1
|
Mullon C, Peña J, Lehmann L. The evolution of environmentally mediated social interactions and posthumous spite under isolation by distance. PLoS Comput Biol 2024; 20:e1012071. [PMID: 38814981 PMCID: PMC11139344 DOI: 10.1371/journal.pcbi.1012071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Many social interactions happen indirectly via modifications of the environment, e.g. through the secretion of functional compounds or the depletion of renewable resources. Here, we derive the selection gradient on a quantitative trait affecting dynamical environmental variables that feed back on reproduction and survival in a finite patch-structured population subject to isolation by distance. Our analysis shows that the selection gradient depends on how a focal individual influences the fitness of all future individuals in the population through modifications of the environmental variables they experience, weighted by the neutral relatedness between recipients and the focal. The evolutionarily relevant trait-driven environmental modifications are formalized as the extended phenotypic effects of an individual, quantifying how a trait change in an individual in the present affects the environmental variables in all patches at all future times. When the trait affects reproduction and survival through a payoff function, the selection gradient can be expressed in terms of extended phenotypic effects weighted by scaled relatedness. We show how to compute extended phenotypic effects, relatedness, and scaled relatedness using Fourier analysis, which allow us to investigate a broad class of environmentally mediated social interactions in a tractable way. We use our approach to study the evolution of a trait controlling the costly production of some lasting commons (e.g. a common-pool resource or a toxic compound) that can diffuse in space and persist in time. We show that indiscriminate posthumous spite readily evolves in this scenario. More generally, whether selection favours environmentally mediated altruism or spite is determined by the spatial correlation between an individual's lineage and the commons originating from its patch. The sign of this correlation depends on interactions between dispersal patterns and the commons' renewal dynamics. More broadly, we suggest that selection can favour a wide range of social behaviours when these have carry-over effects in space and time.
Collapse
Affiliation(s)
- Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jorge Peña
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Toulouse, France
- Institute for Advanced Study in Toulouse, Toulouse, France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Kuijper B, Johnstone RA. Evolution of epigenetic transmission when selection acts on fecundity versus viability. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200128. [PMID: 33866808 DOI: 10.1098/rstb.2020.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Existing theory on the evolution of parental effects and the inheritance of non-genetic factors has mostly focused on the role of environmental change. By contrast, how differences in population demography and life history affect parental effects is poorly understood. To fill this gap, we develop an analytical model to explore how parental effects evolve when selection acts on fecundity versus viability in spatio-temporally fluctuating environments. We find that regimes of viability selection, but not fecundity selection, are most likely to favour parental effects. In the case of viability selection, locally adapted phenotypes have a higher survival than maladapted phenotypes and hence become enriched in the local environment. Hence, simply by being alive, a parental phenotype becomes correlated to its environment (and hence informative to offspring) during its lifetime, favouring the evolution of parental effects. By contrast, in regimes of fecundity selection, correlations between phenotype and environment develop more slowly: this is because locally adapted and maladapted parents survive at equal rates (no survival selection), so that parental phenotypes, by themselves, are uninformative about the local environment. However, because locally adapted parents are more fecund, they contribute more offspring to the local patch than maladapted parents. In case these offspring are also likely to inherit the adapted parents' phenotypes (requiring pre-existing inheritance), locally adapted offspring become enriched in the local environment, resulting in a correlation between phenotype and environment, but only in the offspring's generation. Because of this slower build-up of a correlation between phenotype and environment essential to parental effects, fecundity selection is more sensitive to any distortions owing to environmental change than viability selection. Hence, we conclude that viability selection is most conducive to the evolution of parental effects. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Bram Kuijper
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - Rufus A Johnstone
- Behaviour and Evolution Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
3
|
Spatial evolutionary dynamics produce a negative cooperation–population size relationship. Theor Popul Biol 2019; 125:94-101. [DOI: 10.1016/j.tpb.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022]
|
4
|
Mullon C, Lehmann L. Eco-Evolutionary Dynamics in Metacommunities: Ecological Inheritance, Helping within Species, and Harming between Species. Am Nat 2018; 192:664-686. [DOI: 10.1086/700094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Rodrigues AMM. Ecological succession, patch age and the evolution of social behaviour and terminal investment. OIKOS 2018. [DOI: 10.1111/oik.05341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- António M. M. Rodrigues
- Dept of Zoology, Univ. of Cambridge; Downing Street Cambridge CB2 3EJ UK
- Wolfson College; Barton Road Cambridge UK
| |
Collapse
|
6
|
Rodrigues AMM. Demography, life history and the evolution of age-dependent social behaviour. J Evol Biol 2018; 31:1340-1353. [DOI: 10.1111/jeb.13308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/15/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
7
|
Tekwa EW, Nguyen D, Loreau M, Gonzalez A. Defector clustering is linked to cooperation in a pathogenic bacterium. Proc Biol Sci 2018; 284:rspb.2017.2001. [PMID: 29118137 DOI: 10.1098/rspb.2017.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/23/2023] Open
Abstract
Spatial clustering is thought to favour the evolution of cooperation because it puts cooperators in a position to help each other. However, clustering also increases competition. The fate of cooperation may depend on how much cooperators cluster relative to defectors, but these clustering differences have not been the focus of previous models and experiments. By competing siderophore-producing cooperator and defector strains of the opportunistic pathogen Pseudomonas aeruginosa in experimental microhabitats, we found that at the spatial scale of individual interactions, cooperator clustering lowers cooperation, but defector clustering favours cooperation. A theoretical model and individual-based simulations show these counterintuitive effects can arise when competition and cooperation occur at a single resource-determined scale, with population dynamics crucially allowing cooperators and defectors to cluster differently. The results suggest that cooperation relies on the regulation of sufficient defector clustering relative to cooperator clustering, which may be important in bacteria, social amoeba and cancer inhibition.
Collapse
Affiliation(s)
- Edward W Tekwa
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, Quebec, Canada H3A 1B1 .,Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, USA
| | - Dao Nguyen
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada H4A 3J1.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada H4A 3J1
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200 Moulis, France
| | - Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
8
|
Xu S, Van Dyken JD. Microbial expansion-collision dynamics promote cooperation and coexistence on surfaces. Evolution 2017; 72:153-169. [PMID: 29134631 DOI: 10.1111/evo.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Microbes colonizing a surface often experience colony growth dynamics characterized by an initial phase of spatial clonal expansion followed by collision between neighboring colonies to form potentially genetically heterogeneous boundaries. For species with life cycles consisting of repeated surface colonization and dispersal, these spatially explicit "expansion-collision dynamics" generate periodic transitions between two distinct selective regimes, "expansion competition" and "boundary competition," each one favoring a different growth strategy. We hypothesized that this dynamic could promote stable coexistence of expansion- and boundary-competition specialists by generating time-varying, negative frequency-dependent selection that insulates both types from extinction. We tested this experimentally in budding yeast by competing an exoenzyme secreting "cooperator" strain (expansion-competition specialists) against nonsecreting "defectors" (boundary-competition specialists). As predicted, we observed cooperator-defector coexistence or cooperator dominance with expansion-collision dynamics, but only defector dominance otherwise. Also as predicted, the steady-state frequency of cooperators was determined by colonization density (the average initial cell-cell distance) and cost of cooperation. Lattice-based spatial simulations give good qualitative agreement with experiments, supporting our hypothesis that expansion-collision dynamics with costly public goods production is sufficient to generate stable cooperator-defector coexistence. This mechanism may be important for maintaining public-goods cooperation and conflict in microbial pioneer species living on surfaces.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - J David Van Dyken
- Department of Biology, University of Miami, Coral Gables, Florida 33143.,Institute of Theoretical and Mathematical Ecology, University of Miami, Coral Gables, Florida 33143
| |
Collapse
|
9
|
Kuijper B, Johnstone RA. How Sex-Biased Dispersal Affects Sexual Conflict over Care. Am Nat 2017; 189:501-514. [DOI: 10.1086/691330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Koykka C, Wild G. Concessions, lifetime fitness consequences, and the evolution of coalitionary behavior. Behav Ecol 2017. [DOI: 10.1093/beheco/arw126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Rodrigues AMM, Kokko H. Models of social evolution: can we do better to predict 'who helps whom to achieve what'? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150088. [PMID: 26729928 DOI: 10.1098/rstb.2015.0088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking 'who helps whom to achieve what', from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Wolfson College, Barton Road, Cambridge CB3 9BB, UK
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Lion S. Moment equations in spatial evolutionary ecology. J Theor Biol 2016; 405:46-57. [DOI: 10.1016/j.jtbi.2015.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
|
13
|
Eco-evolutionary dynamics of social dilemmas. Theor Popul Biol 2016; 111:28-42. [PMID: 27256794 DOI: 10.1016/j.tpb.2016.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 01/28/2023]
Abstract
Social dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature. Both costs and benefits often depend non-linearly on the number and types of individuals involved-as captured by idioms such as 'too many cooks spoil the broth' where additional contributions are discounted, or 'two heads are better than one' where cooperators synergistically enhance the group benefit. Interaction group sizes may depend on the size of the population and hence on ecological processes. This results in feedback mechanisms between ecological and evolutionary processes, which jointly affect and determine the evolutionary trajectory. Only recently combined eco-evolutionary processes became experimentally tractable in microbial social dilemmas. Here we analyse the evolutionary dynamics of non-linear social dilemmas in settings where the population fluctuates in size and the environment changes over time. In particular, cooperation is often supported and maintained at high densities through ecological fluctuations. Moreover, we find that the combination of the two processes routinely reveals highly complex dynamics, which suggests common occurrence in nature.
Collapse
|
14
|
Legendre F, Whiting MF, Grandcolas P. Phylogenetic analyses of termite post-embryonic sequences illuminate caste and developmental pathway evolution. Evol Dev 2014; 15:146-57. [PMID: 25098639 DOI: 10.1111/ede.12023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Termites are highly eusocial insects with a caste polyphenism (i.e., discontinuous morphological differences between castes) and elaborated behaviors. While the developmental pathways leading to caste occurrence are well-known in many species, the evolutionary origin of these pathways is still obscure. Recent molecular phylogenetic studies suggest multiple independent origins of sterile castes in termites, reviving a 30 years old debate. We demonstrate here that diploid sterile castes ("true" workers) evolved several times independently in this group and that this caste was lost at least once in a lineage with developmentally more flexible workers called pseudergates or "false" workers. We also infer that flexibility in post-embryonic development was acquired multiple times independently during termite evolution. We suggest that focusing on detailed developmental pathways in phylogenetic analyses is essential for elucidating the origin of caste polyphenism in termites.
Collapse
Affiliation(s)
- Frédéric Legendre
- UMR 7205 CNRS, Origine, Structure et Evolution de la Biodiversité, Département Systématique et Evolution, Muséum national d'Histoire naturelle, CP 50, 45, rue Buffon, 75005, Paris, France
| | | | | |
Collapse
|
15
|
Mullon C, Lehmann L. The robustness of the weak selection approximation for the evolution of altruism against strong selection. J Evol Biol 2014; 27:2272-82. [DOI: 10.1111/jeb.12462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
Affiliation(s)
- C. Mullon
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - L. Lehmann
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
16
|
Débarre F, Hauert C, Doebeli M. Social evolution in structured populations. Nat Commun 2014; 5:3409. [DOI: 10.1038/ncomms4409] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/06/2014] [Indexed: 11/09/2022] Open
|
17
|
Abstract
Abstract
Inclusive fitness theory predicts that cannibalism should be more likely to arise if close relatives can be avoided, suggesting that cannibalistic species will possess mechanisms for minimizing predation on kin. Juvenile Miomantis caffra are good candidates for the possession of such traits because; (1) groups of siblings hatch together into the same locale, (2) they are aggressive hunters, and (3) they are strongly cannibalistic. In this study, the possibility of kin recognition or avoidance in M. caffra is investigated by laboratory comparison of cannibalism rates between groups of differing relatedness. In order to examine the likelihood of encounters between early instar siblings, the extent of dispersal away from the ootheca in the days following hatching is also observed. Nymphs did not rapidly disperse after hatching, so the chances of full siblings encountering one another in the wild appear to be high. Despite this, cannibalism was equally high in groups of full siblings and groups of mixed parenthood. We suggest that for M. caffra, a generalist ambush predator, the benefits of indiscriminate aggression may outweigh any inclusive fitness benefits that would be gained from kin discrimination.
Collapse
|
18
|
Co-evolution between sociality and dispersal: The role of synergistic cooperative benefits. J Theor Biol 2012; 312:44-54. [DOI: 10.1016/j.jtbi.2012.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 11/24/2022]
|
19
|
Van Dyken JD, Wade MJ. Origins of altruism diversity II: Runaway coevolution of altruistic strategies via "reciprocal niche construction". Evolution 2012; 66:2498-513. [PMID: 22834748 PMCID: PMC3408633 DOI: 10.1111/j.1558-5646.2012.01629.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, coevolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the coexistence of these two altruism types transforms the negative ecoevolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion "reciprocal niche construction." In the absence of constraints, this process leads to runaway coevolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process.
Collapse
|
20
|
Van Dyken JD, Wade MJ. Origins of altruism diversity I: The diverse ecological roles of altruistic strategies and their evolutionary responses to local competition. Evolution 2012; 66:2484-97. [PMID: 22834747 PMCID: PMC3408632 DOI: 10.1111/j.1558-5646.2012.01630.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nature abounds with a rich variety of altruistic strategies, including public resource enhancement, resource provisioning, communal foraging, alarm calling, and nest defense. Yet, despite their vastly different ecological roles, current theory typically treats diverse altruistic traits as being favored under the same general conditions. Here, we introduce greater ecological realism into social evolution theory and find evidence of at least four distinct modes of altruism. Contrary to existing theory, we find that altruistic traits contributing to "resource-enhancement" (e.g., siderophore production, provisioning, agriculture) and "resource-efficiency" (e.g., pack hunting, communication) are most strongly favored when there is strong local competition. These resource-based modes of helping are "K-strategies" that increase a social group's growth yield, and should characterize species with scarce resources and/or high local crowding caused by low mortality, high fecundity, and/or mortality occurring late in the process of resource-acquisition. The opposite conditions, namely weak local competition (abundant resource, low crowding), favor survival (e.g., nest defense) and fecundity (e.g., nurse workers) altruism, which are "r-strategies" that increase a social group's growth rate. We find that survival altruism is uniquely favored by a novel evolutionary force that we call "sunk cost selection." Sunk cost selection favors helping that prevents resources from being wasted on individuals destined to die before reproduction. Our results contribute to explaining the observed natural diversity of altruistic strategies, reveal the necessary connection between the evolution and the ecology of sociality, and correct the widespread but inaccurate view that local competition uniformly impedes the evolution of altruism.
Collapse
|
21
|
|
22
|
Kuijper B, Johnstone RA. How dispersal influences parent–offspring conflict over investment. Behav Ecol 2012. [DOI: 10.1093/beheco/ars054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Zhang F, Hui C. Eco-evolutionary feedback and the invasion of cooperation in prisoner's dilemma games. PLoS One 2011; 6:e27523. [PMID: 22125615 PMCID: PMC3220694 DOI: 10.1371/journal.pone.0027523] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Unveiling the origin and forms of cooperation in nature poses profound challenges in evolutionary ecology. The prisoner's dilemma game is an important metaphor for studying the evolution of cooperation. We here classified potential mechanisms for cooperation evolution into schemes of frequency- and density-dependent selection, and focused on the density-dependent selection in the ecological prisoner's dilemma games. We found that, although assortative encounter is still the necessary condition in ecological games for cooperation evolution, a harsh environment, indicated by a high mortality, can foster the invasion of cooperation. The Hamilton rule provides a fundamental condition for the evolution of cooperation by ensuring an enhanced relatedness between players in low-density populations. Incorporating ecological dynamics into evolutionary games opens up a much wider window for the evolution of cooperation, and exhibits a variety of complex behaviors of dynamics, such as limit and heteroclinic cycles. An alternative evolutionary, or rather succession, sequence was proposed that cooperation first appears in harsh environments, followed by the invasion of defection, which leads to a common catastrophe. The rise of cooperation (and altruism), thus, could be much easier in the density-dependent ecological games than in the classic frequency-dependent evolutionary games.
Collapse
Affiliation(s)
- Feng Zhang
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa.
| | | |
Collapse
|
24
|
Beckerman AP, Sharp SP, Hatchwell BJ. Predation and kin-structured populations: an empirical perspective on the evolution of cooperation. Behav Ecol 2011. [DOI: 10.1093/beheco/arr131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
ROUSSET F, LION S. Much ado about nothing: Nowak et al.’s charge against inclusive fitness theory. J Evol Biol 2011; 24:1386-92. [DOI: 10.1111/j.1420-9101.2011.02251.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Lion S, Jansen VA, Day T. Evolution in structured populations: beyond the kin versus group debate. Trends Ecol Evol 2011; 26:193-201. [DOI: 10.1016/j.tree.2011.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 02/05/2023]
|