1
|
The legacy of predator threat shapes prey foraging behaviour. Oecologia 2021; 198:79-89. [PMID: 34817645 DOI: 10.1007/s00442-021-05073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Predators exert strong selection on prey foraging behaviour such that prey responses may reflect a combination of ancestral effects of predators (genetic and nongenetic transgenerational effects), past individual experience with predators (phenotypic plasticity), and current exposure to predators (behavioural response). However, the importance of these factors in shaping prey foraging behaviour is not well understood. To test the relative effects of ancestry, prior experience, and current exposure, we measured foraging rates and food size preference of different ancestry and exposure groups of Western mosquitofish in the presence and absence of immediate threat from predatory largemouth bass. Our results confirm that mosquitofish had lower foraging rate in the immediate presence of predator threat. Mosquitofish also foraged at a lower rate if they had ancestry with predators, regardless of immediate threat. In contrast, individual prior experience with predators only caused reduced foraging rates in the immediate presence of a predator. This suggests that phenotypic plasticity could carry a lower risk of maladaptive antipredator responses-i.e., reduced food intake-in the complete absence of a predator. Finally, in the presence of a predator, mosquitofish with both ancestry and experience with predators consumed larger, presumably more energetically valuable, food items. Overall, our results show that non-consumptive effects of predators on prey behaviour can persist within and across generations, such that the legacy of past predator exposure-or "the ghost of predation past"-may continue to shape prey behaviour even when predators are no longer around.
Collapse
|
2
|
Predation shapes behavioral lateralization: insights from an adaptive radiation of livebearing fish. Behav Ecol 2021. [DOI: 10.1093/beheco/arab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hemispheric brain lateralization can drive the expression of behavioral asymmetry, or laterality, which varies notably both within and among species. To explain these left–right behavioral asymmetries in animals, predator-mediated selection is often invoked. Recent studies have revealed that a relatively high degree of lateralization correlates positively with traits known to confer survival benefits against predators, including escape performance, multitasking abilities, and group coordination. Yet, we still know comparatively little about 1) how consistently predators shape behavioral lateralization, 2) the importance of sex-specific variation, and 3) the degree to which behavioral lateralization is heritable. Here, we take advantage of the model system of the radiation of Bahamas mosquitofish (Gambusia hubbsi) and measure behavioral lateralization in hundreds of wild fish originating from multiple blue holes that differ in natural predation pressure. Moreover, we estimated the heritability of this trait using laboratory-born fish from one focal population. We found that the degree of lateralization but not the particular direction of lateralization (left or right) differed significantly across high and low predation risk environments. Fish originating from high-predation environments were more strongly lateralized, especially females. We further confirmed a genetic basis to behavioral lateralization in this species, with significant additive genetic variation in the population examined. Our results reveal that predation risk represents one key ecological factor that has likely shaped the origin and maintenance of this widespread behavioral phenomenon, even potentially explaining some of the sex-specific patterns of laterality recently described in some animals.
Collapse
|
3
|
Hulthén K, Hill JS, Jenkins MR, Langerhans RB. Predation and Resource Availability Interact to Drive Life-History Evolution in an Adaptive Radiation of Livebearing Fish. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predation risk and resource availability are two primary factors predicted by theory to drive the evolution of life histories. Yet, disentangling their roles in life-history evolution in the wild is challenging because (1) the two factors often co-vary across environments, and (2) environmental effects on phenotypes can mask patterns of genotypic evolution. Here, we use the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to provide a strong test of the roles of predation and resources in life-history evolution, as the two factors do not co-vary in this system and we attempted to minimize environmental effects by raising eight populations under common laboratory conditions. We tested a priori predictions of predation- and resource-driven evolution in five life-history traits. We found that life-history evolution in Bahamas mosquitofish largely reflected complex interactions in the effects of predation and resource availability. High predation risk has driven the evolution of higher fecundity, smaller offspring size, more frequent reproduction, and slower growth rate—but this predation-driven divergence primarily occurred in environments with relatively high resource availability, and the effects of resources on life-history evolution was generally greater within environments having high predation risk. This implies that resource-driven selection on life histories overrides selection from predators when resources are particularly scarce. While several results matched a priori predictions, with the added nuance of interdependence among selective agents, some did not. For instance, only resource levels, not predation risk, explained evolutionary change in male age at maturity, with more rapid sexual maturation in higher-resource environments. We also found faster (not slower) juvenile growth rates within low-resource and low-predation environments, probably caused by selection in these high-competition scenarios favoring greater growth efficiency. Our approach, using common-garden experiments with a natural system of low- and high-predation populations that span a continuum of resource availability, provides a powerful way to deepen our understanding of life-history evolution. Overall, it appears that life-history evolution in this adaptive radiation has resulted from a complex interplay between predation and resources, underscoring the need for increased attention on more sophisticated interactions among selective agents in driving phenotypic diversification.
Collapse
|
4
|
Moody EK, Lozano-Vilano ML. Predation drives morphological convergence in the Gambusia panuco species group among lotic and lentic habitats. J Evol Biol 2017; 31:491-501. [PMID: 29266513 DOI: 10.1111/jeb.13226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
Abstract
Fish morphology is often constrained by a trade-off between optimizing steady vs. unsteady swimming performance due to opposing effects of caudal peduncle size. Lotic environments tend to select for steady swimming performance, leading to smaller caudal peduncles, whereas predators tend to select for unsteady swimming performance, leading to larger caudal peduncles. However, it is unclear which aspect of performance should be optimized across heterogeneous flow and predation environments and how this heterogeneity may affect parallel phenotypic evolution. We investigated this question among four Gambusia species in north-eastern Mexico, specifically the riverine G. panuco, the spring endemics G. alvarezi and G. hurtadoi, and a fourth species, G. marshi, found in a variety of habitats with varying predation pressure in the Cuatro Ciénegas Basin and Río Salado de Nadadores. We employed a geometric morphometric analysis to examine how body shapes of both male and female fish differ among species and habitats and with piscivore presence. We found that high-predation and low-predation species diverged morphologically, with G. marshi exhibiting a variable, intermediate body shape. Within G. marshi, body morphology converged in high-predation environments regardless of flow velocity, and fish from high-predation sites had larger relative caudal peduncle areas. However, we found that G. marshi from low-predation environments diverged in morphology between sub-basins of Cuatro Ciénegas, indicating other differences among these basins that merit further study. Our results suggest that a morphological trade-off promotes parallel evolution of body shape in fishes colonizing high-predation environments and that changing predation pressure can strongly impact morphological evolution in these species.
Collapse
Affiliation(s)
- E K Moody
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - M L Lozano-Vilano
- Laboratorio de Ictiología, Universidad Autόnoma de Nuevo Leόn, San Nicolás de los Garza, N.L., Mexico
| |
Collapse
|
5
|
Langerhans RB. Predictability and Parallelism of Multitrait Adaptation. J Hered 2017; 109:59-70. [DOI: 10.1093/jhered/esx043] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/01/2017] [Indexed: 02/03/2023] Open
|
6
|
|
7
|
Ingley SJ, Reina RG, Bermingham E, Johnson JB. Phylogenetic analyses provide insights into the historical biogeography and evolution of Brachyrhaphis fishes. Mol Phylogenet Evol 2015; 89:104-14. [PMID: 25916190 DOI: 10.1016/j.ympev.2015.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 12/01/2022]
Abstract
The livebearing fish genus Brachyrhaphis (Poeciliidae) has become an increasingly important model in evolution and ecology research, yet the phylogeny of this group is not well understood, nor has it been examined thoroughly using modern phylogenetic methods. Here, we present the first comprehensive phylogenetic analysis of Brachyrhaphis by using four molecular markers (3mtDNA, 1nucDNA) to infer relationships among species in this genus. We tested the validity of this genus as a monophyletic group using extensive outgroup sampling based on recent phylogenetic hypotheses of Poeciliidae. We also tested the validity of recently described species of Brachyrhaphis that are part of the B. episcopi complex in Panama. Finally, we examined the impact of historical events on diversification of Brachyrhaphis, and made predictions regarding the role of different ecological environments on evolutionary diversification where known historical events apparently fail to explain speciation. Based on our results, we reject the monophyly of Brachyrhaphis, and question the validity of two recently described species (B. hessfeldi and B. roswithae). Historical biogeography of Brachyrhaphis generally agrees with patterns found in other freshwater taxa in Lower Central America, which show that geological barriers frequently predict speciation. Specifically, we find evidence in support of an 'island' model of Lower Central American formation, which posits that the nascent isthmus was partitioned by several marine connections before linking North and South America. In some cases where historic events (e.g., vicariance) fail to explain allopatric species breaks in Brachyrhaphis, ecological processes (e.g., divergent predation environments) offer additional insight into our understanding of phylogenetic diversification in this group.
Collapse
Affiliation(s)
- Spencer J Ingley
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, 401 WIDB, Provo, UT 84602, USA.
| | - Ruth G Reina
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama
| | | | - Jerald B Johnson
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, 401 WIDB, Provo, UT 84602, USA; Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Morphological differentiation among populations of Rhinella marina (Amphibia: Anura) in western Mexico. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9667-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Environmental drivers of demographics, habitat use, and behavior during a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi). Evol Ecol 2013. [DOI: 10.1007/s10682-012-9627-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Krebs JM, Bell SS. Risk of predation reflects variation in the reproductive strategy of a dominant forage fish in mangrove tidal tributaries. Oecologia 2011; 168:737-48. [PMID: 21928154 DOI: 10.1007/s00442-011-2117-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
The role of predators in shaping prey life histories is a central theme in the ecological literature. However, the association between degree of predation risk and prey reproductive strategies has not been clearly established. We examined reproduction in the sailfin molly (Poecilia latipinna) from small tidal tributaries in a subtropical estuary. Our results revealed a gradient along which females produced many, small offspring at one extreme (mean = 42 offspring, 17 mg each) and fewer, larger offspring at the other (24 offspring, 29 mg each). Reproductive allotment ranged from 14.9-21.5% of maternal biomass. Based on our observation of divergent reproductive strategies, we experimentally tested the null hypothesis of no difference in predation risk among tributaries using a novel quantitative approach to estimate predation. We predicted greater risk in tributaries where mollies produced many, small offspring. Tethering confirmed increasing risk from 16.2 ± 5.3% SE to 54.7 ± 3.6% fish lost h(-1) across sites in agreement with observed variation in reproduction. Predation was unexpectedly higher than predicted at one of the four sites suggesting that additional factors (e.g., food) had influenced reproduction there. Our results provide insight into the well-studied concept of predator-mediated variation in prey reproduction by quantitatively demonstrating differential risk for mollies exhibiting divergent reproductive strategies. While the observed range of variation in reproductive traits was consistent with previous studies reporting strong predator effects, higher than expected predation in one case may suggest that the prey response does not follow a continuous trajectory of incremental change with increasing predation risk, but may be better defined as a threshold beyond which a significant shift in reproductive strategy occurs.
Collapse
Affiliation(s)
- Justin M Krebs
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| | | |
Collapse
|
11
|
Langerhans RB. Predicting Evolution with Generalized Models of Divergent Selection: A Case Study with Poeciliid Fish. Integr Comp Biol 2010; 50:1167-84. [DOI: 10.1093/icb/icq117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|