CD4+ and CD4+ central memory (TCM) cells frequencies, but lower CD8+ effector memory (TEM) and terminal effector memory (TTEM) cells. Neuroimaging analysis revealed reduced CT in multiple brain regions in BD patients; and significant negative correlations between CD4 + TCM levels and CT of precuneus and fusiform gyrus. Tract-based spatial statistics (TBSS) analysis showed widespread alteration in WM microstructure in BD patients, with negative and positive correlations respectively between FA and radial diffusivity (RD) and CD4 + TCM. Additionally, positive and negative correlations were found respectively between FA and RD and the CD8 + TEM and CD8 + TTEM subsets. CONCLUSIONS Our research revealed distinct T lymphocyte changes and brain structure alterations in BD, underscoring possible immune-brain interactions, warranting further study and therapeutic exploration.
Collapse
Affiliation(s)
- Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Alberto Inuggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Center for Cancer & Immunology Research, Children's National Hospital, 111 Michigan Ave NW (5th floor), Washington, DC 20010, United States of America.
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| |
Collapse
|
12
|
Liu R, Guo Z, Li M, Liu S, Zhi Y, Jiang Z, Liang X, Hu H, Zhu J. Lower fractional dimension in Alzheimer's disease correlates with reduced locus coeruleus signal intensity. Magn Reson Imaging 2024; 106:24-30. [PMID: 37541457 DOI: 10.1016/j.mri.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aimed to determine the pattern of fractional dimension (FD) in Alzheimer's disease (AD) patients, and investigate the relationship between FD and the locus coeruleus (LC) signal intensity.A total of 27 patients with AD and 25 healthy controls (HC) were collected to estimate the pattern of fractional dimension (FD) and cortical thickness (CT) using the Computational Anatomy Toolbox (CAT12), and statistically analyze between groups on a vertex level using statistical parametric mapping 12. In addition, they were examined by neuromelanin sensitive MRI(NM-MRI) technique to calculate the locus coeruleus signal contrast ratios (LC-CRs). Additionally, correlations between the pattern of FD and LC-CRs were further examined.Compared to HC, AD patients showed widespread lower CT and FD Furthermore, significant positive correlation was found between local fractional dimension (LFD) of the left rostral middle frontal cortex and LC-CRs. Results suggest lower cortical LFD is associated with LCCRs that may reflect a reduction due to broader neurodegenerative processes. This finding may highlight the potential utility for advanced measures of cortical complexity in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhiwen Guo
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Shanwen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yuqi Zhi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Xiaoyun Liang
- Institute of Artificial Intelligence and Clinical Innovation, Neusoft Medical Systems Co., Ltd., Shanghai 200241, China; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
13
|
Yeske B, Hou J, Chu DY, Adluru N, Nair VA, Beniwal-Patel P, Saha S, Prabhakaran V. Structural brain morphometry differences and similarities between young patients with Crohn's disease in remission and healthy young and old controls. Front Neurosci 2024; 18:1210939. [PMID: 38356645 PMCID: PMC10864509 DOI: 10.3389/fnins.2024.1210939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system. To date, no studies have demonstrated similarities between morphological brain changes seen in IBD and brain morphometry observed in older healthy controls.. Methods For the present study, twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected for a different study under a similar MR protocol, were analyzed as controls. T1 weighted images and structural image processing techniques were used to extract surface-based brain measures, to test our hypothesis that young CDs have different brain surface morphometry than their age-matched young HCs and furthermore, appear more similar to older HCs. The phonemic verbal fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 1976) was administered to test verbal cognitive ability and executive control. Results/Discussion On the whole, CDs had more brain regions with differences in brain morphometry measures when compared to the young HCs as compared to the old HCs, suggesting that CD has an effect on the brain that makes it appear more similar to old HCs. Additionally, our study demonstrates this atypical brain morphometry is associated with function on a cognitive task. These results suggest that even younger CDs may be showing some evidence of structural brain changes that demonstrate increased resemblance to older HC brains rather than their similarly aged healthy counterparts.
Collapse
Affiliation(s)
- Benjamin Yeske
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jiancheng Hou
- Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou City, Fujian, China
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Y. Chu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- The Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Poonam Beniwal-Patel
- Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sumona Saha
- Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin- Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychology and Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, the Alzheimer's Disease Neuroimaging Initiative. CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigascience 2024; 13:giae049. [PMID: 39102518 PMCID: PMC11299546 DOI: 10.1093/gigascience/giae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
A large range of sophisticated brain image analysis tools have been developed by the neuroscience community, greatly advancing the field of human brain mapping. Here we introduce the Computational Anatomy Toolbox (CAT)-a powerful suite of tools for brain morphometric analyses with an intuitive graphical user interface but also usable as a shell script. CAT is suitable for beginners, casual users, experts, and developers alike, providing a comprehensive set of analysis options, workflows, and integrated pipelines. The available analysis streams-illustrated on an example dataset-allow for voxel-based, surface-based, and region-based morphometric analyses. Notably, CAT incorporates multiple quality control options and covers the entire analysis workflow, including the preprocessing of cross-sectional and longitudinal data, statistical analysis, and the visualization of results. The overarching aim of this article is to provide a complete description and evaluation of CAT while offering a citable standard for the neuroscience community.
Collapse
Affiliation(s)
- Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07747 Jena, Germany
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- German Center for Mental Health (DZPG), Germany
| | - Robert Dahnke
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07747 Jena, Germany
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- German Center for Mental Health (DZPG), Germany
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1142, New Zealand
- Departments of Neuroradiology and Radiology, Jena University Hospital, 07747 Jena, Germany
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland 1142, New Zealand
- Department of Women's and Children's Health, Uppsala University, 75237 Uppsala, Sweden
- Swedish Collegium for Advanced Study (SCAS), 75236 Uppsala, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
15
|
Wong YS, Yu J. Left superior parietal lobe mediates the link between spontaneous mind-wandering tendency and task-switching performance. Biol Psychol 2024; 185:108726. [PMID: 38036262 DOI: 10.1016/j.biopsycho.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
While increasing studies have documented the link between mind wandering and task switching, less is known about which brain regions mediate this relationship. Using the MPI-Leipzig Mind-Brain-Body dataset (N = 173), we investigated the association between trait-level tendencies of mind wandering, task-switching performance, structural connectivity, and resting-state functional connectivity. At the behavioral level, we found that higher spontaneous mind-wandering trait scores were associated with shorter reaction times on both repeat and switch trials. The whole brain cortical thickness analysis revealed a strong mediating role of the left superior parietal lobe, which is part of the dorsal attention network, in the link between spontaneous mind-wandering tendency and task-switching performance. The resting-state functional connectivity analysis further demonstrated that this association was partly mediated by the negative dorsal attention network-default mode network functional connectivity. No significant mediating effects were found for deliberate mind-wandering tendency. Overall, the findings highlight the pivotal role of the left superior parietal lobe in activating new mental set during mind-wandering and task-switching processes, providing another evidence in favor of a role for switching in mind wandering.
Collapse
Affiliation(s)
- Yi-Sheng Wong
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore.
| | - Junhong Yu
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Sharma AA, Mackensie Terry D, Popp JL, Szaflarski JP, Martin RC, Nenert R, Kaur M, Brokamp GA, Bolding M, Allendorfer JB. Neuromorphometric associations with mood, cognition, and self-reported exercise levels in epilepsy and healthy individuals. Epilepsy Behav Rep 2023; 25:100643. [PMID: 38264358 PMCID: PMC10803905 DOI: 10.1016/j.ebr.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Regular physical activity may promote beneficial neuroplasticity, e.g., increased hippocampus volume. However, it is unclear whether self-reported physical exercise in leisure (PEL) levels are associated with the brain structure features demonstrated by exercise interventions. This pilot study investigated the relationship between PEL, mood, cognition, and neuromorphometry in patients with idiopathic generalized epilepsy (IGEs) compared to healthy controls (HCs). Seventeen IGEs and 19 age- and sex-matched HCs underwent magnetic resonance imaging (MRI) at 3T. The Baecke Questionnaire of Habitual Physical Activity, Profile of Mood States, and Montreal Cognitive Assessment (MoCA) assessed PEL, mood, and cognition, respectively. Structural MRI data were analyzed by voxel- and surface-based morphometry. IGEs had significantly lower PEL (p < 0.001), poorer mood (p = 0.029), and lower MoCA scores (p = 0.027) than HCs. These group differences were associated with reduced volume, decreased gyrification, and altered surface topology (IGEs < HCs) in frontal, temporal and cerebellar regions involved in executive function, memory retrieval, and emotional regulation, respectively. These preliminary results support the notion that increased PEL may promote neuroplasticity in IGEs, thus emphasizing the role of physical activity in promoting brain health in people with epilepsy.
Collapse
Affiliation(s)
- Ayushe A. Sharma
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - D. Mackensie Terry
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Johanna L. Popp
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Jerzy P. Szaflarski
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), Department of Neurobiology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), Department of Neurosurgery, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
| | - Roy C. Martin
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
| | - Rodolphe Nenert
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Manmeet Kaur
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
| | - Gabrielle A. Brokamp
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Mark Bolding
- University of Alabama at Birmingham (UAB), Department of Radiology, Birmingham, AL, USA
| | - Jane B. Allendorfer
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), Department of Neurobiology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Center for Exercise Medicine, Birmingham, AL, USA
| |
Collapse
|
17
|
Petersen M, Hoffstaedter F, Nägele FL, Mayer C, Schell M, Rimmele DL, Zyriax BC, Zeller T, Kühn S, Gallinat J, Fiehler J, Twerenbold R, Omidvarnia A, Patil KR, Eickhoff SB, Thomalla G, Cheng B. A latent clinical-anatomical dimension relating metabolic syndrome to brain structure and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529531. [PMID: 36865285 PMCID: PMC9980040 DOI: 10.1101/2023.02.22.529531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The link between metabolic syndrome (MetS) and neurodegenerative as well cerebrovascular conditions holds substantial implications for brain health in at-risk populations. This study elucidates the complex relationship between MetS and brain health by conducting a comprehensive examination of cardiometabolic risk factors, cortical morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics identified a latent dimension linking more severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared variance in the data. This dimension was replicable across sub-samples. In a mediation analysis we could demonstrate that MetS-related brain morphological abnormalities mediated the link between MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics and connectomics, our results also suggest that MetS-related morphological abnormalities are linked to the regional cellular composition and macroscopic brain network organization. By leveraging extensive, multi-domain data combined with a dimensional stratification approach, our analysis provides profound insights into the association of MetS and brain health. These findings can inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Felix L. Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - D. Leander Rimmele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science-Health Services Research and Prevention, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Martinistraße 52, 20251 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Raphael Twerenbold
- Department of Cardiology, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Martinistraße 52, 20251 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Martinistraße 52, 20251 Hamburg, Germany
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Kaustubh R. Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Simon B. Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Ju lich, Wilhelm-Johnen-Straße, 52425 Ju lich, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
18
|
Viesel-Nordmeyer N, Prado J. Arithmetic skills are associated with left fronto-temporal gray matter volume in 536 children and adolescents. NPJ SCIENCE OF LEARNING 2023; 8:56. [PMID: 38065992 PMCID: PMC10709444 DOI: 10.1038/s41539-023-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/31/2023] [Indexed: 10/16/2024]
Abstract
There are large individual differences in arithmetic skills. Although a number of brain-wide association studies have attempted to identify the neural correlates of these individual differences, studies have focused on relatively small sample sizes and have yielded inconsistent results. In the current voxel-based morphometry study, we merged six structural imaging datasets of children and adolescents (from 7.5 to 15 years) whose levels of arithmetic skills were assessed, leading to a combined sample of n = 536. Controlling for individual differences in age, gender, as well as language, and intelligence, we found a unique positive relation between arithmetic skill and gray matter volume in the left inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). Our results suggest that individual differences in arithmetic skills are associated with structural differences in left fronto-temporal areas, rather than in regions of the parietal cortex and hippocampus that are often associated with arithmetic processing.
Collapse
Affiliation(s)
- Nurit Viesel-Nordmeyer
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69500, Bron, France.
- Department of Rehabilitation Sciences, TU Dortmund University, Dortmund, Allemagne.
- Laboratoire de Psychologie Cognitive, Aix-Marseille University & CNRS, Marseille, France.
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69500, Bron, France.
| |
Collapse
|
19
|
Honea RA, Hunt S, Lepping RJ, Vidoni ED, Morris JK, Watts A, Michaelis E, Burns JM, Swerdlow RH. Alzheimer's disease cortical morphological phenotypes are associated with TOMM40'523-APOE haplotypes. Neurobiol Aging 2023; 132:131-144. [PMID: 37804609 PMCID: PMC10763175 DOI: 10.1016/j.neurobiolaging.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Both the APOE ε4 and TOMM40 rs10524523 ("523") genes have been associated with risk for Alzheimer's disease (AD) and neuroimaging biomarkers of AD. No studies have investigated the relationship of TOMM40'523-APOE ε4 on the structural complexity of the brain in AD individuals. We quantified brain morphology and multiple cortical attributes in individuals with mild cognitive impairment (MCI) and AD, then tested whether APOE ε4 or TOMM40 poly-T genotypes were related to AD morphological biomarkers in cognitively unimpaired (CU) and MCI/AD individuals. We identified several AD-specific phenotypes in brain morphology and found that TOMM40 poly-T short alleles are associated with early, AD-specific brain morphological differences in healthy aging. We observed decreased cortical thickness, sulcal depth, and fractal dimension in CU individuals with the poly-T short alleles. Moreover, in MCI/AD participants, the APOE ε4 (TOMM40 L) individuals had a higher rate of gene-related morphological markers indicative of AD. Our data suggest that TOMM40'523 is associated with early brain structure variations in the precuneus, temporal, and limbic cortices.
Collapse
Affiliation(s)
- Robyn A Honea
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Suzanne Hunt
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Rebecca J Lepping
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA; Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Amber Watts
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Elias Michaelis
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
20
|
Escelsior A, Inuggi A, Amadeo MB, Engel-Yeger B, Trabucco A, Esposito D, Campus C, Bovio A, Comparini S, Pereira da Silva B, Serafini G, Gori M, Amore M. Sensation seeking correlates with increased white matter integrity of structures associated with visuospatial processing in healthy adults. Front Neurosci 2023; 17:1267700. [PMID: 37954876 PMCID: PMC10637364 DOI: 10.3389/fnins.2023.1267700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The ability to process sensory information is an essential adaptive function, and hyper- or hypo-sensitive maladaptive profiles of responses to environmental stimuli generate sensory processing disorders linked to cognitive, affective, and behavioral alterations. Consequently, assessing sensory processing profiles might help research the vulnerability and resilience to mental disorders. The research on neuroradiological correlates of the sensory processing profiles is mainly limited to the young-age population or neurodevelopmental disorders. So, this study aims to examine the structural MRI correlates of sensory profiles in a sample of typically developed adults. Methods We investigated structural cortical thickness (CT) and white matter integrity, through Diffusion Tensor Imaging (DTI), correlates of Adolescent/Adult Sensory Profile (AASP) questionnaire subscales in 57 typical developing subjects (34F; mean age: 32.7 ± 9.3). Results We found significant results only for the sensation seeking (STS) subscale. Positive and negative correlations emerged with fractional anisotropy (FA) and radial diffusivity (RD) in anterior thalamic radiation, optic radiation, superior longitudinal fasciculus, corpus callosum, and the cingulum bundle. No correlation between sensation seeking and whole brain cortical thickness was found. Discussion Overall, our results suggest a positive correlation between sensation seeking and higher white matter structural integrity in those tracts mainly involved in visuospatial processing but no correlation with gray matter structure. The enhanced structural integrity associated with sensation seeking may reflect a neurobiological substrate linked to active research of sensory stimuli and resilience to major psychiatric disorders like schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Andrea Escelsior
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Inuggi
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Batya Engel-Yeger
- Faculty of Social Welfare and Health Sciences, Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Alice Trabucco
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Davide Esposito
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Bovio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sara Comparini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatriz Pereira da Silva
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Kornelsen J, McIver T, Uddin MN, Figley CR, Marrie RA, Patel R, Fisk JD, Carter S, Graff L, Mazerolle EL, Bernstein CN. Altered voxel-based and surface-based morphometry in inflammatory bowel disease. Brain Res Bull 2023; 203:110771. [PMID: 37797750 DOI: 10.1016/j.brainresbull.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is characterized by inflammation of the gastrointestinal tract and is a disorder of the brain-gut axis. Neuroimaging studies of brain function and structure have helped better understand the relationships between the brain, gut, and comorbidity in IBD. Studies of brain structure have primarily employed voxel-based morphometry to measure grey matter volume and surface-based morphometry to measure cortical thickness. Far fewer studies have employed other surface-based morphometry metrics such as gyrification, cortical complexity, and sulcal depth. In this study, brain structure differences between 72 adults with IBD and 90 healthy controls were assessed using all five metrics. Significant differences were found for cortical thickness with the IBD group showing extensive left-lateralized thinning, and for cortical complexity with the IBD group showing greater complexity in the left fusiform and right posterior cingulate. No significant differences were found in grey matter volume, gyrification, or sulcal depth. Within the IBD group, a post hoc analysis identified that disease duration is associated with cortical complexity of the right supramarginal gyrus, albeit with a more lenient threshold applied.
Collapse
Affiliation(s)
- Jennifer Kornelsen
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada; University of Manitoba IBD Clinical and Research Centre, Winnipeg, MB, Canada.
| | - Theresa McIver
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba IBD Clinical and Research Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Md Nasir Uddin
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Neurology, School of Medicine & Dentistry, University of Rochester, Rochester, NY, United States; Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, NY, United States
| | - Chase R Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John D Fisk
- Nova Scotia Health and Departments of Psychiatry, Psychology & Neuroscience, and Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sean Carter
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lesley Graff
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin L Mazerolle
- Department of Psychology, Computer Science, and Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Ghirelli A, Tafuri B, Urso D, Milella G, De Blasi R, Nigro S, Logroscino G. Cortical signature of depressive symptoms in frontotemporal dementia: A surface-based analysis. Ann Clin Transl Neurol 2023; 10:1704-1713. [PMID: 37522381 PMCID: PMC10578898 DOI: 10.1002/acn3.51860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Depressive symptoms are frequently reported in patients affected by frontotemporal dementia (FTD). At structural MRI, cortical features of depressed FTD patients have been poorly described. Our objective was to investigate correlations between cortical measures and depression severity in FTD patients. METHODS Data were obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) database. We included 98 controls and 92 FTD patients, n = 38 behavioral variant FTD (bvFTD), n = 26 non-fluent variant Primary Progressive Aphasia (nfvPPA), and n = 28 semantic variant Primary Progressive Aphasia (svPPA). Patients underwent clinical and cognitive evaluations, as well as a 3D T1-weighted MRI on a 3 Tesla scanner (Siemens, Trio Tim system). Depression was evaluated by means of Geriatric Depression Scale (GDS). Surface-based analysis was performed on T1-weighted images to evaluate cortical thickness, a measure of gray matter integrity, and local gyrification index (lGI), a quantitative metric of cortical folding. RESULTS Patients affected by svPPA were more depressed than controls at NPI and depression severity at GDS was higher in svPPA and bvFTD. Severity of depression correlated with a decrease in lGI in left precentral and superior frontal gyrus, supramarginal and postcentral gyrus and right precentral, supramarginal, superior parietal and superior frontal gyri. Furthermore, depression severity correlated positively with cortical thickness in the left medial orbitofrontal cortex. DISCUSSION We found that lGI was associated with depressive symptoms over brain regions involved in the pathophysiology of major depressive disorder. This finding provides novel insights into the mechanisms underlying psychiatric symptoms in FTD.
Collapse
Affiliation(s)
- Alma Ghirelli
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari ‘Aldo Moro’BariItaly
| | - Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari ‘Aldo Moro’BariItaly
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Neurosciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Giammarco Milella
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari ‘Aldo Moro’BariItaly
| | - Roberto De Blasi
- Department of Diagnostic ImagingPia Fondazione di Culto e Religione “Card. G. Panico”LecceItaly
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Institute of Nanotechnology (NANOTEC), National Research CouncilLecceItaly
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Diagnostic ImagingPia Fondazione di Culto e Religione “Card. G. Panico”LecceItaly
| | | |
Collapse
|
23
|
Kinno R, Muragaki Y, Maruyama T, Tamura M, Ono K, Tanaka K, Sakai KL. Diffuse glioma-induced structural reorganization in close association with preexisting syntax-related networks. Cortex 2023; 167:283-302. [PMID: 37586138 DOI: 10.1016/j.cortex.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Glioma in the left frontal cortex has been reported to cause agrammatic comprehension and induce global functional connectivity alterations within the syntax-related networks. However, it remains unclear to what extent the structural reorganization is affected by preexisting syntax-related networks. We examined 28 patients with a diffuse glioma in the left hemisphere and 23 healthy participants. Syntactic abilities were assessed by a picture-sentence matching task with various sentence types. The lesion responsible for agrammatic comprehension was identified by region-of-interest-based lesion-symptom mapping (RLSM). Cortical structural alterations were examined by surface-based morphometry (SBM), in which the cortical thickness and fractal dimension were measured with three-dimensional magnetic resonance imaging (MRI). Fiber tracking on the human population-averaged diffusion MRI template was performed to examine whether the cortical structural alterations were associated with the syntax-related networks. The RLSM revealed associations between agrammatic comprehension and a glioma in the posterior limb of the left internal capsule. The SBM demonstrated that decreased cortical thickness and/or increased complexity of the right posterior insula were associated not only with agrammatic comprehension of the patients but also with the syntactic abilities of healthy participants. The fiber tracking revealed that the route between these two regions was anatomically integrated into the preexisting syntax-related networks previously identified. These results suggest a potential association between agrammatic comprehension in patients with diffuse glioma and structural variations in specific tracts and cortical regions, which may be closely related to the syntax-related networks.
Collapse
Affiliation(s)
- Ryuta Kinno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kyohei Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Li J, Wang R, Mao N, Huang M, Qiu S, Wang J. Multimodal and multiscale evidence for network-based cortical thinning in major depressive disorder. Neuroimage 2023; 277:120265. [PMID: 37414234 DOI: 10.1016/j.neuroimage.2023.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with widespread, irregular cortical thickness (CT) reductions across the brain. However, little is known regarding mechanisms that govern spatial distribution of the reductions. METHODS We combined multimodal MRI and genetic, cytoarchitectonic and chemoarchitectonic data to examine structural covariance, functional synchronization, gene co-expression, cytoarchitectonic similarity and chemoarchitectonic covariance between regions atrophied in MDD. RESULTS Regions atrophied in MDD were associated with significantly higher structural covariance, functional synchronization, gene co-expression and chemoarchitectonic covariance. These results were robust against methodological variations in brain parcellation and null model, reproducible in patients and controls, and independent of age at onset of MDD. Despite no significant differences in the cytoarchitectonic similarity, MDD-related CT reductions were susceptible to specific cytoarchitectonic class of association cortex. Further, we found that nodal shortest path lengths to disease epicenters derived from structural (right supramarginal gyrus) and chemoarchitectonic covariance (right sulcus intermedius primus) networks of healthy brains were correlated with the extent to which a region was atrophied in MDD, supporting the transneuronal spread hypothesis that regions closer to the epicenters are more susceptible to MDD. Finally, we showed that structural covariance and functional synchronization among regions atrophied in MDD were mainly related to genes enriched in metabolic and membrane-related processes, driven by genes in excitatory neurons, and associated with specific neurotransmitter transporters and receptors. CONCLUSIONS Altogether, our findings provide empirical evidence for and genetic and molecular insights into connectivity-constrained CT thinning in MDD.
Collapse
Affiliation(s)
- Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Rui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
25
|
Yin G, Li T, Jin S, Wang N, Li J, Wu C, He H, Wang J. A comprehensive evaluation of multicentric reliability of single-subject cortical morphological networks on traveling subjects. Cereb Cortex 2023:7169131. [PMID: 37197789 DOI: 10.1093/cercor/bhad178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-retest (TRT) reliabilities of single-subject cerebral morphological networks, and further evaluated the effects of several key factors. We found that most graph-based network measures exhibited fair to excellent reliabilities regardless of different analytical pipelines. Nevertheless, the reliabilities were affected by choices of morphological index (fractal dimension > sulcal depth > gyrification index > cortical thickness), brain parcellation (high-resolution > low-resolution), thresholding method (proportional > absolute), and network type (binarized > weighted). For the factor of similarity measure, its effects depended on the thresholding method used (absolute: Kullback-Leibler divergence > Jensen-Shannon divergence; proportional: Jensen-Shannon divergence > Kullback-Leibler divergence). Furthermore, longer data acquisition intervals and different scanner software versions significantly reduced the reliabilities. Finally, we showed that inter-site reliabilities were significantly lower than intra-site reliabilities for single-subject cerebral morphological networks. Altogether, our findings propose single-subject cerebral morphological networks as a promising approach for multicentric human connectome studies, and offer recommendations on how to determine analytical pipelines and scanning protocols for obtaining reliable results.
Collapse
Affiliation(s)
- Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Cognition and Education Sciences, Ministry of Education, Beijing 100816, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510000, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
26
|
Springer SD, Erker TD, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Rempe MP, Wilson TW. Disturbances in primary visual processing as a function of healthy aging. Neuroimage 2023; 271:120020. [PMID: 36914104 PMCID: PMC10123380 DOI: 10.1016/j.neuroimage.2023.120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.
Collapse
Affiliation(s)
- Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Engineering, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
27
|
Singh A, Arya A, Agarwal V, Shree R, Kumar U. Computing brain cortical complexity in euthymic children with bipolar disorder: A surface-based approach. Asian J Psychiatr 2023; 80:103352. [PMID: 36481621 DOI: 10.1016/j.ajp.2022.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Anshita Singh
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India; Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Amit Arya
- Department of Psychiatry, King George Medical University, Lucknow, India
| | - Vivek Agarwal
- Department of Psychiatry, King George Medical University, Lucknow, India
| | - Raj Shree
- Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India.
| |
Collapse
|
28
|
Abagnale C, Di Renzo A, Sebastianelli G, Casillo F, Tinelli E, Giuliani G, Tullo MG, Serrao M, Parisi V, Fiorelli M, Caramia F, Schoenen J, Di Piero V, Coppola G. Whole brain surface-based morphometry and tract-based spatial statistics in migraine with aura patients: difference between pure visual and complex auras. Front Hum Neurosci 2023; 17:1146302. [PMID: 37144161 PMCID: PMC10151576 DOI: 10.3389/fnhum.2023.1146302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Background The migrainous aura has different clinical phenotypes. While the various clinical differences are well-described, little is known about their neurophysiological underpinnings. To elucidate the latter, we compared white matter fiber bundles and gray matter cortical thickness between healthy controls (HC), patients with pure visual auras (MA) and patients with complex neurological auras (MA+). Methods 3T MRI data were collected between attacks from 20 patients with MA and 15 with MA+, and compared with those from 19 HCs. We analyzed white matter fiber bundles using tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) and cortical thickness with surface-based morphometry of structural MRI data. Results Tract-based spatial statistics showed no significant difference in diffusivity maps between the three subject groups. As compared to HCs, both MA and MA+ patients had significant cortical thinning in temporal, frontal, insular, postcentral, primary and associative visual areas. In the MA group, the right high-level visual-information-processing areas, including lingual gyrus, and the Rolandic operculum were thicker than in HCs, while in the MA+ group they were thinner. Discussion These findings show that migraine with aura is associated with cortical thinning in multiple cortical areas and that the clinical heterogeneity of the aura is reflected by opposite thickness changes in high-level visual-information-processing, sensorimotor and language areas.
Collapse
Affiliation(s)
- Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Emanuele Tinelli
- Unit of Neuroradiology, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Giulia Tullo
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology, CHU de Liège, Citadelle Hospital, Liège, Belgium
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
- *Correspondence: Gianluca Coppola,
| |
Collapse
|
29
|
Brain network architecture constrains age-related cortical thinning. Neuroimage 2022; 264:119721. [PMID: 36341953 DOI: 10.1016/j.neuroimage.2022.119721] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related cortical atrophy, approximated by cortical thickness measurements from magnetic resonance imaging, follows a characteristic pattern over the lifespan. Although its determinants remain unknown, mounting evidence demonstrates correspondence between the connectivity profiles of structural and functional brain networks and cortical atrophy in health and neurological disease. Here, we performed a cross-sectional multimodal neuroimaging analysis of 2633 individuals from a large population-based cohort to characterize the association between age-related differences in cortical thickness and functional as well as structural brain network topology. We identified a widespread pattern of age-related cortical thickness differences including "hotspots" of pronounced age effects in sensorimotor areas. Regional age-related differences were strongly correlated within the structurally defined node neighborhood. The overall pattern of thickness differences was found to be anchored in the functional network hierarchy as encoded by macroscale functional connectivity gradients. Lastly, the identified difference pattern covaried significantly with cognitive and motor performance. Our findings indicate that connectivity profiles of functional and structural brain networks act as organizing principles behind age-related cortical thinning as an imaging surrogate of cortical atrophy.
Collapse
|
30
|
Guizar Rosales E, Baumgartner T, Knoch D. Interindividual differences in intergenerational sustainable behavior are associated with cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. Neuroimage 2022; 264:119664. [PMID: 36202158 DOI: 10.1016/j.neuroimage.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Intergenerational sustainability requires people of the present generation to make sacrifices today to benefit others of future generations (e.g. mitigating climate change, reducing public debt). Individuals vary greatly in their intergenerational sustainability, and the cognitive and neural sources of these interindividual differences are not yet well understood. We here combined neuroscientific and behavioral methods by assessing interindividual differences in cortical thickness and by using a common-pool resource paradigm with intergenerational contingencies. This enabled us to look for objective, stable, and trait-like neural markers of interindividual differences in consequential intergenerational behavior. We found that individuals behaving sustainably (vs. unsustainably) were marked by greater cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. Given that these brain areas are involved in perspective-taking and self-control and supported by mediation analyses, we speculate that greater cortical thickness of these brain areas better enable individuals to take the perspective of future generations and to resist temptations to maximize personal benefits that incur costs for future generations. By meeting recent calls for the contribution of neuroscience to sustainability research, it is our hope that the present study advances the transdisciplinary understanding of interindividual differences in intergenerational sustainability.
Collapse
Affiliation(s)
- Emmanuel Guizar Rosales
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Thomas Baumgartner
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
31
|
Rempe MP, Lew BJ, Embury CM, Christopher-Hayes NJ, Schantell M, Wilson TW. Spontaneous sensorimotor beta power and cortical thickness uniquely predict motor function in healthy aging. Neuroimage 2022; 263:119651. [PMID: 36206940 PMCID: PMC10071137 DOI: 10.1016/j.neuroimage.2022.119651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spontaneous beta activity in the primary motor cortices has been shown to increase in amplitude with advancing age, and that such increases are tightly coupled to stronger motor-related beta oscillations during movement planning. However, the relationship between these age-related changes in spontaneous beta in the motor cortices, local cortical thickness, and overall motor function remains unclear. METHODS We collected resting-state magnetoencephalography (MEG), high-resolution structural MRI, and motor function scores using a neuropsychological battery from 126 healthy adults (56 female; age range = 22-72 years). MEG data were source-imaged and a whole-brain vertex-wise regression model was used to assess age-related differences in spontaneous beta power across the cortex. Cortical thickness was computed from the structural MRI data and local beta power and cortical thickness values were extracted from the sensorimotor cortices. To determine the unique contribution of age, spontaneous beta power, and cortical thickness to the prediction of motor function, a hierarchical regression approach was used. RESULTS There was an increase in spontaneous beta power with age across the cortex, with the strongest increase being centered on the sensorimotor cortices. Sensorimotor cortical thickness was not related to spontaneous beta power, above and beyond age. Interestingly, both cortical thickness and spontaneous beta power in sensorimotor regions each uniquely contributed to the prediction of motor function when controlling for age. DISCUSSION This multimodal study showed that cortical thickness and spontaneous beta activity in the sensorimotor cortices have dissociable contributions to motor function across the adult lifespan. These findings highlight the complexity of interactions between structure and function and the importance of understanding these interactions in order to advance our understanding of healthy aging and disease.
Collapse
Affiliation(s)
- Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska - Omaha (UNO), Omaha, NE, USA
| | - Nicholas J Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Mind and Brain, University of California - Davis, Davis, CA, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
32
|
Zhao F, Wu Z, Wang L, Lin W, Li G. Fast Spherical Mapping of Cortical Surface Meshes Using Deep Unsupervised Learning. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13436:163-173. [PMID: 37325260 PMCID: PMC10266716 DOI: 10.1007/978-3-031-16446-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spherical mapping of cortical surface meshes provides a more convenient and accurate space for cortical surface registration and analysis and thus has been widely adopted in neuroimaging field. Conventional approaches typically first inflate and project the original cortical surface mesh onto a sphere to generate an initial spherical mesh which contains large distortions. Then they iteratively reshape the spherical mesh to minimize the metric (distance), area or angle distortions. However, these methods suffer from two major issues: 1) the iterative optimization process is computationally expensive, making them not suitable for large-scale data processing; 2) when metric distortion cannot be further minimized, either area or angle distortion is minimized at the expense of the other, which is not flexible to generate application-specific meshes based on both of them. To address these issues, for the first time, we propose a deep learning-based algorithm to learn the mapping between the original cortical surface and spherical surface meshes. Specifically, we take advantage of the Spherical U-Net model to learn the spherical diffeomorphic deformation field for minimizing the distortions between the icosahedron-reparameterized original surface and spherical surface meshes. The end-to-end unsupervised learning scheme is very flexible to incorporate various optimization objectives. We further integrate it into a coarse-to-fine multi-resolution framework for better correcting fine-scaled distortions. We have validated our method on 800+ cortical surfaces, demonstrating reduced distortions than FreeSurfer (the most popularly used tool), while speeding up the process from 20 min to 5 s.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Qin Y, Cui J, Ge X, Tian Y, Han H, Fan Z, Liu L, Luo Y, Yu H. Hierarchical multi-class Alzheimer’s disease diagnostic framework using imaging and clinical features. Front Aging Neurosci 2022; 14:935055. [PMID: 36034132 PMCID: PMC9399682 DOI: 10.3389/fnagi.2022.935055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the clinical continuum of Alzheimer’s disease (AD), the accuracy of early diagnostic remains unsatisfactory and warrants further research. The objectives of this study were: (1) to develop an effective hierarchical multi-class framework for clinical populations, namely, normal cognition (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD, and (2) to explore the geometric properties of cognition-related anatomical structures in the cerebral cortex. A total of 1,670 participants were enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, comprising 985 participants (314 NC, 208 EMCI, 258 LMCI, and 205 AD) in the model development set and 685 participants (417 NC, 110 EMCI, 83 LMCI, and 75 AD) after 2017 in the temporal validation set. Four cortical geometric properties for 148 anatomical structures were extracted, namely, cortical thickness (CTh), fractal dimension (FD), gyrification index (GI), and sulcus depth (SD). By integrating these imaging features with Mini-Mental State Examination (MMSE) scores at four-time points after the initial visit, we identified an optimal subset of 40 imaging features using the temporally constrained group sparse learning method. The combination of selected imaging features and clinical variables improved the multi-class performance using the AdaBoost algorithm, with overall accuracy rates of 0.877 in the temporal validation set. Clinical Dementia Rating (CDR) was the primary clinical variable associated with AD-related populations. The most discriminative imaging features included the bilateral CTh of the dorsal part of the posterior cingulate gyrus, parahippocampal gyrus (PHG), parahippocampal part of the medial occipito-temporal gyrus, and angular gyrus, the GI of the left inferior segment of the insula circular sulcus, and the CTh and SD of the left superior temporal sulcus (STS). Our hierarchical multi-class framework underscores the utility of combining cognitive variables with imaging features and the reliability of surface-based morphometry, facilitating more accurate early diagnosis of AD in clinical practice.
Collapse
Affiliation(s)
- Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yuling Tian
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhao Fan
- Center of Translational Medicine, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yanhong Luo
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
- *Correspondence: Hongmei Yu,
| |
Collapse
|
34
|
Ankeeta A, Kumaran SS, Saxena R, Dwivedi SN, Jagannathan NR, Narang V. Auditory perception of ambiguous and non-ambiguous sound in early and late blind children: A functional connectivity study. BRAIN AND LANGUAGE 2022; 231:105148. [PMID: 35738069 DOI: 10.1016/j.bandl.2022.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Auditory perception and associated cognition involve visual and auditory cortical areas for inference of meaningful soundscape. OBJECTIVE To investigate auditory perception of ambiguous and non-ambiguous stimulation in auditory and visual cortical networks for categorical discrimination. METHODOLOGY Functional mapping was carried out in twenty early (EB), twenty late blind (LB) and fifteen healthy children, during auditory ambiguous and non-ambiguous stimulation task in a 3 T MR scanner to estimate hemodynamic signal alteration and its effect on functional connectivity. The degree of amplitude low-frequency fluctuation (ALFF), correlation analysis and multiple comparison was carried out to map the impact of duration of education and onset of blindness (EB and LB). RESULTS AND DISCUSSION Increased functional connectivity (FC) and cross-modal reorganization was observed in auditory, visual and language networks in EB children. FC was increased in contralateral hemisphere in both the blind children (EB and LB) groups and was positively correlated with duration of education performance. Cognitive assessment scores correlated (p < 0.01) with cluster coefficient of FC and BOLD response. CONCLUSION FC alterations depend on onset age and audio-haptic training in children associated with increased auditory language and memory perception.
Collapse
Affiliation(s)
- A Ankeeta
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - S Senthil Kumaran
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sada Nand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - N R Jagannathan
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vaishna Narang
- School of Language, Literature and Culture Studies - I, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Associations of gestational age with gyrification and neurocognition in healthy adults. Eur Arch Psychiatry Clin Neurosci 2022; 273:467-479. [PMID: 35904633 PMCID: PMC10070217 DOI: 10.1007/s00406-022-01454-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Epidemiological studies have shown that gestational age and birth weight are linked to cognitive performance in adults. On a neurobiological level, this effect is hypothesized to be related to cortical gyrification, which is determined primarily during fetal development. The relationships between gestational age, gyrification and specific cognitive abilities in adults are still poorly understood. In 542 healthy participants, gyrification indices were calculated from structural magnetic resonance imaging T1 data at 3 T using CAT12. After applying a battery of neuropsychological tests, neuropsychological factors were extracted with a factor analysis. We conducted regressions to test associations between gyrification and gestational age as well as birth weight. Moderation analyses explored the relationships between gestational age, gyrification and neuropsychological factors. Gestational age is significantly positively associated with cortical folding in the left supramarginal, bilaterally in the superior frontal and the lingual cortex. We extracted two neuropsychological factors that describe language abilities and working memory/attention. The association between gyrification in the left superior frontal gyrus and working memory/attention was moderated by gestational age. Further, the association between gyrification in the left supramarginal cortex and both, working memory/attention as well as language, were moderated by gestational age. Gyrification is associated with gestational age and related to specific neuropsychological outcomes in healthy adulthood. Implications from these findings for the cortical neurodevelopment of cognitive domains and mental health are discussed.
Collapse
|
36
|
Zhou J, Chen W, Wu Q, Chen L, Chen HH, Liu H, Xu XQ, Wu FY, Hu H. Reduced cortical complexity in patients with thyroid-associated ophthalmopathy. Brain Imaging Behav 2022; 16:2133-2140. [PMID: 35821157 DOI: 10.1007/s11682-022-00683-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Psychical and functional disturbances of thyroid-associated ophthalmopathy (TAO) patients are drawing increasingly attention, despite the characterized ophthalmic symptoms. We aimed to investigate the alterations of structural complexity using fractal dimension (FD) analysis in patients with TAO. Thirty-nine TAO patients and 25 healthy controls underwent high-resolution 3.0 T structural brain magnetic resonance imaging (MRI). FD values of brain regions were calculated by Computational Anatomy Toolbox (CAT12) and compared between groups. The associations between clinical variables and FD values were further estimated. We found that TAO patients exhibited significantly decreased FD values in right caudal anterior cingulate cortex, right lingual gyrus, right pars orbitalis and right cuneus cortex (FDR corrected p < 0.05). FD values of right cuneus cortex were positively correlated with visual acuity, and FD values of right caudal anterior cingulate cortex were also positively correlated with cognitive performance. Meanwhile, FD values of right lingual gyrus were found to be negatively correlated with emotional function. Our study indicated disturbed cortical complexity in brain regions corresponding to known functional deficits of vision, emotion and cognition in TAO. FD might be a potential marker for reflecting the underlying neurobiological basis of TAO.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| |
Collapse
|
37
|
Dubol M, Stiernman L, Wikström J, Lanzenberger R, Neill Epperson C, Sundström-Poromaa I, Bixo M, Comasco E. Differential grey matter structure in women with premenstrual dysphoric disorder: evidence from brain morphometry and data-driven classification. Transl Psychiatry 2022; 12:250. [PMID: 35705554 PMCID: PMC9200862 DOI: 10.1038/s41398-022-02017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a female-specific condition classified in the Diagnostic and Statical Manual-5th edition under depressive disorders. Alterations in grey matter volume, cortical thickness and folding metrics have been associated with a number of mood disorders, though little is known regarding brain morphological alterations in PMDD. Here, women with PMDD and healthy controls underwent magnetic resonance imaging (MRI) during the luteal phase of the menstrual cycle. Differences in grey matter structure between the groups were investigated by use of voxel- and surface-based morphometry. Machine learning and multivariate pattern analysis were performed to test whether MRI data could distinguish women with PMDD from healthy controls. Compared to controls, women with PMDD had smaller grey matter volume in ventral posterior cortices and the cerebellum (Cohen's d = 0.45-0.76). Region-of-interest analyses further indicated smaller volume in the right amygdala and putamen of women with PMDD (Cohen's d = 0.34-0.55). Likewise, thinner cortex was observed in women with PMDD compared to controls, particularly in the left hemisphere (Cohen's d = 0.20-0.74). Classification analyses showed that women with PMDD can be distinguished from controls based on grey matter morphology, with an accuracy up to 74%. In line with the hypothesis of an impaired top-down inhibitory circuit involving limbic structures in PMDD, the present findings point to PMDD-specific grey matter anatomy in regions of corticolimbic networks. Furthermore, the results include widespread cortical and cerebellar regions, suggesting the involvement of distinct networks in PMDD pathophysiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden
| | - Louise Stiernman
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, 753 09, Sweden.
| |
Collapse
|
38
|
Zhang M, Hong X, Yang F, Fan H, Fan F, Song J, Wang Z, Tan Y, Tan S, Elliot Hong L. Structural brain imaging abnormalities correlate with positive symptom in schizophrenia. Neurosci Lett 2022; 782:136683. [PMID: 35595192 DOI: 10.1016/j.neulet.2022.136683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Accumulating evidence indicates neuroanatomical mechanisms underlying positive symptoms in schizophrenia; however, the exact structural determinants of positive symptoms remain unclear. This study aimed to investigate associations between positive symptoms and structural brain changes, including alterations in grey matter (GM) volume and cortical thickness, in patients with first-episode schizophrenia (FES). This study included 44 patients with FES and 48 healthy controls (HCs). Clinical symptoms of patients were evaluated and individual-level GM volume and cortical thickness were assessed. Patients with FES showed reduced GM volume in the right superior temporal gyrus (STG) and increased cortical thickness in the left inferior segment of the circular sulcus of the insula (S_circular_insula_inf) compared with HCs. Increased thickness of the left S_circular_insula_inf correlated positively with positive symptoms in patients with FES. Exploratory correlation analysis found that increased thickness of the left S_circular_insula_inf correlated positively with conceptual disorganization and excitement symptoms, and the right STG GM volume correlated negatively with hallucinations. This study suggests that GM abnormalities in the STG and altered cortical thickness of the S_circular_insula_inf, which were detected at the early stage of schizophrenia, may underlie positive symptoms in patients with FES.
Collapse
Affiliation(s)
- Meng Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Xiang Hong
- Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Hongzhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Jiaqi Song
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, USA
| |
Collapse
|
39
|
Dubol M, Wikström J, Lanzenberger R, Epperson CN, Sundström-Poromaa I, Comasco E. Grey matter correlates of affective and somatic symptoms of premenstrual dysphoric disorder. Sci Rep 2022; 12:5996. [PMID: 35397641 PMCID: PMC8994757 DOI: 10.1038/s41598-022-07109-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Ovarian hormones fluctuations across the menstrual cycle are experienced by about 58% of women in their fertile age. Maladaptive brain sensitivity to these changes likely leads to the severe psychological, cognitive, and physical symptoms repeatedly experienced by women with Premenstrual Dysphoric Disorder (PMDD) during the late luteal phase of the menstrual cycle. However, the neuroanatomical correlates of these symptoms are unknown. The relationship between grey matter structure and PMDD symptom severity was delineated using structural magnetic resonance imaging during the late luteal phase of fifty-one women diagnosed with PMDD, combined with Voxel- and Surface-Based Morphometry, as well as subcortical volumetric analyses. A negative correlation was found between depression-related symptoms and grey matter volume of the bilateral amygdala. Moreover, the severity of affective and somatic PMDD symptoms correlated with cortical thickness, gyrification, sulcal depth, and complexity metrics, particularly in the prefrontal, cingulate, and parahippocampal gyri. The present findings provide the first evidence of grey matter morphological characteristics associated with PMDD symptomatology in brain regions expressing ovarian hormone receptors and of relevance to cognitive-affective functions, thus potentially having important implications for understanding how structural brain characteristics relate to PMDD symptomatology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, POB 593, 75124, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine-Anschutz Medical Campus, Aurora, USA
| | | | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, POB 593, 75124, Uppsala, Sweden.
| |
Collapse
|
40
|
Wu Y, Wang T, Ding Q, Li H, Wu Y, Li D, Sun B, Pan Y. Cortical and Subcortical Structural Abnormalities in Patients With Idiopathic Cervical and Generalized Dystonia. FRONTIERS IN NEUROIMAGING 2022; 1:807850. [PMID: 37555168 PMCID: PMC10406292 DOI: 10.3389/fnimg.2022.807850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES In this study, we sought to investigate structural imaging alterations of patients with idiopathic dystonia at the cortical and subcortical levels. The common and specific changes in two subtypes of dystonia, cervical dystonia (CD) and generalized dystonia (GD), were intended to be explored. Additionally, we sought to identify the morphometric measurements which might be related to patients' clinical characteristics, thus providing more clues of specific brain regions involved in the mechanism of idiopathic dystonia. METHODS 3D T1-weighted MRI scans were acquired from 56 patients with idiopathic dystonia and 30 healthy controls (HC). Patients were classified as CD or GD, according to the distinct symptom distributions. Cortical thickness (CT) of 30 CD and 26 GD were estimated and compared to HCs using Computational Anatomy Toolbox (CAT12), while volumes of subcortical structures and their shape alterations (29 CD, 25 GD, and 27 HCs) were analyzed via FSL software. Further, we applied correlation analyses between the above imaging measurements with significant differences and patients' clinical characteristics. RESULTS The results of comparisons between the two patient groups and HCs were highly consistent, demonstrating increased CT of bilateral postcentral, superiorparietal, superiorfrontal/rostralmiddlefrontal, occipital gyrus, etc., and decreased CT of bilateral cingulate, insula, entorhinal, and fusiform gyrus (PFWE < 0.005 at the cluster level). In CD, trends of negative correlations were found between disease severity and CT alterations mostly located in pre/postcentral, rostralmiddlefrontal, superiorparietal, and supramarginal regions. Besides, volumes of bilateral putamen, caudate, and thalamus were significantly reduced in both patient groups, while pallidum volume reduction was also presented in GD compared to HCs. Caudate volume reduction had a trend of correlation to increasing disease severity in GD. Last, shape analysis directly demonstrated regional surface alterations in bilateral thalamus and caudate, where the atrophy located in the head of caudate had a trend of correlation to earlier ages of onset in GD. CONCLUSIONS Our study demonstrates wide-spread morphometric changes of CT, subcortical volumes, and shapes in idiopathic dystonia. CD and GD presented similar patterns of morphometric abnormalities, indicating shared underlying mechanisms in two different disease forms. Especially, the clinical associations of CT of multiple brain regions with disease severity, and altered volume/shape of caudate with disease severity/age of onset separately in CD and GD might serve as potential biomarkers for further disease exploration.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Hirjak D, Henemann GM, Schmitgen MM, Götz L, Wolf ND, Kubera KM, Sambataro F, Leménager T, Koenig J, Wolf RC. Cortical surface variation in individuals with excessive smartphone use. Dev Neurobiol 2022; 82:277-287. [PMID: 35332986 DOI: 10.1002/dneu.22872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Abstract
Excessive smartphone use has been repeatedly related to adverse effects on mental health and psychological well-being in young adults. The continued investigation of the neurobiological mechanism underlying excessive smartphone use - sometimes also referred to as "smartphone addiction" (SPA) - is considered a top priority in system neuroscience research. Despite progress in the past years, cortical morphology associated with SPA is still poorly understood. Here, we used structural magnetic resonance imaging (MRI) at 3 T to investigate two cortical surface markers of distinct neurodevelopmental origin such as the complexity of cortical folding (CCF) and cortical thickness (CTh) in individuals with excessive smartphone use (n = 19) compared to individuals not fulfilling SPA criteria (n-SPA; n = 22). SPA was assessed using the Smartphone Addiction Inventory (SPAI). CCF and CTh were investigated using the Computational Anatomy Toolbox (CAT12). SPA individuals showed lower CCF in the right superior frontal gyrus as well as in the right caudal (cACC) and rostral anterior cingulate cortex (rACC) compared to n-SPA individuals (TFCE, uncorrected at p < 0.001). Following a dimensional approach, across the entire sample CCF of the right cACC was significantly associated with SPAI total score, as well as with distinct SPAI subdimensions, particularly time spent with the device, compulsivity, and sleep interference in all participants (n = 41; p < 0.05, FDR-corrected). Collectively, these findings suggest that SPA is associated with aberrant structural maturation of regions important for cognitive control and emotional regulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gudrun M Henemann
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Larissa Götz
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Nadine D Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Fabio Sambataro
- Department of Neurosciences, Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Tagrid Leménager
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Differences between multimodal brain-age and chronological-age are linked to telomere shortening. Neurobiol Aging 2022; 115:60-69. [DOI: 10.1016/j.neurobiolaging.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
|
43
|
Spherical harmonics to quantify cranial asymmetry in deformational plagiocephaly. Sci Rep 2022; 12:167. [PMID: 34997100 PMCID: PMC8742096 DOI: 10.1038/s41598-021-04181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Cranial deformation and deformational plagiocephaly (DP) in particular affect an important percentage of infants. The assessment and diagnosis of the deformation are commonly carried by manual measurements that provide low interuser accuracy. Another approach is the use of three-dimensional (3D) models. Nevertheless, in most cases, deformation measurements are carried out manually on the 3D model. It is necessary to develop methodologies for the detection of DP that are automatic, accurate and take profit on the high quantity of information of the 3D models. Spherical harmonics are proposed as a new methodology to identify DP from head 3D models. The ideal fitted ellipsoid for each head is computed and the orthogonal distances between head and ellipsoid are obtained. Finally, the distances are modelled using spherical harmonics. Spherical harmonic coefficients of degree 2 and order − 2 are identified as the correct ones to represent the asymmetry characteristic of DP. The obtained coefficient is compared to other anthropometric deformation indexes, such as Asymmetry Index, Oblique Cranial Length Ratio, Posterior Asymmetry Index and Anterior Asymmetry Index. The coefficient of degree 2 and order − 2 with a maximum degree of 4 is found to provide better results than the commonly computed anthropometric indexes in the detection of DP.
Collapse
|
44
|
Domain L, Guillery M, Linz N, König A, Batail JM, David R, Corouge I, Bannier E, Ferré JC, Dondaine T, Drapier D, Robert GH. Multimodal MRI cerebral correlates of verbal fluency switching and its impairment in women with depression. Neuroimage Clin 2021; 33:102910. [PMID: 34942588 PMCID: PMC8713114 DOI: 10.1016/j.nicl.2021.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The search of biomarkers in the field of depression requires easy implementable tests that are biologically rooted. Qualitative analysis of verbal fluency tests (VFT) are good candidates, but its cerebral correlates are unknown. METHODS We collected qualitative semantic and phonemic VFT scores along with grey and white matter anatomical MRI of depressed (n = 26) and healthy controls (HC, n = 25) women. Qualitative VFT variables are the "clustering score" (i.e. the ability to produce words within subcategories) and the "switching score" (i.e. the ability to switch between clusters). The clustering and switching scores were automatically calculated using a data-driven approach. Brain measures were cortical thickness (CT) and fractional anisotropy (FA). We tested for associations between CT, FA and qualitative VFT variables within each group. RESULTS Patients had reduced switching VFT scores compared to HC. Thicker cortex was associated with better switching score in semantic VFT bilaterally in the frontal (superior, rostral middle and inferior gyri), parietal (inferior parietal lobule including the supramarginal gyri), temporal (transverse and fusiform gyri) and occipital (lingual gyri) lobes in the depressed group. Positive association between FA and the switching score in semantic VFT was retrieved in depressed patients within the corpus callosum, right inferior fronto-occipital fasciculus, right superior longitudinal fasciculus extending to the anterior thalamic radiation (all p < 0.05, corrected). CONCLUSION Together, these results suggest that automatic qualitative VFT scores are associated with brain anatomy and reinforce its potential use as a surrogate for depression cerebral bases.
Collapse
Affiliation(s)
- L Domain
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - M Guillery
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - N Linz
- ki:elements, Saarbrücken, Germany
| | - A König
- Stars Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis, France; CoBTeK (Cognition-Behaviour-Technology) Lab, FRIS-University Côte d'Azur, Nice, France
| | - J M Batail
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - R David
- Old-age Psychiatry DEPARTMENT, Geriatry Division, University of Nice, France
| | - I Corouge
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - E Bannier
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - J C Ferré
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - T Dondaine
- Univ. Lille, Inserm, CHU Lille, LilNCog, Lille Neuroscience & Cognition, F-59000 Lille, France
| | - D Drapier
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - G H Robert
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France; U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| |
Collapse
|
45
|
Zhe X, Chen L, Zhang D, Tang M, Gao J, Ai K, Liu W, Lei X, Zhang X. Cortical Areas Associated With Multisensory Integration Showing Altered Morphology and Functional Connectivity in Relation to Reduced Life Quality in Vestibular Migraine. Front Hum Neurosci 2021; 15:717130. [PMID: 34483869 PMCID: PMC8415788 DOI: 10.3389/fnhum.2021.717130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Increasing evidence suggests that the temporal and parietal lobes are associated with multisensory integration and vestibular migraine. However, temporal and parietal lobe structural and functional connectivity (FC) changes related to vestibular migraine need to be further investigated. Methods: Twenty-five patients with vestibular migraine (VM) and 27 age- and sex- matched healthy controls participated in this study. Participants completed standardized questionnaires assessing migraine and vertigo-related clinical features. Cerebral cortex characteristics [i.e., thickness (CT), fractal dimension (FD), sulcus depth (SD), and the gyrification index (GI)] were evaluated using an automated Computational Anatomy Toolbox (CAT12). Regions with significant differences were used in a seed-based comparison of resting-state FC conducted with DPABI. The relationship between changes in cortical characteristics or FC and clinical features was also analyzed in the patients with VM. Results: Relative to controls, patients with VM showed significantly thinner CT in the bilateral inferior temporal gyrus, left middle temporal gyrus, and the right superior parietal lobule. A shallower SD was observed in the right superior and inferior parietal lobule. FD and GI did not differ significantly between the two groups. A negative correlation was found between CT in the right inferior temporal gyrus, as well as the left middle temporal gyrus, and the Dizziness Handicap Inventory (DHI) score in VM patients. Furthermore, patients with VM exhibited weaker FC between the left inferior/middle temporal gyrus and the left medial superior frontal gyrus, supplementary motor area. Conclusion: Our data revealed cortical structural and resting-state FC abnormalities associated with multisensory integration, contributing to a lower quality of life. These observations suggest a role for multisensory integration in patients with VM pathophysiology. Future research should focus on using a task-based fMRI to measure multisensory integration.
Collapse
Affiliation(s)
- Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Weijun Liu
- Consumables and Reagents Department, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
46
|
Structural and white matter changes associated with duration of Braille education in early and late blind children. Vis Neurosci 2021; 38:E011. [PMID: 34425936 DOI: 10.1017/s0952523821000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In early (EB) and late blind (LB) children, vision deprivation produces cross-modal plasticity in the visual cortex. The progression of structural- and tract-based spatial statistics changes in the visual cortex in EB and LB, as well as their impact on global cognition, have yet to be investigated. The purpose of this study was to determine the cortical thickness (CT), gyrification index (GI), and white matter (WM) integrity in EB and LB children, as well as their association to the duration of blindness and education. Structural and diffusion tensor imaging data were acquired in a 3T magnetic resonance imaging in EB and LB children (n = 40 each) and 30 sighted controls (SCs) and processed using CAT12 toolbox and FSL software. Two sample t-test was used for group analyses with P < 0.05 (false discovery rate-corrected). Increased CT in visual, sensory-motor, and auditory areas, and GI in bilateral visual cortex was observed in EB children. In LB children, the right visual cortex, anterior-cingulate, sensorimotor, and auditory areas showed increased GI. Structural- and tract-based spatial statistics changes were observed in anterior visual pathway, thalamo-cortical, and corticospinal tracts, and were correlated with education onset and global cognition in EB children. Reduced impairment in WM, increased CT and GI and its correlation with global cognitive functions in visually impaired children suggests cross-modal plasticity due to adaptive compensatory mechanism (as compared to SCs). Reduced CT and increased FA in thalamo-cortical areas in EB suggest synaptic pruning and alteration in WM integrity. In the visual cortical pathway, higher education and the development of blindness modify the morphology of brain areas and influence the probabilistic tractography in EB rather than LB.
Collapse
|
47
|
Kinno R, Muragaki Y, Maruyama T, Tamura M, Tanaka K, Ono K, Sakai KL. Differential Effects of a Left Frontal Glioma on the Cortical Thickness and Complexity of Both Hemispheres. Cereb Cortex Commun 2021; 1:tgaa027. [PMID: 34296101 PMCID: PMC8152868 DOI: 10.1093/texcom/tgaa027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
Glioma is a type of brain tumor that infiltrates and compresses the brain as it grows. Focal gliomas affect functional connectivity both in the local region of the lesion and the global network of the brain. Any anatomical changes associated with a glioma should thus be clarified. We examined the cortical structures of 15 patients with a glioma in the left lateral frontal cortex and compared them with those of 15 healthy controls by surface-based morphometry. Two regional parameters were measured with 3D-MRI: the cortical thickness (CT) and cortical fractal dimension (FD). The FD serves as an index of the topological complexity of a local cortical surface. Our comparative analyses of these parameters revealed that the left frontal gliomas had global effects on the cortical structures of both hemispheres. The structural changes in the right hemisphere were mainly characterized by a decrease in CT and mild concomitant decrease in FD, whereas those in the peripheral regions of the glioma (left hemisphere) were mainly characterized by a decrease in FD with relative preservation of CT. These differences were found irrespective of tumor volume, location, or grade. These results elucidate the structural effects of gliomas, which extend to the distant contralateral regions.
Collapse
Affiliation(s)
- Ryuta Kinno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Manabu Tamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kyohei Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
48
|
Lew BJ, Schantell MD, O’Neill J, Morsey B, Wang T, Ideker T, Swindells S, Fox HS, Wilson TW. Reductions in Gray Matter Linked to Epigenetic HIV-Associated Accelerated Aging. Cereb Cortex 2021; 31:3752-3763. [PMID: 33822880 PMCID: PMC8258439 DOI: 10.1093/cercor/bhab045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
A growing literature suggests a relationship between HIV-infection and a molecular profile of age acceleration. However, despite the widely known high prevalence of HIV-related brain atrophy and HIV-associated neurocognitive disorder (HAND), epigenetic age acceleration has not been linked to HIV-related changes in structural MRI. We applied morphological MRI methods to study the brain structure of 110 virally suppressed participants with HIV infection and 122 uninfected controls age 22-72. All participants were assessed for cognitive impairment, and blood samples were collected from a subset of 86 participants with HIV and 83 controls to estimate epigenetic age. We examined the group-level interactive effects of HIV and chronological age and then used individual estimations of epigenetic age to understand the relationship between age acceleration and brain structure. Finally, we studied the effects of HAND. HIV-infection was related to gray matter reductions, independent of age. However, using epigenetic age as a biomarker for age acceleration, individual HIV-related age acceleration was associated with reductions in total gray matter. HAND was associated with decreases in thalamic and hippocampal gray matter. In conclusion, despite viral suppression, accentuated gray matter loss is evident with HIV-infection, and greater biological age acceleration specifically relates to such gray matter loss.
Collapse
Affiliation(s)
- Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Mikki D Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198-8440, USA
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198-8440, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| |
Collapse
|
49
|
Casagrande CC, Lew BJ, Taylor BK, Schantell M, O'Neill J, May PE, Swindells S, Wilson TW. Impact of HIV-infection on human somatosensory processing, spontaneous cortical activity, and cortical thickness: A multimodal neuroimaging approach. Hum Brain Mapp 2021; 42:2851-2861. [PMID: 33738895 PMCID: PMC8127147 DOI: 10.1002/hbm.25408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
HIV-infection has been associated with widespread alterations in brain structure and function, although few studies have examined whether such aberrations are co-localized and the degree to which clinical and cognitive metrics are related. We examine this question in the somatosensory system using high-resolution structural MRI (sMRI) and magnetoencephalographic (MEG) imaging of neural oscillatory activity. Forty-four participants with HIV (PWH) and 55 demographically-matched uninfected controls completed a paired-pulse somatosensory stimulation paradigm during MEG and underwent 3T sMRI. MEG data were transformed into the time-frequency domain; significant sensor level responses were imaged using a beamformer. Virtual sensor time series were derived from the peak responses. These data were used to compute response amplitude, sensory gating metrics, and spontaneous cortical activity power. The T1-weighted sMRI data were processed using morphological methods to derive cortical thickness values across the brain. From these, the cortical thickness of the tissue coinciding with the peak response was estimated. Our findings indicated both PWH and control exhibit somatosensory gating, and that spontaneous cortical activity was significantly stronger in PWH within the left postcentral gyrus. Interestingly, within the same tissue, PWH also had significantly reduced cortical thickness relative to controls. Follow-up analyses indicated that the reduction in cortical thickness was significantly correlated with CD4 nadir and mediated the relationship between HIV and spontaneous cortical activity within the left postcentral gyrus. These data indicate that PWH have abnormally strong spontaneous cortical activity in the left postcentral gyrus and such elevated activity is driven by locally reduced cortical gray matter thickness.
Collapse
Affiliation(s)
- Chloe C. Casagrande
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Brandon J. Lew
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Brittany K. Taylor
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
| | - Mikki Schantell
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Pamela E. May
- Department of Neurological SciencesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Tony W. Wilson
- Boys Town National Research HospitalInstitute for Human NeuroscienceBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| |
Collapse
|
50
|
Abstract
This study aimed to investigate the cortical complexity and gyrification patterns in Parkinson's disease (PD) using local fractional dimension (LFD) and local gyrification index (LGI), respectively. In a cross-sectional study, LFD and LGI in 60 PD patients without dementia and 56 healthy controls (HC) were investigated using brain structural MRI data. LFD and LGI were estimated using the Computational Anatomy Toolbox (CAT12) and statistically analyzed between groups on a vertex level using statistical parametric mapping 12 (SPM12). Additionally, correlations between structural changes and clinical indices were further examined. PD patients showed widespread LFD reductions mainly in the left pre- and postcentral cortex, the left superior frontal cortex, the left caudal middle frontal cortex, the bilaterally superior parietal cortex and the right superior temporal cortex compared to HC. For LGI, there was no significant difference between PD and HC. In PD patients group, a significant negative correlation was found between LFD of the left postcentral cortex and duration of illness (DOI). Our results of widespread LFD reductions, but not LGI, indicate that LFD may provide a more sensitive diagnostic biomarker and encode specific information of PD. The significant negative correlation between LFD of the left postcentral cortex and DOI suggests that LFD may be a biomarker to monitor disease progression in PD.
Collapse
|