1
|
Oldroyd BP, Yagound B, Allsopp MH, Holmes MJ, Buchmann G, Zayed A, Beekman M. Adaptive, caste-specific changes to recombination rates in a thelytokous honeybee population. Proc Biol Sci 2021; 288:20210729. [PMID: 34102886 PMCID: PMC8187994 DOI: 10.1098/rspb.2021.0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 11/12/2022] Open
Abstract
The ability to clone oneself has clear benefits-no need for mate hunting or dilution of one's genome in offspring. It is therefore unsurprising that some populations of haplo-diploid social insects have evolved thelytokous parthenogenesis-the virgin birth of a female. But thelytokous parthenogenesis has a downside: the loss of heterozygosity (LoH) as a consequence of genetic recombination. LoH in haplo-diploid insects can be highly deleterious because female sex determination often relies on heterozygosity at sex-determining loci. The two female castes of the Cape honeybee, Apis mellifera capensis, differ in their mode of reproduction. While workers always reproduce thelytokously, queens always mate and reproduce sexually. For workers, it is important to reduce the frequency of recombination so as to not produce offspring that are homozygous. Here, we ask whether recombination rates differ between Cape workers and Cape queens that we experimentally manipulated to reproduce thelytokously. We tested our hypothesis that Cape workers have evolved mechanisms that restrain genetic recombination, whereas queens have no need for such mechanisms because they reproduce sexually. Using a combination of microsatellite genotyping and whole-genome sequencing we find that a reduction in recombination is confined to workers only.
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Michael H. Allsopp
- Michael H Allsopp, Honeybee Research Section, ARC-Plant Protection Research Institute, Stellenbosch 7600, South Africa
| | - Michael J. Holmes
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Gabrielle Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Amro Zayed
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
2
|
Chapman NC, Dos Santos Cocenza R, Blanchard B, Nguyen LM, Lim J, Buchmann G, Oldroyd BP. Genetic Diversity in the Progeny of Commercial Australian Queen Honey Bees (Hymenoptera: Apidae) Produced in Autumn and Early Spring. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:33-39. [PMID: 30285107 DOI: 10.1093/jee/toy308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] queens are polyandrous, mating with an average 12 males (drones). Polyandry has been shown to confer benefits to queens and the colonies they head, including avoidance of inviable brood that can arise via sex locus homozygosity, increased resilience to pests and pathogens, and increased survival and productivity, leading to improved colony-level fitness. Queens with an effective mating frequency (ke) greater than 7 are considered adequately mated, whereas queens that fall below this threshold head colonies that have increased likelihood of failure and may be less productive for beekeepers. We determined ke in queens produced in early Spring and Autumn by five Australian commercial queen producers to determine whether the queens they produced were suitably mated. Drone populations are low at these times of year, and therefore, there is an increased risk that queens would fall below the ke > 7 threshold. We found that 33.8% of Autumn-produced queens did not meet the threshold, whereas 93.8% of Spring queens were adequately mated. The number of colonies contributing drones to the mating pool was similarly high in both seasons, suggesting that although many colonies have drones, their numbers may be decreased in Autumn and management strategies may be required to boost drone numbers at this time. Finally, queens had similar levels of homozygosity to workers, and inbreeding coefficients were very low, suggesting that inbreeding is not a problem.
Collapse
Affiliation(s)
- Nadine C Chapman
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Rani Dos Santos Cocenza
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Benjamin Blanchard
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Lucy M Nguyen
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Julianne Lim
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Gabriele Buchmann
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| | - Benjamin P Oldroyd
- Ecology, Evolution and Environment, Behaviour and Genetics of Social Insects Laboratory, University of Sydney, School of Life and Environmental Science, Macleay Building, Sydney, NSW
| |
Collapse
|
3
|
Smith NMA, Wade C, Allsopp MH, Harpur BA, Zayed A, Rose SA, Engelstädter J, Chapman NC, Yagound B, Oldroyd BP. Strikingly high levels of heterozygosity despite 20 years of inbreeding in a clonal honey bee. J Evol Biol 2018; 32:144-152. [DOI: 10.1111/jeb.13397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Nicholas M. A. Smith
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| | - Claire Wade
- Faculty of Veterinary Science The University of Sydney Sydney New South Wales Australia
| | - Michael H. Allsopp
- Honey Bee Research Section ARC‐Plant Protection Research Institute Stellenbosch South Africa
| | - Brock A. Harpur
- Department of Biology Faculty of Science York University Toronto Ontario Canada
| | - Amro Zayed
- Department of Biology Faculty of Science York University Toronto Ontario Canada
| | - Stephen A. Rose
- Department of Biology Faculty of Science York University Toronto Ontario Canada
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Nadine C. Chapman
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| | - Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| | - Benjamin P. Oldroyd
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
4
|
Aamidor SE, Yagound B, Ronai I, Oldroyd BP. Sex mosaics in the honeybee: how haplodiploidy makes possible the evolution of novel forms of reproduction in social Hymenoptera. Biol Lett 2018; 14:rsbl.2018.0670. [PMID: 30487261 DOI: 10.1098/rsbl.2018.0670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Hymenoptera are haplodiploid: females arise from fertilized, diploid eggs, while males arise from unfertilized, haploid eggs. The cytogenetic mechanisms underlying haplodiploidy enable remarkable phenomena including female cloning, male cloning and gynandromorphy (sex mosaics). We collected 11 newly emerged putative gynandromorph honeybees from a single colony, assessed the sex of various tissues morphologically and determined the genetic origin (maternal or paternal) of each tissue by genotyping. Ten bees were gynandromorphs with one to three distinct paternal origins. Remarkably, one bee carried no maternal alleles. This bee had female organs throughout, and arose from the fusion of two sperm nuclei. This is the first reported case in the Hymenoptera of sperm fusion resulting in a female, emphasizing the flexibility for social insect reproduction and potentially novel colony-level social structures.
Collapse
Affiliation(s)
- Sarah E Aamidor
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, University of Sydney, Macleay Building A12, New South Wales 2006, Australia
| | - Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, University of Sydney, Macleay Building A12, New South Wales 2006, Australia
| | - Isobel Ronai
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, University of Sydney, Macleay Building A12, New South Wales 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, University of Sydney, Macleay Building A12, New South Wales 2006, Australia
| |
Collapse
|
5
|
Okosun OO, Pirk CWW, Crewe RM, Yusuf AA. Glandular sources of pheromones used to control host workers (Apis mellifera scutellata) by socially parasitic workers of Apis mellifera capensis. JOURNAL OF INSECT PHYSIOLOGY 2017; 102:42-49. [PMID: 28889990 DOI: 10.1016/j.jinsphys.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Pheromonal control by the honey bee queen is achieved through the use of secretions from diverse glandular sources, but the use of pheromones from a variety of glandular sources by reproductively dominant workers, has not previously been explored. Using the social parasite, Apis mellifera capensis clonal worker we studied the diversity of glandular sources used for pheromonal control of reproductively subordinate A. m. scutellata workers. To determine whether pheromones from different glandular sources are used by reproductively active workers to achieve dominance and evaluate the degree of pheromonal competition between workers of the two sub-species, we housed groups of workers of the two sub-species together in cages and analysed mandibular and tergal gland secretions as well as, ovarian activation status of each worker after 21days. The results showed that A. m. capensis invasive clones used both mandibular and tergal gland secretions to achieve reproductive dominance and suppress ovarian activation in their A. m. scutellata host workers. The reproductively dominant workers (false queens) produced more queen-like pheromones and inhibited ovarian activation in subordinate A. m. scutellata workers. These results show that tergal gland pheromones working in synergy with pheromones from other glands allow individual workers (false queens) to establish reproductive dominance within these social groups and to act in a manner similar to that of queens. Thus suggesting that, the evolution of reproductively dominant individuals (queens or false queens) and subordinate individuals (workers) in social insects like the honey bee is the result of a complex interplay of pheromonal signals from different exocrine glands.
Collapse
Affiliation(s)
- Olabimpe O Okosun
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Robin M Crewe
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| |
Collapse
|
6
|
Engelstädter J. Asexual but Not Clonal: Evolutionary Processes in Automictic Populations. Genetics 2017; 206:993-1009. [PMID: 28381586 PMCID: PMC5499200 DOI: 10.1534/genetics.116.196873] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 11/18/2022] Open
Abstract
Many parthenogenetically reproducing animals produce offspring not clonally but through different mechanisms collectively referred to as automixis. Here, meiosis proceeds normally but is followed by a fusion of meiotic products that restores diploidy. This mechanism typically leads to a reduction in heterozygosity among the offspring compared to the mother. Following a derivation of the rate at which heterozygosity is lost at one and two loci, depending on the number of crossovers between loci and centromere, a number of models are developed to gain a better understanding of basic evolutionary processes in automictic populations. Analytical results are obtained for the expected neutral genetic variation, effective population size, mutation-selection balance, selection with overdominance, the spread of beneficial mutations, and selection on crossover rates. These results are complemented by numerical investigations elucidating how associative overdominance (two off-phase deleterious mutations at linked loci behaving like an overdominant locus) can in some cases maintain heterozygosity for prolonged times, and how clonal interference affects adaptation in automictic populations. These results suggest that although automictic populations are expected to suffer from the lack of gene shuffling with other individuals, they are nevertheless, in some respects, superior to both clonal and outbreeding sexual populations in the way they respond to beneficial and deleterious mutations. Implications for related genetic systems such as intratetrad mating, clonal reproduction, selfing, as well as different forms of mixed sexual and automictic reproduction are discussed.
Collapse
Affiliation(s)
- Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
7
|
Chapman NC, Harpur BA, Lim J, Rinderer TE, Allsopp MH, Zayed A, Oldroyd BP. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry. Mol Ecol Resour 2015; 15:1346-55. [PMID: 25846634 DOI: 10.1111/1755-0998.12411] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.
Collapse
Affiliation(s)
- Nadine C Chapman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia
| | - Brock A Harpur
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3
| | - Julianne Lim
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas E Rinderer
- Honey-bee Breeding Genetics and Physiology Research Laboratory, USDA-ARS, 1157 Ben Hur Road, Baton Rouge, LA, 70820, USA
| | - Michael H Allsopp
- ARC-Plant Protection Research Institute, Stellenbosch, 7599, South Africa
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
8
|
Chapman NC, Beekman M, Allsopp MH, Rinderer TE, Lim J, Oxley PR, Oldroyd BP. Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity (Edinb) 2015; 114:584-92. [PMID: 25585920 DOI: 10.1038/hdy.2014.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 01/31/2023] Open
Abstract
Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 p deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.
Collapse
Affiliation(s)
- N C Chapman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M H Allsopp
- ARC-Plant Protection Research Institute, Stellenbosch, South Africa
| | - T E Rinderer
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, USDA-ARS, Baton Rouge, LA, USA
| | - J Lim
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - P R Oxley
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| |
Collapse
|
9
|
Remnant EJ, Koetz A, Tan K, Hinson E, Beekman M, Oldroyd BP. Reproductive interference between honeybee species in artificial sympatry. Mol Ecol 2014; 23:1096-107. [DOI: 10.1111/mec.12669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/05/2014] [Accepted: 01/10/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Emily J. Remnant
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences A12; University of Sydney; Sydney NSW 2006 Australia
| | - Anna Koetz
- Biosecurity Queensland; Department of Agriculture; Fisheries and Forestry; PO Box 652 Cairns QLD 4870 Australia
| | - Ken Tan
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Science; Kunming Yunnan Province 650223 China
| | - Eloise Hinson
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences A12; University of Sydney; Sydney NSW 2006 Australia
| | - Madeleine Beekman
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences A12; University of Sydney; Sydney NSW 2006 Australia
| | - Benjamin P. Oldroyd
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences A12; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
10
|
Vorburger C. Thelytoky and sex determination in the hymenoptera: mutual constraints. Sex Dev 2013; 8:50-8. [PMID: 24335186 DOI: 10.1159/000356508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Hymenoptera show a high propensity for transitions from arrhenotokous reproduction (diploid females develop from fertilized eggs, haploid males from unfertilized eggs) to thelytokous reproduction (diploid females develop from unfertilized eggs). However, the evolution of thelytoky is frequently constrained by the sex determination system. Under the ancestral system, complementary sex determination (CSD), the constraint results from the production of diploid males by thelytokous females. The magnitude of this constraint depends on the cytological mechanism of thelytoky, determining the rate at which thelytokous lines lose heterozygosity and on whether a single locus or multiple loci are involved in CSD. In this review, it is discussed how diploid male production in the case of CSD or other constraints in the case of alternative sex determination systems may impede transitions to thelytoky, but it is also shown that under particular (and presumably rare) circumstances the production of diploid males will promote rather than hamper the evolution of thelytoky. Furthermore, constraints between the evolution of thelytoky and sex determination may be mutual, because once thelytoky has evolved, it can impact on sex determination. Finally, researchers are encouraged to exploit the frequent occurrence of thelytoky as an opportunity to learn more about the mechanisms of sex determination in the Hymenoptera.
Collapse
Affiliation(s)
- C Vorburger
- Institute of Integrative Biology, ETH Zürich, Zürich, and EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
11
|
Goudie F, Allsopp MH, Oldroyd BP. Selection on overdominant genes maintains heterozygosity along multiple chromosomes in a clonal lineage of honey bee. Evolution 2013; 68:125-36. [PMID: 24372599 DOI: 10.1111/evo.12231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
Correlations between fitness and genome-wide heterozygosity (heterozygosity-fitness correlations, HFCs) have been reported across a wide range of taxa. The genetic basis of these correlations is controversial: do they arise from genome-wide inbreeding ("general effects") or the "local effects" of overdominant loci acting in linkage disequilibrium with neutral loci? In an asexual thelytokous lineage of the Cape honey bee (Apis mellifera capensis), the effects of inbreeding have been homogenized across the population, making this an ideal system in which to detect overdominant loci, and to make inferences about the importance of overdominance on HFCs in general. Here we investigate the pattern of zygosity along two chromosomes in 42 workers from the clonal Cape honey bee population. On chromosome III (which contains the sex-locus, a gene that is homozygous-lethal) and chromosome IV we show that the pattern of zygosity is characterized by loss of heterozygosity in short regions followed by the telomeric restoration of heterozygosity. We infer that at least four selectively overdominant genes maintain heterozygosity on chromosome III and three on chromosome IV via local effects acting on neutral markers in linkage disequilibrium. We conclude that heterozygote advantage and local effects may be more common and evolutionarily significant than is generally appreciated.
Collapse
Affiliation(s)
- Frances Goudie
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
12
|
|
13
|
Mateo Leach I, Ferber S, van de Zande L, Beukeboom LW. Genetic variability of arrhenotokous and thelytokous Venturia canescens (Hymenoptera). Genetica 2012; 140:53-63. [PMID: 22729870 PMCID: PMC3386485 DOI: 10.1007/s10709-012-9657-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
The ichneumonid wasp Venturia canescens (Hymenoptera) has been studied extensively for foraging behaviour and population dynamics of sexually (arrhenotokous) and parthenogenetically (thelytokous) reproducing individuals. Here we report the development of a set of microsatellite markers for V.canescens and use them to show that arrhenotokous individuals have more genetic variability than thelytokous ones, which are even homozygous for all tested loci. Crosses between arrhenotokous individuals suggested one marker, Vcan071, to be linked with the Complementary Sex Determiner (CSD) locus and one, Vcan109, with the Virus Like Protein (vlp-p40) locus. The genome size of V. canescens was estimated to be 274–279 Mb. We discuss how both reproductive modes can give rise to the observed genetic variability and how the new markers can be used for future genetic studies of V. canescens.
Collapse
Affiliation(s)
- Irene Mateo Leach
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Goudie F, Allsopp MH, Beekman M, Oxley PR, Lim J, Oldroyd BP. Maintenance and loss of heterozygosity in a thelytokous lineage of honey bees (Apis mellifera capensis). Evolution 2012; 66:1897-906. [PMID: 22671554 DOI: 10.1111/j.1558-5646.2011.01543.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.
Collapse
Affiliation(s)
- Frances Goudie
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Wenseleers T, Van Oystaeyen A. Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. Bioessays 2011; 33:927-37. [PMID: 21997278 DOI: 10.1002/bies.201100096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The study of alternative genetic systems and mixed modes of reproduction, whereby sexual and asexual reproduction is combined within the same lifecycle, is of fundamental importance as they may shed light on classical evolutionary issues, such as the paradox of sex. Recently, several such cases were discovered in social insects. A closer examination of these systems has revealed many amazing facts, including the mixed use of asexual and sexual reproduction for the production of new queens and workers, males that can clone themselves and the routine use of incest without deleterious genetic consequences. In addition, in several species, remarkable cases of asexually reproducing socially parasitic worker lineages have been discovered. The study of these unusual systems promises to provide insight into many basic evolutionary questions, including the maintenance of sex, the expression of sexual conflict and kin conflict and the evolution of cheating in asexual lineages.
Collapse
Affiliation(s)
- Tom Wenseleers
- Laboratory of Entomology, Department of Biology, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|