1
|
Leigh S, Thorpe P, Snook RR, Ritchie MG. Sexual selection, genomic evolution and population fitness in Drosophila pseudoobscura. Proc Biol Sci 2025; 292:20242744. [PMID: 40169023 PMCID: PMC11961267 DOI: 10.1098/rspb.2024.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
Sexual selection shapes the genome in unique ways. It is also likely to have significant fitness consequences, such as purging deleterious mutations from the genome or conversely maintaining genetic load in a population via sexual conflict. Here, we examined what the influence of sexual selection has on genomic variation potentially underlying population fitness using experimentally evolved Drosophila pseudoobscura populations. Sexual selection was manipulated by keeping replicate lines in elevated polyandry or strict monogamy for approximately 200 generations followed by individual-based sequencing. Using pi (π), fixation index (Fst)and recombination rate measures, we confirmed signatures of selection were not dispersed but mainly localized to the third and X chromosome. Overall mutational load was similar between lines but our analysis of the distribution of fitness effects revealed considerable variation between lines and chromosomes. Furthermore, we found that the distribution of transposable elements differs between the lines, with a higher load in monogamous lines. Our results suggest that complex interactions between purifying selection and sexual conflict are shaping the genome, particularly on chromosome 3 and the sex chromosome; sexual selection influences divergence across chromosomes but in a more complex way than proposed by simple 'purging' of deleterious loci.
Collapse
Affiliation(s)
- Stewart Leigh
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Peter Thorpe
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rhonda R. Snook
- Department of Zoology, Stockholms Universitet, Stockholm, Sweden
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
2
|
McConnell N, Haerty W, Gage MJG, Chapman T. Socially plastic responses in females are robust to evolutionary manipulations of adult sex ratio and adult nutrition. J Evol Biol 2024; 37:1215-1224. [PMID: 39177780 DOI: 10.1093/jeb/voae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Socially plastic behaviours are widespread among animals and can have a significant impact on fitness. Here, we investigated whether the socially plastic responses of female Drosophila melanogaster can evolve in predictable ways following long-term manipulation of adult sex ratio and adult nutrient availability. Previous reports show that female D. melanogaster respond plastically to their same-sex social environment and lay significantly fewer eggs after mating when previously exposed to other females. In this study, we tested 2 hypotheses, using females drawn from lines with an evolutionary history of exposure to variation in adult sex ratio (male-biased, female-biased or equal sex ratio) and adult nutritional environment (high or low quality). The first was that a history of elevated competition in female-biased regimes would select for increased plastic fecundity responses in comparison to females from other lines. The second was that these responses would also be magnified under poor nutritional resource regimes. Neither hypothesis was supported. Instead, we found that plastic fecundity responses were retained in females from all lines and did not differ significantly across any of them. The lack of differences does not appear to be due to insufficient selection, as we did observe significant evolutionary responses in virgin egg-laying patterns according to sex ratio and nutritional regime. The lack of variation in the magnitude of predicted plasticity is consistent with the idea that the costs of maintaining plasticity are low, benefits high, and that plasticity itself can be relatively hard wired.
Collapse
Affiliation(s)
- Nathan McConnell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Wilfried Haerty
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
3
|
Barata C, Snook RR, Ritchie MG, Kosiol C. Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila pseudoobscura. Genome Biol Evol 2023; 15:evad113. [PMID: 37341535 PMCID: PMC10319773 DOI: 10.1093/gbe/evad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations' genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size-Ne-between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate Ne to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines.
Collapse
Affiliation(s)
- Carolina Barata
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Carolin Kosiol
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
4
|
Kyogoku D, Dobata S, Takashima R, Sota T. Female-limited responses in remating rate and mating duration in the experimental evolution of a beetle Callosobruchus chinensis. J Evol Biol 2023; 36:309-314. [PMID: 36514853 DOI: 10.1111/jeb.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Mating rate optima often differ between the sexes: males may increase their fitness by multiple mating, but for females multiple mating confers little benefit and can often be costly (especially in taxa without nuptial gifts or mala parental care). Sexually antagonistic evolution is thus expected in traits related to mating rates under sexual selection. This prediction has been tested by multiple studies that applied experimental evolution technique, which is a powerful tool to directly examine the evolutionary consequences of selection. Yet, the results so far only partly support the prediction. Here, we provide another example of experimental evolution of sexual selection, by applying it for the first time to the mating behaviour of a seed beetle Callsorobruchus chinensis. We found a lower remating rate in polygamy-line females than in monogamy-line (i.e. no sexual selection) females after 21 generations of selection. Polygamy-line females also showed a longer duration of first mating than monogamy-line females. We found no effect of male evolutionary lines on the remating rate or first mating duration. Though not consistent with the original prediction, the current and previous studies collectively suggest that the observed female-limited responses may be a norm, which is also consistent with the conceptual advances in the last two decades of the advantages and limitations of experimental evolution technique.
Collapse
Affiliation(s)
- Daisuke Kyogoku
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shigeto Dobata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rui Takashima
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Sepil I, Perry JC, Dore A, Chapman T, Wigby S. Experimental evolution under varying sex ratio and nutrient availability modulates male mating success in Drosophila melanogaster. Biol Lett 2022; 18:20210652. [PMID: 35642384 PMCID: PMC9156920 DOI: 10.1098/rsbl.2021.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jennifer C Perry
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alice Dore
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Garlovsky MD, Holman L, Brooks AL, Novicic ZK, Snook RR. Experimental sexual selection affects the evolution of physiological and life-history traits. J Evol Biol 2022; 35:742-751. [PMID: 35384100 PMCID: PMC9322299 DOI: 10.1111/jeb.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life-history traits in response to long-term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation- and starvation resistant than monogamy males, suggesting trade-offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non-sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Andrew L Brooks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zorana K Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Singh A, Agrawal AF. Sex-specific Variance in Fitness and the Efficacy of Selection. Am Nat 2022; 199:587-602. [DOI: 10.1086/719015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Wiberg RAW, Veltsos P, Snook RR, Ritchie MG. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol Lett 2021; 5:214-229. [PMID: 34136270 PMCID: PMC8190450 DOI: 10.1002/evl3.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in "islands," many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Collapse
Affiliation(s)
- R. Axel W. Wiberg
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Current Address: Department of Environmental SciencesZoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - Rhonda R. Snook
- Department of ZoologyStockholm UniversityStockholm106 91Sweden
| | - Michael G. Ritchie
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
9
|
Stångberg J, Immonen E, Moreno PP, Bolund E. Experimentally induced intrasexual mating competition and sex-specific evolution in female and male nematodes. J Evol Biol 2020; 33:1677-1688. [PMID: 32945028 PMCID: PMC7756511 DOI: 10.1111/jeb.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Sexual dimorphism in life history traits and their trade-offs is widespread among sexually reproducing animals and is strongly influenced by the differences in reproductive strategies between the sexes. We investigated how intrasexual competition influenced specific life history traits, important to fitness and their trade-offs in the outcrossing nematode Caenorhabditis remanei. Here, we altered the strength of sex-specific selection through experimental evolution with increased potential for intrasexual competition by skewing the adult sex ratio towards either females or males (1:10 or 10:1) over 30 generations and subsequently measured the phenotypic response to selection in three traits related to fitness: body size, fecundity and tolerance to heat stress. We observed a greater evolutionary change in females than males for body size and peak fitness, suggesting that females may experience stronger net selection and potentially harbour higher amounts of standing genetic variance compared to males. Our study highlights the importance of investigating direct and indirect effects of intrasexual competition in both sexes in order to capture sex-specific responses and understand the evolution of sexual dimorphism in traits expressed by both sexes.
Collapse
Affiliation(s)
- Josefine Stångberg
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Pilar Puimedon Moreno
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Bolund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Dore AA, Rostant WG, Bretman A, Chapman T. Plastic male mating behavior evolves in response to the competitive environment. Evolution 2020; 75:101-115. [PMID: 32844404 DOI: 10.1111/evo.14089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Male reproductive phenotypes can evolve in response to the social and sexual environment. The expression of many such phenotypes may also be plastic within an individual's lifetime. For example, male Drosophila melanogaster show significantly extended mating duration following a period of exposure to conspecific male rivals. The costs and benefits of reproductive investment, and plasticity itself, can be shaped by the prevailing sociosexual environment and by resource availability. We investigated these ideas using experimental evolution lines of D. melanogaster evolving under three fixed sex ratios (high, medium, and low male-male competition) on either rich or poor adult diets. We found that males evolving in high-competition environments evolved longer mating durations overall. In addition, these males expressed a novel type of plastic behavioral response following exposure to rival males: they both significantly reduced and showed altered courtship delivery, and exhibited significantly longer mating latencies. Plasticity in male mating duration in response to rivals was maintained in all of the lines, suggesting that the costs of plasticity were minimal. None of the evolutionary responses tested were consistently affected by dietary resource regimes. Collectively, the results show that fixed behavioral changes and new augmentations to the repertoire of reproductive behaviors can evolve rapidly.
Collapse
Affiliation(s)
- Alice A Dore
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Wayne G Rostant
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Amanda Bretman
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:8437-8444. [PMID: 30962372 PMCID: PMC6486729 DOI: 10.1073/pnas.1821386116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In species with males and females, reproduction requires contributions from both sexes and therefore some degree of cooperation. At the same time, antagonistic interactions can evolve because of the differing goals of males and females. We aligned the interests of the sexes in the naturally promiscuous fruit fly Drosophila melanogaster by enforcing randomized monogamy for more than 150 generations. Males repeatedly evolved to manipulate females less, a pattern visible in both the timing of female reproductive effort and gene expression changes after mating. Male investment in expression of genes encoding seminal fluid proteins, which shape the female postmating response, declined concurrently. Our results confirm the presence of sexually antagonistic selection on postcopulatory interactions that can be reversed by monogamy. In many animals, females respond to mating with changes in physiology and behavior that are triggered by molecules transferred by males during mating. In Drosophila melanogaster, proteins in the seminal fluid are responsible for important female postmating responses, including temporal changes in egg production, elevated feeding rates and activity levels, reduced sexual receptivity, and activation of the immune system. It is unclear to what extent these changes are mutually beneficial to females and males or instead represent male manipulation. Here we use an experimental evolution approach in which females are randomly paired with a single male each generation, eliminating any opportunity for competition for mates or mate choice and thereby aligning the evolutionary interests of the sexes. After >150 generations of evolution, males from monogamous populations elicited a weaker postmating stimulation of egg production and activity than males from control populations that evolved with a polygamous mating system. Males from monogamous populations did not differ from males from polygamous populations in their ability to induce refractoriness to remating in females, but they were inferior to polygamous males in sperm competition. Mating-responsive genes in both the female abdomen and head showed a dampened response to mating with males from monogamous populations. Males from monogamous populations also exhibited lower expression of genes encoding seminal fluid proteins, which mediate the female response to mating. Together, these results demonstrate that the female postmating response, and the male molecules involved in eliciting this response, are shaped by ongoing sexual conflict.
Collapse
|
12
|
Karr TL, Southern H, Rosenow MA, Gossmann TI, Snook RR. The Old and the New: Discovery Proteomics Identifies Putative Novel Seminal Fluid Proteins in Drosophila. Mol Cell Proteomics 2019; 18:S23-S33. [PMID: 30760537 PMCID: PMC6427231 DOI: 10.1074/mcp.ra118.001098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Seminal fluid proteins (SFPs), the nonsperm component of male ejaculates produced by male accessory glands, are viewed as central mediators of reproductive fitness. SFPs effect both male and female post-mating functions and show molecular signatures of rapid adaptive evolution. Although Drosophila melanogaster, is the dominant insect model for understanding SFP evolution, understanding of SFP evolutionary causes and consequences require additional comparative analyses of close and distantly related taxa. Although SFP identification was historically challenging, advances in label-free quantitative proteomics expands the scope of studying other systems to further advance the field. Focused studies of SFPs has so far overlooked the proteomes of male reproductive glands and their inherent complex protein networks for which there is little information on the overall signals of molecular evolution. Here we applied label-free quantitative proteomics to identify the accessory gland proteome and secretome in Drosophila pseudoobscura,, a close relative of D. melanogaster,, and use the dataset to identify both known and putative novel SFPs. Using this approach, we identified 163 putative SFPs, 32% of which overlapped with previously identified D. melanogaster, SFPs and show that SFPs with known extracellular annotation evolve more rapidly than other proteins produced by or contained within the accessory gland. Our results will further the understanding of the evolution of SFPs and the underlying male accessory gland proteins that mediate reproductive fitness of the sexes.
Collapse
Affiliation(s)
- Timothy L Karr
- From the ‡Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona;.
| | - Helen Southern
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
13
|
Brunner FS, Deere JA, Egas M, Eizaguirre C, Raeymaekers JAM. The diversity of eco‐evolutionary dynamics: Comparing the feedbacks between ecology and evolution across scales. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13268] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jacques A. Deere
- Institute for Biodiversity and Ecosystem DynamicsUniversity of Amsterdam Amsterdam The Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of Amsterdam Amsterdam The Netherlands
| | | | | |
Collapse
|
14
|
Tu Y, Shu J, Ji G, Zhang M, Zou J. Monitoring conservation effects on a Chinese indigenous chicken breed using major histocompatibility complex B-G gene and DNA Barcodes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1558-1564. [PMID: 29642684 PMCID: PMC6127593 DOI: 10.5713/ajas.17.0627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We report monitoring conservation effect for a Chinese indigenous chicken (Langshan) breed using major histocompatibility complex (MHC) and DNA barcords. METHODS The full length of MHC B-G gene and mitochondrial cytochrome oxidase I (COI) gene in generations 0, 5, 10, 15, 16, and 17 was measured using re-sequencing and sequencing procedures, respectively. RESULTS There were 292 single nucleotide polymorphisms of MHC B-G gene identified in six generations. Heterozygosity (He) and polymorphic information content (PIC) of MHC B-G gene in generations 10, 15, 16, and 17 remained stable. He and PIC of MHC B-G gene were different in six generations, with G10, G15, G16, G17 >G5>G0 (p<0.05). For the COI gene, there were five haplotypes in generations 0, 5, 10, 15, 16, and 17. Where Hap2 and Hap4 were the shared haplotypes, 164 individuals shared Hap2 haplotypes, while Hap1 and Hap3 were the shared haplotypes in generations 0 and 5 and Hap5 was a shared haplotype in generations 10, 15, 16, and 17. The sequence of COI gene in 6 generations was tested by Tajima's and D value, and the results were not significant, which were consistent with neutral mutation. There were no differences in generations 10, 15, 16, and 17for measured phenotypic traits. In other generations, for annual egg production, with G5, G10, G15, G16, G17>G0 (p<0.05). For age at the first egg and age at sexual maturity, with G10, G15, G16, G17>G5>G0 (p<0.05). CONCLUSION Combined with the results of COI gene DNA barcodes, MHC B-G gene, and phenotypic traits we can see that genetic diversity remained stable from generations 10 to 17 and the equimultiple random matching pedigrees conservation population conservation effect of Langshan chicken was effective as measured by these criteria.
Collapse
Affiliation(s)
- Yunjie Tu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Jingting Shu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Gaige Ji
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Ming Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Jianmin Zou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| |
Collapse
|
15
|
Veltsos P, Fang Y, Cossins AR, Snook RR, Ritchie MG. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat Commun 2017; 8:2072. [PMID: 29233985 PMCID: PMC5727229 DOI: 10.1038/s41467-017-02232-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences in dioecious animals are pervasive and result from gene expression differences. Elevated sexual selection has been predicted to increase the number and expression of male-biased genes, and experimentally imposing monogamy on Drosophila melanogaster has led to a relative feminisation of the transcriptome. Here, we test this hypothesis further by subjecting another polyandrous species, D. pseudoobscura, to 150 generations of experimental monogamy or elevated polyandry. We find that sex-biased genes do change in expression but, contrary to predictions, there is usually masculinisation of the transcriptome under monogamy, although this depends on tissue and sex. We also identify and describe gene expression changes following courtship experience. Courtship often influences gene expression, including patterns in sex-biased gene expression. Our results confirm that mating system manipulation disproportionately influences sex-biased gene expression but show that the direction of change is dynamic and unpredictable.
Collapse
Affiliation(s)
- Paris Veltsos
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.,Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yongxiang Fang
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Andrew R Cossins
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Rhonda R Snook
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. .,Zoologiska Institutionen (Ekologi), Stockholm University, 106 91, Stockholm, Sweden.
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.
| |
Collapse
|
16
|
Debelle A, Courtiol A, Ritchie MG, Snook RR. Mate choice intensifies motor signalling in Drosophila. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wensing KU, Koppik M, Fricke C. Precopulatory but not postcopulatory male reproductive traits diverge in response to mating system manipulation in Drosophila melanogaster. Ecol Evol 2017; 7:10361-10378. [PMID: 29238561 PMCID: PMC5723610 DOI: 10.1002/ece3.3542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.
Collapse
Affiliation(s)
- Kristina U. Wensing
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
- Muenster Graduate School of EvolutionUniversity of MuensterMuensterGermany
| | - Mareike Koppik
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
| | - Claudia Fricke
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
| |
Collapse
|
18
|
Debelle A, Ritchie MG, Snook RR. Sexual selection and assortative mating: an experimental test. J Evol Biol 2016; 29:1307-16. [PMID: 26970522 DOI: 10.1111/jeb.12855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/03/2016] [Accepted: 02/26/2016] [Indexed: 11/29/2022]
Abstract
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased ('polyandry') or decreased ('monogamy') sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.
Collapse
Affiliation(s)
- A Debelle
- School of Life Sciences, University of Sussex, Brighton, UK
| | - M G Ritchie
- School of Biology, University of St Andrews, St Andrews, UK
| | - R R Snook
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Rodrigues LR, Duncan AB, Clemente SH, Moya-Laraño J, Magalhães S. Integrating Competition for Food, Hosts, or Mates via Experimental Evolution. Trends Ecol Evol 2016; 31:158-170. [DOI: 10.1016/j.tree.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
|
20
|
Inoue K, Lang BK, Berg DJ. Past climate change drives current genetic structure of an endangered freshwater mussel species. Mol Ecol 2015; 24:1910-26. [DOI: 10.1111/mec.13156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Kentaro Inoue
- Department of Biology; Miami University; 700 E. High Street Oxford OH 45056 USA
| | - Brian K. Lang
- New Mexico Department of Game and Fish; One Wildlife Way Santa Fe NM 87507 USA
| | - David J. Berg
- Department of Biology; Miami University; 1601 University Boulevard Hamilton OH 45011 USA
| |
Collapse
|
21
|
Debelle A, Ritchie MG, Snook RR. Evolution of divergent female mating preference in response to experimental sexual selection. Evolution 2014; 68:2524-33. [PMID: 24931497 PMCID: PMC4262321 DOI: 10.1111/evo.12473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/25/2014] [Indexed: 01/09/2023]
Abstract
Sexual selection is predicted to drive the coevolution of mating signals and preferences (mating traits) within populations, and could play a role in speciation if sexual isolation arises due to mating trait divergence between populations. However, few studies have demonstrated that differences in mating traits between populations result from sexual selection alone. Experimental evolution is a promising approach to directly examine the action of sexual selection on mating trait divergence among populations. We manipulated the opportunity for sexual selection (low vs. high) in populations of Drosophila pseudoobscura. Previous studies on these experimental populations have shown that sexual selection manipulation resulted in the divergence between sexual selection treatments of several courtship song parameters, including interpulse interval (IPI) which markedly influences male mating success. Here, we measure female preference for IPI using a playback design to test for preference divergence between the sexual selection treatments after 130 generations of experimental sexual selection. The results suggest that female preference has coevolved with male signal, in opposite directions between the sexual selection treatments, providing direct evidence of the ability of sexual selection to drive the divergent coevolution of mating traits between populations. We discuss the implications in the context sexual selection and speciation.
Collapse
Affiliation(s)
- Allan Debelle
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, S10 2TN, United Kingdom
| | | | | |
Collapse
|
22
|
Immonen E, Snook RR, Ritchie MG. Mating system variation drives rapid evolution of the female transcriptome in Drosophila pseudoobscura. Ecol Evol 2014; 4:2186-201. [PMID: 25360260 PMCID: PMC4201433 DOI: 10.1002/ece3.1098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/31/2022] Open
Abstract
Interactions between the sexes are believed to be a potent source of selection on sex-specific evolution. The way in which sexual interactions influence male investment is much studied, but effects on females are more poorly understood. To address this deficiency, we examined gene expression in virgin female Drosophila pseudoobscura following 100 generations of mating system manipulations in which we either elevated polyandry or enforced monandry. Gene expression evolution following mating system manipulation resulted in 14% of the transcriptome of virgin females being altered. Polyandrous females elevated expression of a greater number of genes normally enriched in ovaries and associated with mitosis and meiosis, which might reflect female investment into reproductive functions. Monandrous females showed a greater number of genes normally enriched for expression in somatic tissues, including the head and gut and associated with visual perception and metabolism, respectively. By comparing our data with a previous study of sex differences in gene expression in this species, we found that the majority of the genes that are differentially expressed between females of the selection treatments show female-biased expression in the wild-type population. A striking exception is genes associated with male-specific reproductive tissues (in D. melanogaster), which are upregulated in polyandrous females. Our results provide experimental evidence for a role of sex-specific selection arising from differing sexual interactions with males in promoting rapid evolution of the female transcriptome.
Collapse
Affiliation(s)
- Elina Immonen
- School of Biology, University of St Andrews Dyers Brae House, St Andrews, Fife, KY16 9TH, U.K ; Department of Ecology and Genetics (Animal Ecology), Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, Uppsala, 752 36, Sweden
| | - Rhonda R Snook
- Animal & Plant Sciences, University of Sheffield Alfred Denny Building, Sheffield, S10 2TN, U.K
| | - Michael G Ritchie
- School of Biology, University of St Andrews Dyers Brae House, St Andrews, Fife, KY16 9TH, U.K
| |
Collapse
|
23
|
Nandy B, Gupta V, Udaykumar N, Samant MA, Sen S, Prasad NG. EXPERIMENTAL EVOLUTION OF FEMALE TRAITS UNDER DIFFERENT LEVELS OF INTERSEXUAL CONFLICT INDROSOPHILA MELANOGASTER. Evolution 2013; 68:412-25. [DOI: 10.1111/evo.12271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 09/01/2013] [Indexed: 11/28/2022]
Affiliation(s)
- B. Nandy
- Indian Institute of Science Education and Research Mohali; Knowledge City, Sector 81, SAS Nagar PO Manauli Mohali Punjab 140306 India
| | - V. Gupta
- Indian Institute of Science Education and Research Mohali; Knowledge City, Sector 81, SAS Nagar PO Manauli Mohali Punjab 140306 India
| | - N. Udaykumar
- St. Joseph's College of Arts and Science; P. B. 27094, 36 Lalbagh Road Bangalore Karnataka 560027 India
| | - M. A. Samant
- Indian Institute of Science Education and Research Mohali; Knowledge City, Sector 81, SAS Nagar PO Manauli Mohali Punjab 140306 India
| | - S. Sen
- Indian Institute of Science Education and Research Mohali; Knowledge City, Sector 81, SAS Nagar PO Manauli Mohali Punjab 140306 India
| | - N. G. Prasad
- Indian Institute of Science Education and Research Mohali; Knowledge City, Sector 81, SAS Nagar PO Manauli Mohali Punjab 140306 India
| |
Collapse
|
24
|
Nandy B, Gupta V, Sen S, Udaykumar N, Samant MA, Ali SZ, Prasad NG. Evolution of mate-harm, longevity and behaviour in male fruit flies subjected to different levels of interlocus conflict. BMC Evol Biol 2013; 13:212. [PMID: 24073883 PMCID: PMC3849880 DOI: 10.1186/1471-2148-13-212] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interlocus conflict predicts (a) evolution of traits, beneficial to males but detrimental to females and (b) evolution of aging and life-span under the influence of the cost of bearing these traits. However, there are very few empirical investigations shedding light on these predictions. Those that do address these issues, mostly reported response of male reproductive traits or the lack of it and do not address the life-history consequence of such evolution. Here, we test both the above mentioned predictions using experimental evolution on replicate populations of Drosophila melanogaster. We present responses observed after >45 generations of altered levels of interlocus conflict (generated by varying the operational sex ratio). RESULTS Males from the male biased (high conflict, M-regime) regime evolved higher spontaneous locomotor activity and courtship frequency. Females exposed to these males were found to have higher mortality rate. Males from the female biased regime (low conflict, F-regime) did not evolve altered courtship frequency and activity. However, progeny production of females continuously exposed to F-males was significantly higher than the progeny production of females exposed to M-males indicating that the F-males are relatively benign towards their mates. We found that males from male biased regime lived shorter compared to males from the female biased regime. CONCLUSION F-males (evolving under lower levels of sexual conflict) evolved decreased mate harming ability indicating the cost of maintenance of the suit of traits that cause mate-harm. The M-males (evolving under higher levels sexual conflict) caused higher female mortality indicating that they had evolved increased mate harming ability, possibly as a by product of increased reproduction related activity. There was a correlated evolution of life-history of the M and F-males. M-regime males lived shorter compared to the males from F-regime, possibly due to the cost of investing more in reproductive traits. In combination, these results suggest that male reproductive traits and life-history traits can evolve in response to the altered levels of interlocus sexual conflict.
Collapse
Affiliation(s)
- Bodhisatta Nandy
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali 140306, Punjab, India.
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Nandy B, Chakraborty P, Gupta V, Ali SZ, Prasad NG. Sperm competitive ability evolves in response to experimental alteration of operational sex ratio. Evolution 2013; 67:2133-41. [PMID: 23815666 DOI: 10.1111/evo.12076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/29/2013] [Indexed: 11/29/2022]
Abstract
In naturally polygamous organisms such as Drosophila, sperm competitive ability is one of the most important components of male fitness and is expected to evolve in response to varying degrees of male-male competition. Several studies have documented the existence of ample genetic variation in sperm competitive ability of males. However, many experimental evolution studies have found sperm competitive ability to be unresponsive to selection. Even direct selection for increased sperm competitive ability has failed to yield any measurable changes. Here we report the evolution of sperm competitive ability (sperm defense-P1, offense-P2) in a set of replicate populations of Drosophila melanogaster subjected to altered levels of male-male competition (generated by varying the operational sex ratio) for 55-60 generations. Males from populations with female-biased operational sex ratio evolved reduced P1 and P2, without any measurable change in the male reproductive behavior. Males in the male-biased regime evolved increased P1, but there was no significant change in P2. Increase in P1 was associated with an increase in copulation duration, possibly indicating greater ejaculate investment by these males. This study is one of the few to provide empirical evidence for the evolution of sperm competitive ability of males under different levels of male-male competition.
Collapse
Affiliation(s)
- Bodhisatta Nandy
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | | | | | | | | |
Collapse
|
27
|
Snook RR, Gidaszewski NA, Chapman T, Simmons LW. Sexual selection and the evolution of secondary sexual traits: sex comb evolution in Drosophila. J Evol Biol 2013; 26:912-8. [PMID: 23496332 DOI: 10.1111/jeb.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 11/28/2022]
Abstract
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.
Collapse
Affiliation(s)
- Rhonda R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|
28
|
Plesnar-Bielak A, Skrzynecka AM, Prokop ZM, Radwan J. Mating system affects population performance and extinction risk under environmental challenge. Proc Biol Sci 2012; 279:4661-7. [PMID: 22977151 PMCID: PMC3479737 DOI: 10.1098/rspb.2012.1867] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 11/12/2022] Open
Abstract
Failure of organisms to adapt to sudden environmental changes may lead to extinction. The type of mating system, by affecting fertility and the strength of sexual selection, may have a major impact on a population's chances to adapt and survive. Here, we use experimental evolution in bulb mites (Rhizoglyphus robini) to examine the effects of the mating system on population performance under environmental change. We demonstrate that populations in which monogamy was enforced suffered a dramatic fitness decline when evolving at an increased temperature, whereas the negative effects of change in a thermal environment were alleviated in polygamous populations. Strikingly, within 17 generations, all monogamous populations experiencing higher temperature went extinct, whereas all polygamous populations survived. Our results show that the mating system may have dramatic effects on the risk of extinction under environmental change.
Collapse
Affiliation(s)
| | | | | | - Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
29
|
Firman RC, Simmons LW. Male house mice evolving with post-copulatory sexual selection sire embryos with increased viability. Ecol Lett 2011; 15:42-6. [DOI: 10.1111/j.1461-0248.2011.01706.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Stojković B, Jovanović DŠ, Perovanović J, Tucić N. Sexual Activity and Reproductive Isolation Between Age-specific Selected Populations of Seed Beetle. Ethology 2011. [DOI: 10.1111/j.1439-0310.2011.01936.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Lotterhos KE. THE CONTEXT-DEPENDENT EFFECT OF MULTIPLE PATERNITY ON EFFECTIVE POPULATION SIZE. Evolution 2011; 65:1693-706. [DOI: 10.1111/j.1558-5646.2011.01249.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Firman RC, Cheam LY, Simmons LW. Sperm competition does not influence sperm hook morphology in selection lines of house mice. J Evol Biol 2011; 24:856-62. [PMID: 21306461 DOI: 10.1111/j.1420-9101.2010.02219.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R C Firman
- Centre for Evolutionary Biology, University of Western Australia, Australia.
| | | | | |
Collapse
|
33
|
Michalczyk Ł, Millard AL, Martin OY, Lumley AJ, Emerson BC, Gage MJG. Experimental evolution exposes female and male responses to sexual selection and conflict in Tribolium castaneum. Evolution 2010; 65:713-24. [PMID: 21091981 DOI: 10.1111/j.1558-5646.2010.01174.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.
Collapse
Affiliation(s)
- Łukasz Michalczyk
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
34
|
Gay L, Hosken DJ, Eady P, Vasudev R, Tregenza T. THE EVOLUTION OF HARM-EFFECT OF SEXUAL CONFLICTS AND POPULATION SIZE. Evolution 2010; 65:725-37. [DOI: 10.1111/j.1558-5646.2010.01181.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Edward DA, Fricke C, Chapman T. Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection. Philos Trans R Soc Lond B Biol Sci 2010; 365:2541-8. [PMID: 20643744 PMCID: PMC2935098 DOI: 10.1098/rstb.2010.0027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago.
Collapse
Affiliation(s)
| | | | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
36
|
Snook RR, Bacigalupe LD, Moore AJ. The quantitative genetics and coevolution of male and female reproductive traits. Evolution 2010; 64:1926-34. [PMID: 20100215 DOI: 10.1111/j.1558-5646.2010.00958.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Studies of experimental sexual selection have tested the effect of variation in the intensity of sexual selection on male investment in reproduction, particularly sperm. However, in several species, including Drosophila pseudoobscura, no sperm response to experimental evolution has occurred. Here, we take a quantitative genetics approach to examine whether genetic constraints explain the limited evolutionary response. We quantified direct and indirect genetic variation, and genetic correlations within and between the sexes, in experimental populations of D. pseudoobscura. We found that sperm number may be limited by low heritability and evolvability whereas sperm quality (length) has moderate V(A) and CV(A) but does not evolve. Likewise, the female reproductive tract, suggested to drive the evolution of sperm, did not respond to experimental sexual selection even though there was sufficient genetic variation. The lack of genetic correlations between the sexes supports the opportunity for sexual conflict over investment in sperm by males and their storage by females. Our results suggest no absolute constraint arising from a lack of direct or indirect genetic variation or patterns of genetic covariation. These patterns show why responses to experimental evolution are hard to predict, and why research on genetic variation underlying interacting reproductive traits is needed.
Collapse
Affiliation(s)
- Rhonda R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | |
Collapse
|
37
|
Cairns KM, Wolff JN, Brooks RC, Ballard JWO. Evidence of recent population expansion in the field cricket Teleogryllus commodus. AUST J ZOOL 2010. [DOI: 10.1071/zo09118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The patterns of intraspecific genetic variation can be driven by large-scale environmental events or smaller-scale phenomena such as land clearing. In Australia, European farming techniques have altered the landscape by increasing the amount of arable farmland. We hypothesised that this increase in farmland would result in a concomitant increase in the effective population size of the black field cricket (Teleogryllus commodus). To test our hypothesis, we investigated genetic variation in 1350 bp of mitochondrial mtDNA and in two nuclear encoded loci, hexokinase and elongation factor 1-α, from 20 crickets collected at Smiths Lake, New South Wales. Molecular variation in T. commodus was characterised by an over-representation of singleton mutations (negative Tajima’s D and Fu and Li’s D) in all loci studied. Further, HKA tests do not suggest that selection is acting on any one gene. Combined, these data support the hypothesis that population expansion is the force driving molecular variation in T. commodus. If an increase in agricultural habitats is the cause of population expansion in T. commodus we hypothesise greater genetic subdivision in natural than farmland habitats. An alternative possibility is that the effective geographical range of the species has increased but the density at a given site remains unchanged.
Collapse
|
38
|
Crudgington HS, Fellows S, Snook RR. Increased opportunity for sexual conflict promotes harmful males with elevated courtship frequencies. J Evol Biol 2009; 23:440-6. [PMID: 20039999 DOI: 10.1111/j.1420-9101.2009.01907.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mating systems have a profound influence on the probability of conflict occurring between the sexes. Promiscuity is predicted to generate sexual conflict, thereby driving the evolution of male traits that harm females, whereas monogamy is expected to foster reproductive cooperation, thus rendering such traits redundant. We tested these predictions using experimentally evolved Drosophila pseudoobscura subject to different mating systems. Female survival was not influenced by the mating system treatment of her partner. However, females continuously housed with males evolving under elevated opportunities for female promiscuity produced fewer total progeny, but a relatively greater number of progeny early in their lives, than females housed with males evolving under obligate monogamy. We also found that promiscuous males courted females more frequently than monogamous males. Variation in male courtship frequency and progeny production patterns among treatments reinforces the critical importance of mating system variation for sexual conflict, during both pre- and post-copulatory interactions.
Collapse
Affiliation(s)
- H S Crudgington
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|