1
|
Abe J, Iritani R, Tsuchida K, Kamimura Y, West SA. A solution to a sex ratio puzzle in Melittobia wasps. Proc Natl Acad Sci U S A 2021; 118:e2024656118. [PMID: 33972440 PMCID: PMC8157915 DOI: 10.1073/pnas.2024656118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The puzzling sex ratio behavior of Melittobia wasps has long posed one of the greatest questions in the field of sex allocation. Laboratory experiments have found that, in contrast to the predictions of theory and the behavior of numerous other organisms, Melittobia females do not produce fewer female-biased offspring sex ratios when more females lay eggs on a patch. We solve this puzzle by showing that, in nature, females of Melittobia australica have a sophisticated sex ratio behavior, in which their strategy also depends on whether they have dispersed from the patch where they emerged. When females have not dispersed, they lay eggs with close relatives, which keeps local mate competition high even with multiple females, and therefore, they are selected to produce consistently female-biased sex ratios. Laboratory experiments mimic these conditions. In contrast, when females disperse, they interact with nonrelatives, and thus adjust their sex ratio depending on the number of females laying eggs. Consequently, females appear to use dispersal status as an indirect cue of relatedness and whether they should adjust their sex ratio in response to the number of females laying eggs on the patch.
Collapse
Affiliation(s)
- Jun Abe
- Faculty of Liberal Arts, Meijigakuin University, Yokohama, Kanagawa 244-8539, Japan;
- Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Kanagawa 159-1293, Japan
| | - Ryosuke Iritani
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences, Wako, Saitama 351-0198, Japan
| | - Koji Tsuchida
- Faculty of Applied Biological Sciences, Gifu University, 501-1193 Gifu, Japan
| | - Yoshitaka Kamimura
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Stuart A West
- Department of Zoology, Oxford University, OX1 3SZ Oxford, United Kingdom
| |
Collapse
|
2
|
Davenport ES, Agrelius TC, Harmon KB, Dudycha JL. Fitness effects of spontaneous mutations in a warming world. Evolution 2021; 75:1513-1524. [PMID: 33751559 PMCID: PMC8252619 DOI: 10.1111/evo.14208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous mutations fuel evolutionary processes and differ in consequence, but the consequences depend on the environment. Biophysical considerations of protein thermostability predict that warm temperatures may systematically increase the deleteriousness of mutation. We sought to test whether mutation reduced fitness more when measured in an environment that reflected climate change projections for temperature. We investigated the effects of spontaneous mutations on life history, size, and fitness in 21 mutation accumulation lines and 12 control lines of Daphnia pulex at standard and elevated (+4℃) temperatures. Warmer temperature accelerated life history and reduced body length and clutch sizes. Mutation led to reduced mean clutch sizes and fitness estimates at both temperatures. We found no evidence of a systematic temperature–mutation interaction on trait means, although some lines showed evidence of beneficial mutation at one temperature and deleterious mutation at the other. However, trait variances are also influenced by mutation, and we observed increased variances due to mutation for most traits. For variance of the intrinsic rate of increase and some reproductive traits, we found significant temperature–mutation interactions, with a larger increase due to mutation in the warmer environment. This suggests that selection on new mutations will be more efficient at elevated temperatures.
Collapse
Affiliation(s)
- Elizabeth S Davenport
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208.,Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | - Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - Krista B Harmon
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| |
Collapse
|
3
|
Pannebakker BA, Cook N, van den Heuvel J, van de Zande L, Shuker DM. Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis. BMC Genomics 2020; 21:499. [PMID: 32689940 PMCID: PMC7372847 DOI: 10.1186/s12864-020-06904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Whilst adaptive facultative sex allocation has been widely studied at the phenotypic level across a broad range of organisms, we still know remarkably little about its genetic architecture. Here, we explore the genome-wide basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, perhaps the best studied organism in terms of sex allocation, and well known for its response to local mate competition. RESULTS We performed a genome-wide association study (GWAS) for single foundress sex ratios using iso-female lines derived from the recently developed outbred N. vitripennis laboratory strain HVRx. The iso-female lines capture a sample of the genetic variation in HVRx and we present them as the first iteration of the Nasonia vitripennis Genome Reference Panel (NVGRP 1.0). This panel provides an assessment of the standing genetic variation for sex ratio in the study population. Using the NVGRP, we discovered a cluster of 18 linked SNPs, encompassing 9 annotated loci associated with sex ratio variation. Furthermore, we found evidence that sex ratio has a shared genetic basis with clutch size on three different chromosomes. CONCLUSIONS Our approach provides a thorough description of the quantitative genetic basis of sex ratio variation in Nasonia at the genome level and reveals a number of inter-related candidate loci underlying sex allocation regulation.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands.
| | - Nicola Cook
- School of Biology, University of St Andrews, Fife, UK
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
4
|
Cook N, Boulton RA, Green J, Trivedi U, Tauber E, Pannebakker BA, Ritchie MG, Shuker DM. Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp Nasonia vitripennis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171718. [PMID: 29515880 PMCID: PMC5830769 DOI: 10.1098/rsos.171718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/15/2018] [Indexed: 03/14/2024]
Abstract
Whole-transcriptome technologies have been widely used in behavioural genetics to identify genes associated with the performance of a behaviour and provide clues to its mechanistic basis. Here, we consider the genetic basis of sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Female Nasonia facultatively vary their offspring sex ratio in line with Hamilton's theory of local mate competition (LMC). A single female or 'foundress' laying eggs on a patch will lay just enough sons to fertilize her daughters. As the number of 'foundresses' laying eggs on a patch increases (and LMC declines), females produce increasingly male-biased sex ratios. Phenotypic studies have revealed the cues females use to estimate the level of LMC their sons will experience, but our understanding of the genetics underlying sex allocation is limited. Here, we exposed females to three foundress number conditions, i.e. three LMC conditions, and allowed them to oviposit. mRNA was extracted from only the heads of these females to target the brain tissue. The subsequent RNA-seq experiment confirmed that differential gene expression is not associated with the response to sex allocation cues and that we must instead turn to the underlying neuroscience to reveal the underpinnings of this impressive behavioural plasticity.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Rebecca A. Boulton
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | - Jade Green
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Urmi Trivedi
- Edinburgh Genomics, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Eran Tauber
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Bart A. Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Michael G. Ritchie
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - David M. Shuker
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| |
Collapse
|
5
|
Oviposition but Not Sex Allocation Is Associated with Transcriptomic Changes in Females of the Parasitoid Wasp Nasonia vitripennis. G3-GENES GENOMES GENETICS 2015; 5:2885-92. [PMID: 26511500 PMCID: PMC4683659 DOI: 10.1534/g3.115.021220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Linking the evolution of the phenotype to the underlying genotype is a key aim of evolutionary genetics and is crucial to our understanding of how natural selection shapes a trait. Here, we consider the genetic basis of sex allocation behavior in the parasitoid wasp Nasonia vitripennis using a transcriptomics approach. Females allocate offspring sex in line with the local mate competition (LMC) theory. Female-biased sex ratios are produced when one or a few females lay eggs on a patch. As the number of females contributing offspring to a patch increases, less female-biased sex ratios are favored. We contrasted the transcriptomic responses of females as they oviposit under conditions known to influence sex allocation: foundress number (a social cue) and the state of the host (parasitized or not). We found that when females encounter other females on a patch or assess host quality with their ovipositors, the resulting changes in sex allocation is not associated with significant changes in whole-body gene expression. We also found that the gene expression changes produced by females as they facultatively allocate sex in response to a host cue and a social cue are very closely correlated. We expanded the list of candidate genes associated with oviposition behavior in Nasonia, some of which may be involved in fundamental processes underlying the ability to facultatively allocate sex, including sperm storage and utilization.
Collapse
|
6
|
Cook N, Pannebakker BA, Tauber E, Shuker DM. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis. Am Nat 2015; 186:513-8. [PMID: 26655574 DOI: 10.1086/682950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | |
Collapse
|
7
|
Hodgins-Davis A, Rice DP, Townsend JP. Gene Expression Evolves under a House-of-Cards Model of Stabilizing Selection. Mol Biol Evol 2015; 32:2130-40. [PMID: 25901014 PMCID: PMC4592357 DOI: 10.1093/molbev/msv094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Divergence in gene regulation is hypothesized to underlie much of phenotypic evolution, but the role of natural selection in shaping the molecular phenotype of gene expression continues to be debated. To resolve the mode of gene expression, evolution requires accessible theoretical predictions for the effect of selection over long timescales. Evolutionary quantitative genetic models of phenotypic evolution can provide such predictions, yet those predictions depend on the underlying hypotheses about the distributions of mutational and selective effects that are notoriously difficult to disentangle. Here, we draw on diverse genomic data sets including expression profiles of natural genetic variation and mutation accumulation lines, empirical estimates of genomic mutation rates, and inferences of genetic architecture to differentiate contrasting hypotheses for the roles of stabilizing selection and mutation in shaping natural expression variation. Our analysis suggests that gene expression evolves in a domain of phenotype space well fit by the House-of-Cards (HC) model. Although the strength of selection inferred is sensitive to the number of loci controlling gene expression, the model is not. The consistency of these results across evolutionary time from budding yeast through fruit fly implies that this model is general and that mutational effects on gene expression are relatively large. Empirical estimates of the genetic architecture of gene expression traits imply that selection provides modest constraints on gene expression levels for most genes, but that the potential for regulatory evolution is high. Our prediction using data from laboratory environments should encourage the collection of additional data sets allowing for more nuanced parameterizations of HC models for gene expression.
Collapse
Affiliation(s)
- Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, Yale University Department of Biostatistics, School of Public Health, Yale University
| | - Daniel P Rice
- Department of Ecology and Evolutionary Biology, Yale University Department of Organismic and Evolutionary Biology, Harvard University
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University Department of Biostatistics, School of Public Health, Yale University Program in Computational Biology and Bioinformatics, Yale University
| |
Collapse
|
8
|
Alpedrinha J, Gardner A, West SA. Haplodiploidy and the Evolution of Eusociality: Worker Revolution. Am Nat 2014; 184:303-17. [DOI: 10.1086/677283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
van de Zande L, Ferber S, de Haan A, Beukeboom LW, van Heerwaarden J, Pannebakker BA. Development of a Nasonia vitripennis outbred laboratory population for genetic analysis. Mol Ecol Resour 2013; 14:578-87. [PMID: 24215457 PMCID: PMC4260118 DOI: 10.1111/1755-0998.12201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
The parasitoid wasp genus Nasonia has rapidly become a genetic model system for developmental and evolutionary biology. The release of its genome sequence led to the development of high-resolution genomic tools, for both interspecific and intraspecific research, which has resulted in great advances in understanding Nasonia biology. To further advance the utility of Nasonia vitripennis as a genetic model system and to be able to fully exploit the advantages of its fully sequenced and annotated genome, we developed a genetically variable and well-characterized experimental population. In this study, we describe the establishment of the genetically diverse HVRx laboratory population from strains collected from the field in the Netherlands. We established a maintenance method that retains genetic variation over generations of culturing in the laboratory. As a characterization of its genetic composition, we provide data on the standing genetic variation and estimate the effective population size (N(e)) by microsatellite analysis. A genome-wide description of polymorphism is provided through pooled resequencing, which yielded 417,331 high-quality SNPs spanning all five Nasonia chromosomes. The HVRx population and its characterization are freely available as a community resource for investigators seeking to elucidate the genetic basis of complex trait variation using the Nasonia model system.
Collapse
Affiliation(s)
- Louis van de Zande
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Pannebakker BA, Trivedi U, Blaxter ML, Watt R, Shuker DM. The transcriptomic basis of oviposition behaviour in the parasitoid wasp Nasonia vitripennis. PLoS One 2013; 8:e68608. [PMID: 23894324 PMCID: PMC3716692 DOI: 10.1371/journal.pone.0068608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/29/2013] [Indexed: 01/26/2023] Open
Abstract
Linking behavioural phenotypes to their underlying genotypes is crucial for uncovering the mechanisms that underpin behaviour and for understanding the origins and maintenance of genetic variation in behaviour. Recently, interest has begun to focus on the transcriptome as a route for identifying genes and gene pathways associated with behaviour. For many behavioural traits studied at the phenotypic level, we have little or no idea of where to start searching for "candidate" genes: the transcriptome provides such a starting point. Here we consider transcriptomic changes associated with oviposition in the parasitoid wasp Nasonia vitripennis. Oviposition is a key behaviour for parasitoids, as females are faced with a variety of decisions that will impact offspring fitness. These include choosing between hosts of differing quality, as well as making decisions regarding clutch size and offspring sex ratio. We compared the whole-body transcriptomes of resting or ovipositing female Nasonia using a "DeepSAGE" gene expression approach on the Illumina sequencing platform. We identified 332 tags that were significantly differentially expressed between the two treatments, with 77% of the changes associated with greater expression in resting females. Oviposition therefore appears to focus gene expression away from a number of physiological processes, with gene ontologies suggesting that aspects of metabolism may be down-regulated during egg-laying. Nine of the most abundant differentially expressed tags showed greater expression in ovipositing females though, including the genes purity-of-essence (associated with behavioural phenotypes in Drosophila) and glucose dehydrogenase (GLD). The GLD protein has been implicated in sperm storage and release in Drosophila and so provides a possible candidate for the control of sex allocation by female Nasonia during oviposition. Oviposition in Nasonia therefore clearly modifies the transcriptome, providing a starting point for the genetic dissection of oviposition.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Ross L, Langenhof MBW, Pen I, Shuker DM. Temporal variation in sex allocation in the mealybug Planococcus citri: adaptation, constraint, or both? Evol Ecol 2012. [DOI: 10.1007/s10682-012-9561-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Yamauchi A, Kobayashi Y. Joint evolution of sex ratio and reproductive group size under local mate competition with inbreeding depression. J Theor Biol 2011; 270:127-33. [PMID: 21074542 DOI: 10.1016/j.jtbi.2010.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022]
Abstract
Local mate competition (LMC) may involve some amount of inbreeding between siblings. Because sib-mating is generally accompanied by inbreeding depression, natural selection may favor a reduced rate of sib-mating, possibly affecting the evolution of sex ratio and reproductive group size. The present study theoretically investigated the evolution of these traits under LMC in the presence of inbreeding depression. When the reproductive group size evolves, the determination mechanism of sex ratio is important because the timescale of the sex ratio response to reproductive group size can affect the evolutionary process. We consider a spectrum of sex ratio determination mechanisms from purely unconditional to purely conditional, including intermediate modes with various relative strengths of unconditional and conditional effects. This analysis revealed that both the evolutionarily stable reproductive group size and ratio of males increase with higher inbreeding depression and with a larger relative strength of an unconditional effect in sex ratio determination. Unexpectedly, when the sex ratio is controlled purely conditionally, the reproductive group size cannot exceed three even under the severest level of inbreeding depression (i.e., lethal effect). The present study reveals the conditions for LMC to evolve through the analysis of the joint evolution of reproductive group size and sex ratio.
Collapse
Affiliation(s)
- Atsushi Yamauchi
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan.
| | | |
Collapse
|
13
|
Pannebakker BA, Watt R, Knott SA, West SA, Shuker DM. The quantitative genetic basis of sex ratio variation in Nasonia vitripennis: a QTL study. J Evol Biol 2011; 24:12-22. [PMID: 20977519 PMCID: PMC3025119 DOI: 10.1111/j.1420-9101.2010.02129.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our understanding of how natural selection should shape sex allocation is perhaps more developed than for any other trait. However, this understanding is not matched by our knowledge of the genetic basis of sex allocation. Here, we examine the genetic basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, a species well known for its response to local mate competition (LMC). We identified a quantitative trait locus (QTL) for sex ratio on chromosome 2 and three weaker QTL on chromosomes 3 and 5. We tested predictions that genes associated with sex ratio should be pleiotropic for other traits by seeing if sex ratio QTL co-occurred with clutch size QTL. We found one clutch size QTL on chromosome 1, and six weaker QTL across chromosomes 2, 3 and 5, with some overlap to regions associated with sex ratio. The results suggest rather limited scope for pleiotropy between these traits.
Collapse
Affiliation(s)
- B A Pannebakker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
Collapse
Affiliation(s)
- J J Bull
- The Institute for Cellular and Molecular Biology, Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
15
|
Lewis HM, Tosh CR, O'Keefe S, Shuker DM, West SA, Mayhew PJ. Constraints on adaptation: explaining deviation from optimal sex ratio using artificial neural networks. J Evol Biol 2010; 23:1708-19. [PMID: 20561134 DOI: 10.1111/j.1420-9101.2010.02038.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- H M Lewis
- Department of Biology, University of York, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Pannebakker BA, Niehuis O, Hedley A, Gadau J, Shuker DM. The distribution of microsatellites in the Nasonia parasitoid wasp genome. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:91-8. [PMID: 20167020 DOI: 10.1111/j.1365-2583.2009.00915.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microsatellites are important molecular markers used in numerous genetic contexts. Despite this widespread use, the evolutionary processes governing microsatellite distribution and diversity remain controversial. Here, we present results on the distribution of microsatellites of three species in the parasitic wasp genus Nasonia generated by an in silico data-mining approach. Our results show that the overall microsatellite density in Nasonia is comparable to that of the honey bee, but much higher than in eight non-Hymenopteran arthropods. Across the Nasonia vitripennis genome, microsatellite density varied both within and amongst chromosomes. In contrast to other taxa, dinucleotides are the most abundant repeat type in all four species of Hymenoptera studied. Whether the differences between the Hymenoptera and other taxa are of functional significance remains to be determined.
Collapse
Affiliation(s)
- B A Pannebakker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
17
|
Beukeboom LW, Niehuis O, Pannebakker BA, Koevoets T, Gibson JD, Shuker DM, van de Zande L, Gadau J. A comparison of recombination frequencies in intraspecific versus interspecific mapping populations of Nasonia. Heredity (Edinb) 2010; 104:302-9. [PMID: 20087389 DOI: 10.1038/hdy.2009.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We present the first intraspecific linkage map for Nasonia vitripennis based on molecular markers. The map consists of 36 new microsatellite markers, extracted from the Nasonia genome sequence, and spans 515 cM. The five inferred linkage groups correspond to the five chromosomes of Nasonia. Comparison of recombination frequencies of the marker intervals spread over the whole genome (N=33 marker intervals) between the intraspecific N. vitripennis map and an interspecific N. vitripennis x N. giraulti map revealed a slightly higher (1.8%) recombination frequency in the intraspecific cross. We further considered an N. vitripennis x N. longicornis map with 29 microsatellite markers spanning 430 cM. Recombination frequencies in the two interspecific crosses differed neither between reciprocal crosses nor between mapping populations of embryos and adults. No major chromosomal rearrangements were found for the analyzed genomic segments. The observed differential F(2) hybrid male mortality has no significant effect on the genome-wide recombination frequency in Nasonia. We conclude that interspecific crosses between the different Nasonia species, a hallmark of Nasonia genetics, are generally suitable for mapping quantitative and qualitative trait loci for species differences.
Collapse
Affiliation(s)
- L W Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Halligan DL, Keightley PD. Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173437] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel L. Halligan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| | - Peter D. Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| |
Collapse
|
19
|
Frohschammer S, Heinze J. A heritable component in sex ratio and caste determination in a Cardiocondyla ant. Front Zool 2009; 6:27. [PMID: 19863794 PMCID: PMC2774301 DOI: 10.1186/1742-9994-6-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/28/2009] [Indexed: 11/10/2022] Open
Abstract
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids.Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony.Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.
Collapse
|