1
|
Dukas R, Bailey NW. Evolutionary biology of social expertise. Biol Rev Camb Philos Soc 2024; 99:2176-2189. [PMID: 38946116 DOI: 10.1111/brv.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
There is increasing evidence that competent handling of social interactions among conspecifics has positive effects on individual fitness. While individual variation in social competence has been appreciated, the role of long-term experience in the acquisition of superior social skills has received less attention. With the goal of promoting further research, we integrate knowledge across disciplines to assess social expertise, defined as the characteristics, skills and knowledge allowing individuals with extensive social experience to perform significantly better than novices on a given social task. We focus on three categories of social behaviour. First, animals can gain from adjusting social behaviour towards individually recognised conspecifics that they interact with on a regular basis. For example, there is evidence that some territorial animals individually recognise their neighbours and modify their social interactions based on experience with each neighbour. Similarly, individuals in group-living species learn to associate with specific group members based on their expected benefits from such social connections. Individuals have also been found to devote considerable time and effort to learning about the spatial location and timing of sexual receptivity of opposite-sex neighbours to optimise reproduction. Second, signallers can enhance their signals, and receivers can refine their response to signals with experience. In many birds and insects, individuals can produce more consistent signals with experience, and females across a wide taxonomic range can adaptively adjust mating preferences after perceiving distinct male signals. Third, in many species, individuals that succeed in reproducing encounter the novel, complex task of caring for vulnerable offspring. Evidence from a few species of mammals indicates that mothers improve in providing for and protecting their young over successive broods. Finally, for social expertise to evolve, heritable variation in social expertise has to be positively associated with fitness. Heritable variation has been shown in traits contributing to social expertise including social attention, empathy, individual recognition and maternal care. There are currently limited data associating social expertise with fitness, most likely owing to sparse research effort. Exceptions include maternal care, signal refinement, and familiarity with neighbours and group members. Overall, there is evidence that individuals in many species keep refining their social skills with experience throughout life. Hence we propose promising lines of research that can quantify more thoroughly the development of social expertise and its effects on fitness.
Collapse
Affiliation(s)
- Reuven Dukas
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| |
Collapse
|
2
|
Ferveur JF, Cortot J, Moussian B, Everaerts C. Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines. J Chem Ecol 2024; 50:536-548. [PMID: 39186176 DOI: 10.1007/s10886-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France.
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| |
Collapse
|
3
|
Wice EW, Saltz JB. Indirect genetic effects for social network structure in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220075. [PMID: 36802774 PMCID: PMC9939268 DOI: 10.1098/rstb.2022.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/16/2022] [Indexed: 02/21/2023] Open
Abstract
The position an individual holds in a social network is dependent on both its direct and indirect social interactions. Because social network position is dependent on the actions and interactions of conspecifics, it is likely that the genotypic composition of individuals within a social group impacts individuals' network positions. However, we know very little about whether social network positions have a genetic basis, and even less about how the genotypic makeup of a social group impacts network positions and structure. With ample evidence indicating that network positions influence various fitness metrics, studying how direct and indirect genetic effects shape network positions is crucial for furthering our understanding of how the social environment can respond to selection and evolve. Using replicate genotypes of Drosophila melanogaster fruit flies, we created social groups that varied in their genotypic makeup. Social groups were videoed, and networks were generated using motion-tracking software. We found that both an individual's own genotype and the genotypes of conspecifics in its social group affect its position within a social network. These findings provide an early example of how indirect genetic effects and social network theory can be linked, and shed new light on how quantitative genetic variation shapes the structure of social groups. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Eric Wesley Wice
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
4
|
Scott AM, Dworkin I, Dukas R. Evolution of sociability by artificial selection. Evolution 2021; 76:541-553. [PMID: 34605553 DOI: 10.1111/evo.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
There has been extensive research on the ecology and evolution of social life in animals that live in groups. Less attention, however, has been devoted to apparently solitary species, even though recent research indicates that they also possess complex social behaviors. To address this knowledge gap, we artificially selected on sociability, defined as the tendency to engage in nonaggressive activities with others, in fruit flies. Our goal was to quantify the factors that determine the level of sociability and the traits correlated with this feature. After 25 generations of selection, the high-sociability lineages showed sociability scores about 50% higher than did the low-sociability lineages. Experiments using the evolved lineages indicated that there were no differences in mating success between flies from the low and high lineages. Both males and females from the low lineages, however, were more aggressive than males and females from the high lineages. Finally, the evolved lineages maintained their sociability scores after 10 generations of relaxed selection, suggesting no costs to maintaining low and high sociability, at least under our settings. Sociability is a complex trait, which we currently assess through genomic work on the evolved lineages.
Collapse
Affiliation(s)
- Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Girardeau AR, Foley BR, Saltz JB. Comparing single- and mixed-species groups in fruit flies: differences in group dynamics, but not group formation. J Hered 2021; 113:16-25. [PMID: 34453172 DOI: 10.1093/jhered/esab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
Mixed-species groups describe active associations among individuals of 2 or more species at the same trophic level. Mixed-species groups are important to key ecological and evolutionary processes such as competition and predation, and research that ignores the presence of other species risks ignoring a key aspect of the environment in which social behavior is expressed and selected. Despite the defining emphasis of active formation for mixed-species groups, surprisingly little is known about the mechanisms by which mixed-species groups form. Furthermore, insects have been almost completely ignored in the study of mixed-species groups, despite their taxonomic importance and relative prominence in the study of single-species groups. Here, we measured group formation processes in Drosophila melanogaster and its sister species, Drosophila simulans. Each species was studied alone, and together, and one population of D. melanogaster was also studied both alone and with another, phenotypically distinct D. melanogaster population, in a nested-factorial design. This approach differs from typical methods of studying mixed-species groups in that we could quantitatively compare group formation between single-population, mixed-population, and mixed-species treatments. Surprisingly, we found no differences between treatments in the number, size, or composition of groups that formed, suggesting that single- and mixed-species groups form through similar mechanisms of active attraction. However, we found that mixed-species groups showed elevated interspecies male-male interactions, relative to interpopulation or intergenotype interactions in single-species groups. Our findings expand the conceptual and taxonomic study of mixed-species groups while raising new questions about the mechanisms of group formation broadly.
Collapse
Affiliation(s)
| | - Brad R Foley
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Fokkema RW, Korsten P, Schmoll T, Wilson AJ. Social competition as a driver of phenotype-environment correlations: implications for ecology and evolution. Biol Rev Camb Philos Soc 2021; 96:2561-2572. [PMID: 34145714 PMCID: PMC9290562 DOI: 10.1111/brv.12768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
While it is universally recognised that environmental factors can cause phenotypic trait variation via phenotypic plasticity, the extent to which causal processes operate in the reverse direction has received less consideration. In fact individuals are often active agents in determining the environments, and hence the selective regimes, they experience. There are several important mechanisms by which this can occur, including habitat selection and niche construction, that are expected to result in phenotype–environment correlations (i.e. non‐random assortment of phenotypes across heterogeneous environments). Here we highlight an additional mechanism – intraspecific competition for preferred environments – that may be widespread, and has implications for phenotypic evolution that are currently underappreciated. Under this mechanism, variation among individuals in traits determining their competitive ability leads to phenotype–environment correlation; more competitive phenotypes are able to acquire better patches. Based on a concise review of the empirical evidence we argue that competition‐induced phenotype–environment correlations are likely to be common in natural populations before highlighting the major implications of this for studies of natural selection and microevolution. We focus particularly on two central issues. First, competition‐induced phenotype–environment correlation leads to the expectation that positive feedback loops will amplify phenotypic and fitness variation among competing individuals. As a result of being able to acquire a better environment, winners gain more resources and even better phenotypes – at the expense of losers. The distinction between individual quality and environmental quality that is commonly made by researchers in evolutionary ecology thus becomes untenable. Second, if differences among individuals in competitive ability are underpinned by heritable traits, competition results in both genotype–environment correlations and an expectation of indirect genetic effects (IGEs) on resource‐dependent life‐history traits. Theory tells us that these IGEs will act as (partial) constraints, reducing the amount of genetic variance available to facilitate evolutionary adaptation. Failure to recognise this will lead to systematic overestimation of the adaptive potential of populations. To understand the importance of these issues for ecological and evolutionary processes in natural populations we therefore need to identify and quantify competition‐induced phenotype–environment correlations in our study systems. We conclude that both fundamental and applied research will benefit from an improved understanding of when and how social competition causes non‐random distribution of phenotypes, and genotypes, across heterogeneous environments.
Collapse
Affiliation(s)
- Rienk W Fokkema
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.,Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, Cornwall, TR10 9FE, United Kingdom
| |
Collapse
|
7
|
Siva-Jothy JA, Vale PF. Dissecting genetic and sex-specific sources of host heterogeneity in pathogen shedding and spread. PLoS Pathog 2021; 17:e1009196. [PMID: 33465160 PMCID: PMC7846003 DOI: 10.1371/journal.ppat.1009196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Host heterogeneity in disease transmission is widespread but precisely how different host traits drive this heterogeneity remains poorly understood. Part of the difficulty in linking individual variation to population-scale outcomes is that individual hosts can differ on multiple behavioral, physiological and immunological axes, which will together impact their transmission potential. Moreover, we lack well-characterized, empirical systems that enable the quantification of individual variation in key host traits, while also characterizing genetic or sex-based sources of such variation. Here we used Drosophila melanogaster and Drosophila C Virus as a host-pathogen model system to dissect the genetic and sex-specific sources of variation in multiple host traits that are central to pathogen transmission. Our findings show complex interactions between genetic background, sex, and female mating status accounting for a substantial proportion of variance in lifespan following infection, viral load, virus shedding, and viral load at death. Two notable findings include the interaction between genetic background and sex accounting for nearly 20% of the variance in viral load, and genetic background alone accounting for ~10% of the variance in viral shedding and in lifespan following infection. To understand how variation in these traits could generate heterogeneity in individual pathogen transmission potential, we combined measures of lifespan following infection, virus shedding, and previously published data on fly social aggregation. We found that the interaction between genetic background and sex explained ~12% of the variance in individual transmission potential. Our results highlight the importance of characterising the sources of variation in multiple host traits to understand the drivers of heterogeneity in disease transmission.
Collapse
Affiliation(s)
- Jonathon A. Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Abstract
The past 2 decades have seen fruit flies being widely adopted for research on social behavior and aggression. This fruitful research, however, has not been well tied to fruit flies' natural history. To address this knowledge gap, I conducted a field study. My goal was to inform future research conducted in artificial surroundings, and to inspire new investigations that can rely more heavily on fruit flies' actual natural behavior. My two main novel findings were first, that flies in the field showed significant sociability, as they formed social groups rather than dispersed randomly among fruits of similar quality. Second, males showed fair levels of aggression towards each other as indicated by a lunging rate of 17 per hour, and lower rates of wing threat and boxing. Courtship was the most prominent activity on fruits, with females rejecting almost all males' advances. This resulted in an estimated mating rate of 0.6 per female per day. Flies showed a striking peak of activity early in the mornings, even at cold temperatures, followed by inactivity for much of the day and night. Flies, however, handled well high temperatures approaching 40 °C by hiding away from fruit and concentrating activity in the cooler, early mornings. My field work highlights a few promising lines of future research informed by fruit flies' natural history. Most importantly, we do not understand the intriguing dynamics that generate significant sociability despite frequent aggressive interactions on fruits. Males' responses to female rejection signals varied widely, perhaps because the signals differed in information content perceived by flies but not humans. Finally, flies tolerated cold early mornings perhaps owing to fitness benefits associated with increased mating and feeding opportunities at this time. Flies were adept at handling very high temperatures under the natural daily temperature fluctuations and availability of shelters, and this can inform more realistic research on the effects of global warming on animals in their natural settings.
Collapse
Affiliation(s)
- Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
9
|
Tolvanen J, Kivelä SM, Doligez B, Morinay J, Gustafsson L, Bijma P, Pakanen VM, Forsman JT. Quantitative genetics of the use of conspecific and heterospecific social cues for breeding site choice. Evolution 2020; 74:2332-2347. [PMID: 32725635 PMCID: PMC7589285 DOI: 10.1111/evo.14071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2020] [Accepted: 07/23/2020] [Indexed: 12/03/2022]
Abstract
Social information use for decision‐making is common and affects ecological and evolutionary processes, including social aggregation, species coexistence, and cultural evolution. Despite increasing ecological knowledge on social information use, very little is known about its genetic basis and therefore its evolutionary potential. Genetic variation in a trait affecting an individual's social and nonsocial environment may have important implications for population dynamics, interspecific interactions, and, for expression of other, environmentally plastic traits. We estimated repeatability, additive genetic variance, and heritability of the use of conspecific and heterospecific social cues (abundance and breeding success) for breeding site choice in a population of wild collared flycatchers Ficedula albicollis. Repeatability was found for two social cues: previous year conspecific breeding success and previous year heterospecific abundance. Yet, additive genetic variances for these two social cues, and thus heritabilities, were low. This suggests that most of the phenotypic variation in the use of social cues and resulting conspecific and heterospecific social environment experienced by individuals in this population stems from phenotypic plasticity. Given the important role of social information use on ecological and evolutionary processes, more studies on genetic versus environmental determinism of social information use are needed.
Collapse
Affiliation(s)
- Jere Tolvanen
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Sami M Kivelä
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland.,Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51014, Estonia.,Current Address: Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Blandine Doligez
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon - Université Claude Bernard Lyon 1, Villeurbanne, 69622, France
| | - Jennifer Morinay
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université de Lyon - Université Claude Bernard Lyon 1, Villeurbanne, 69622, France.,Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, SE-75236, Sweden
| | - Lars Gustafsson
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, SE-75236, Sweden
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University, Wageningen, 6700AH, The Netherlands
| | - Veli-Matti Pakanen
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-40530, Sweden.,Current Address: Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Jukka T Forsman
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland.,Current Address: Natural Resources Institute Finland, University of Oulu, Oulu, 90014, Finland
| |
Collapse
|
10
|
Bell AM. Individual variation and the challenge hypothesis. Horm Behav 2020; 123:104549. [PMID: 31247185 PMCID: PMC6980443 DOI: 10.1016/j.yhbeh.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
In this paper I discuss how the challenge hypothesis (Wingfield et al., 1990) influenced the development of ideas about animal personality, and describe particularly promising areas for future study at the intersection of these two topics. I argue that the challenge hypothesis influenced the study of animal personality in at least three specific ways. First, the challenge hypothesis drew attention to the ways in which the environment experienced by an organism - including the social environment - can influence biological processes internal to the organism, e.g. changes to physiology, gene expression, neuroendocrine state and epigenetic modifications. That is, the challenge hypothesis illustrated the bidirectional, dynamic relationship between hormones and (social) environments, thereby helping us to understand how behavioral variation among individuals can emerge over time. Because the paper was inspired by data collected on free living animals in natural populations, it drew behavioral ecologists' attention to this phenomenon. Second, the challenge hypothesis highlighted what became a paradigmatic example of a hormonal mechanism for a behavioral spillover, i.e. testosterone's pleiotropic effects on both territorial aggression and parental care causes aggression to "spillover" to influence parenting behavior, thereby limiting behavioral plasticity. Third, the challenge hypothesis contributed to what is now a cottage industry examining individual differences in hormone titres and their relationship with behavioral variation. I argue that one particularly promising future research direction in this area is to consider the active role of behavior and behavioral types in eliciting social interactions, including territorial challenges.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Program in Ecology, Evolution and Conservation, Neuroscience Program, University of Illinois, Urbana Champaign, United States of America.
| |
Collapse
|
11
|
Jaffe A, Burns MP, Saltz JB. Genotype-by-genotype epistasis for exploratory behaviour in D. simulans. Proc Biol Sci 2020; 287:20200057. [PMID: 32517624 DOI: 10.1098/rspb.2020.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Social interactions can influence the expression and underlying genetic basis of many traits. Yet, empirical investigations of indirect genetic effects (IGEs) and genotype-by-genotype epistasis-quantitative genetics parameters representing the role of genetic variation in a focal individual and its interacting partners in producing the observed trait values-are still scarce. While it is commonly observed that an individual's traits are influenced by the traits of interacting conspecifics, representing social plasticity, studying this social plasticity and its quantitative-genetic basis is notoriously challenging. These challenges are compounded when individuals interact in groups, rather than (simpler) dyads. Here, we investigate the genetic architecture of social plasticity for exploratory behaviour, one of the most intensively studied behaviours in recent decades. Using genotypes of Drosophila simulans, we measured genotypes both alone, and in social groups representing a mix of two genotypes. We found that females adjusted their exploratory behaviour based on the behaviour of others in the group, representing social plasticity. However, the direction of this plasticity depended on the identity of group members: focal individuals were more likely to emerge from a refuge if group members who were the same genotype as the focal remained inside for longer. By contrast, focal individuals were less likely to emerge from a refuge if partner-genotype group members remained inside for longer. Exploratory behaviour also depended on the identities of both genotypes that composed the group. Together, these findings demonstrate genotype-by-genotype epistasis for exploratory behaviour both within and among groups.
Collapse
Affiliation(s)
- Allison Jaffe
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Madeline P Burns
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Julia B Saltz
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
12
|
Geiger AP, Saltz JB. Strong and weak cross‐sex correlations govern the quantitative‐genetic architecture of social group choice in
Drosophila melanogaster. Evolution 2019; 74:145-155. [DOI: 10.1111/evo.13887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Adam P. Geiger
- Rice University 6100 Main Street Houston TX 77005
- Present address: Facebook 300 W 6th St (Lavaca) Austin TX 78701
| | | |
Collapse
|
13
|
Siva-Jothy JA, Vale PF. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol Lett 2019; 15:20190344. [PMID: 31530113 DOI: 10.1098/rsbl.2019.0344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Host behavioural changes following infection are common and could be important determinants of host behavioural competence to transmit pathogens. Identifying potential sources of variation in sickness behaviours is therefore central to our understanding of disease transmission. Here, we test how group social aggregation and individual locomotor activity vary between different genotypes of male and female fruit flies (Drosophila melanogaster) following septic infection with Drosophila C virus (DCV). We find genetic-based variation in both locomotor activity and social aggregation, but we did not detect an effect of DCV infection on fly activity or sleep patterns within the initial days following infection. However, DCV infection caused sex-specific effects on social aggregation, as male flies in most genetic backgrounds increased the distance to their nearest neighbour when infected. We discuss possible causes for these differences in the context of individual variation in immunity and their potential consequences for disease transmission.
Collapse
Affiliation(s)
- Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
14
|
|
15
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Saltz JB. Gene–Environment Correlation in Humans: Lessons from Psychology for Quantitative Genetics. J Hered 2019; 110:455-466. [DOI: 10.1093/jhered/esz027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/17/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Evolutionary biologists have long been aware that the effects of genes can reach beyond the boundary of the individual, that is, the phenotypic effects of genes can alter the environment. Yet, we rarely apply a quantitative genetics approach to understand the causes and consequences of genetic variation in the ways that individuals choose and manipulate their environments, particularly in wild populations. Here, I aim to stimulate research in this area by reviewing empirical examples of such processes from the psychology literature. Indeed, psychology researchers have been actively investigating genetic variation in the environments that individuals experience—a phenomenon termed “gene–environment correlation” (rGE)—since the 1970s. rGE emerges from genetic variation in individuals’ behavior and personality traits, which in turn affects the environments that they experience. I highlight concepts and examples from this literature, emphasizing the relevance to quantitative geneticists working on wild, nonhuman organisms. I point out fruitful areas of crossover between these disciplines, including how quantitative geneticists can test ideas about rGE in wild populations.
Collapse
|
17
|
Briley DA, Livengood J, Derringer J, Tucker-Drob EM, Fraley RC, Roberts BW. Interpreting Behavior Genetic Models: Seven Developmental Processes to Understand. Behav Genet 2019; 49:196-210. [PMID: 30467668 PMCID: PMC6904232 DOI: 10.1007/s10519-018-9939-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 11/16/2018] [Indexed: 01/18/2023]
Abstract
Behavior genetic findings figure in debates ranging from urgent public policy matters to perennial questions about the nature of human agency. Despite a common set of methodological tools, behavior genetic studies approach scientific questions with potentially divergent goals. Some studies may be interested in identifying a complete model of how individual differences come to be (e.g., identifying causal pathways among genotypes, environments, and phenotypes across development). Other studies place primary importance on developing models with predictive utility, in which case understanding of underlying causal processes is not necessarily required. Although certainly not mutually exclusive, these two goals often represent tradeoffs in terms of costs and benefits associated with various methodological approaches. In particular, given that most empirical behavior genetic research assumes that variance can be neatly decomposed into independent genetic and environmental components, violations of model assumptions have different consequences for interpretation, depending on the particular goals. Developmental behavior genetic theories postulate complex transactions between genetic variation and environmental experiences over time, meaning assumptions are routinely violated. Here, we consider two primary questions: (1) How might the simultaneous operation of several mechanisms of gene-environment (GE)-interplay affect behavioral genetic model estimates? (2) At what level of GE-interplay does the 'gloomy prospect' of unsystematic and non-replicable genetic associations with a phenotype become an unavoidable certainty?
Collapse
Affiliation(s)
- Daniel A Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA.
| | - Jonathan Livengood
- Department of Philosophy, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jaime Derringer
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA
| | - Elliot M Tucker-Drob
- Department of Psychology and Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - R Chris Fraley
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA
| | - Brent W Roberts
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA
| |
Collapse
|
18
|
Sueur C, Romano V, Sosa S, Puga-Gonzalez I. Mechanisms of network evolution: a focus on socioecological factors, intermediary mechanisms, and selection pressures. Primates 2018; 60:167-181. [PMID: 30206778 DOI: 10.1007/s10329-018-0682-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/19/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Cédric Sueur
- Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France.
| | - Valéria Romano
- Kyoto University Primate Research Institute, Inuyama, Japan
| | - Sebastian Sosa
- Primates and Evolution Anthropology Laboratory, Anthropology Department, Sun Yat-sen University, Guangzhou, China
| | - Ivan Puga-Gonzalez
- Institute for Religion, Philosophy and History, University of Agder, Kristiansand, Norway
| |
Collapse
|
19
|
Dawson EH, Bailly TPM, Dos Santos J, Moreno C, Devilliers M, Maroni B, Sueur C, Casali A, Ujvari B, Thomas F, Montagne J, Mery F. Social environment mediates cancer progression in Drosophila. Nat Commun 2018; 9:3574. [PMID: 30177703 PMCID: PMC6120865 DOI: 10.1038/s41467-018-05737-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
The influence of oncogenic phenomena on the ecology and evolution of animal species is becoming an important research topic. Similar to host-pathogen interactions, cancer negatively affects host fitness, which should lead to the selection of host control mechanisms, including behavioral traits that best minimize the proliferation of malignant cells. Social behavior is suggested to influence tumor progression. While the ecological benefits of sociality in gregarious species are widely acknowledged, only limited data are available on the role of the social environment on cancer progression. Here, we exposed adult Drosophila, with colorectal-like tumors, to different social environments. We show how subtle variations in social structure have dramatic effects on the progression of tumor growth. Finally, we reveal that flies can discriminate between individuals at different stages of tumor development and selectively choose their social environment accordingly. Our study demonstrates the reciprocal links between cancer and social interactions and how sociality may impact health and fitness in animals and its potential implications for disease ecology.
Collapse
Affiliation(s)
- Erika H Dawson
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes. (UMI IRD/ Sorbonne Université, UMMISCO), 32 Avenue Henri Varagnat, 93143, Bondy Cedex, France
| | - Tiphaine P M Bailly
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Julie Dos Santos
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Céline Moreno
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Maëlle Devilliers
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, 91190, Gif-sur-Yvette, France
| | - Brigitte Maroni
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, 91190, Gif-sur-Yvette, France
| | - Cédric Sueur
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, 67037, Strasbourg, France
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 67037, Strasbourg, France
| | - Andreu Casali
- Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), 25198, Lleida, Spain
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Australia
| | - Frederic Thomas
- CREEC, MIVEGEC, UMR IRD/CNRS/UM 5290, 34394, Montpellier, France.
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, 91190, Gif-sur-Yvette, France.
| | - Frederic Mery
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J. Why does the magnitude of genotype-by-environment interaction vary? Ecol Evol 2018; 8:6342-6353. [PMID: 29988442 PMCID: PMC6024136 DOI: 10.1002/ece3.4128] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/27/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Genotype-by-environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide-ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.
Collapse
Affiliation(s)
| | - Alison M. Bell
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Jonathan Flint
- University of California Los AngelesLos AngelesCalifornia
| | | | | | - Jason Keagy
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
21
|
Scott AM, Dworkin I, Dukas R. Sociability in Fruit Flies: Genetic Variation, Heritability and Plasticity. Behav Genet 2018; 48:247-258. [PMID: 29682673 DOI: 10.1007/s10519-018-9901-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/02/2018] [Indexed: 11/26/2022]
Abstract
Sociability, defined as individuals' propensity to participate in non-aggressive activities with conspecifics, is a fundamental feature of behavior in many animals including humans. However, we still have a limited knowledge of the mechanisms and evolutionary biology of sociability. To enhance our understanding, we developed a new protocol to quantify sociability in fruit flies (Drosophila melanogaster). In a series of experiments with 59 F1 hybrids derived from inbred lines, we documented, first, significant genetic variation in sociability in both males and females, with broad-sense heritabilities of 0.24 and 0.21 respectively. Second, we observed little genetic correlation in sociability between the sexes. Third, we found genetic variation in social plasticity among the hybrids, with a broad-sense heritability of ~0.24. That is, genotypes differed in the degree of sociability after experiencing the same relevant social experience. Our data pave the way for further research on the mechanisms that underlie sociability as well as its ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
22
|
Keiser CN, Rudolf VHW, Sartain E, Every ER, Saltz JB. Social context alters host behavior and infection risk. Behav Ecol 2018. [DOI: 10.1093/beheco/ary060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Carl N Keiser
- Rice University Academy of Fellows, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | - Emma R Every
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Julia B Saltz
- Department of BioSciences, Rice University, Houston, TX, USA
| |
Collapse
|
23
|
Leech T, Sait SM, Bretman A. Sex-specific effects of social isolation on ageing in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2017; 102:12-17. [PMID: 28830760 DOI: 10.1016/j.jinsphys.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Social environments can have a major impact on ageing profiles in many animals. However, such patterns in variation in ageing and their underlying mechanisms are not well understood, particularly because both social contact and isolation can be stressful. Here, we use Drosophila melanogaster fruitflies to examine sex-specific effects of social contact. We kept flies in isolation versus same-sex pairing throughout life, and measured actuarial (lifespan) and functional senescence (declines in climbing ability). To investigate underlying mechanisms, we determined whether an immune stress (wounding) interacted with effects of social contact, and assessed behaviours that could contribute to differences in ageing rates. Pairing reduced lifespan for both sexes, but the effect was greater for males. In contrast, pairing reduced the rate of decline in climbing ability for females, whereas for males, pairing caused more rapid declines with age. Wounding reduced lifespan for both sexes, but doubled the negative effect of pairing on male lifespan. We found no evidence that these effects are driven by behavioural interactions. These findings suggest that males and females are differentially sensitive to social contact, that environmental stressors can impact actuarial and functional senescence differently, and that these effects can interact with environmental stressors, such as immune challenges.
Collapse
Affiliation(s)
- Thomas Leech
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
|
25
|
Foley BR, Marjoram P. Sure enough: efficient Bayesian learning and choice. Anim Cogn 2017; 20:867-880. [PMID: 28669114 DOI: 10.1007/s10071-017-1107-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Abstract
Probabilistic decision-making is a general phenomenon in animal behavior, and has often been interpreted to reflect the relative certainty of animals' beliefs. Extensive neurological and behavioral results increasingly suggest that animal beliefs may be represented as probability distributions, with explicit accounting of uncertainty. Accordingly, we develop a model that describes decision-making in a manner consistent with this understanding of neuronal function in learning and conditioning. This first-order Markov, recursive Bayesian algorithm is as parsimonious as its minimalist point-estimate, Rescorla-Wagner analogue. We show that the Bayesian algorithm can reproduce naturalistic patterns of probabilistic foraging, in simulations of an experiment in bumblebees. We go on to show that the Bayesian algorithm can efficiently describe the behavior of several heuristic models of decision-making, and is consistent with the ubiquitous variation in choice that we observe within and between individuals in implementing heuristic decision-making. By describing learning and decision-making in a single Bayesian framework, we believe we can realistically unify descriptions of behavior across contexts and organisms. A unified cognitive model of this kind may facilitate descriptions of behavioral evolution.
Collapse
Affiliation(s)
- Brad R Foley
- The Department of Molecular and Computational Biology, The University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| | - Paul Marjoram
- Preventative Medicine, Keck School of Medicine, The University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90032, USA
| |
Collapse
|
26
|
Filice DCS, Long TAF. Phenotypic plasticity in female mate choice behavior is mediated by an interaction of direct and indirect genetic effects in Drosophila melanogaster. Ecol Evol 2017; 7:3542-3551. [PMID: 28515889 PMCID: PMC5433979 DOI: 10.1002/ece3.2954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/28/2023] Open
Abstract
Female mate choice is a complex decision‐making process that involves many context‐dependent factors. In Drosophila melanogaster, a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience‐dependent mate choice behaviors, indicating a genotype‐by‐environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.
Collapse
Affiliation(s)
- David C S Filice
- Department of Biology Wilfrid Laurier University Waterloo ON Canada
| | - Tristan A F Long
- Department of Biology Wilfrid Laurier University Waterloo ON Canada
| |
Collapse
|
27
|
Anderson BB, Scott A, Dukas R. Indirect genetic effects on the sociability of several group members. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Philippe AS, Jeanson R, Pasquaretta C, Rebaudo F, Sueur C, Mery F. Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila. Proc Biol Sci 2016; 283:20152967. [PMID: 27009219 DOI: 10.1098/rspb.2015.2967] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/26/2016] [Indexed: 11/12/2022] Open
Abstract
Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics in Drosophila To do this, we used two different natural lines of Drosophila that arise from a polymorphism in the foraging gene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions.
Collapse
Affiliation(s)
- Anne-Sophie Philippe
- Laboratoire Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, Université. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Raphael Jeanson
- Université de Toulouse, Université Paul Sabatier, Centre de Recherches sur la Cognition Animale, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Cristian Pasquaretta
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Francois Rebaudo
- Laboratoire Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, Université. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France Instituto de Ecología, Centro de Análisis Espacial, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Cedric Sueur
- Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, Strasbourg, France Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Frederic Mery
- Laboratoire Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, Université. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
29
|
Saltz JB. Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster. Heredity (Edinb) 2016; 118:340-347. [PMID: 27848947 DOI: 10.1038/hdy.2016.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Individuals are not merely subject to their social environments; they choose and create them, through a process called social environment (or social niche) construction. When genotypes differ in social environment-constructing behaviors, different genotypes are expected to experience different social environments. As social experience often affects behavioral development, quantitative genetics and psychology theories predict that genetic variation in social environment construction should have an important role in determining phenotypic variation; however, this hypothesis has not been tested directly. I identify multiple mechanisms of social environment construction that differ among natural genotypes of Drosophila melanogaster and investigate their consequences for the development of aggressive behavior. Male genotypes differed in the group sizes that they preferred and in their aggressive behavior; both of these behaviors influenced social experience, demonstrating that these behaviors function as social environment-constructing traits. Further, the effects of social experience-as determined in part by social environment construction-carried over to affect focal male aggression at a later time and with a new opponent. These results provide manipulative experimental support for longstanding hypotheses in psychology, that genetic variation in social environment construction has a causal role in behavioral development. More broadly, these results imply that studies of the genetic basis of complex traits should be expanded to include mechanisms by which genetic variation shapes the environments that individuals experience.
Collapse
Affiliation(s)
- J B Saltz
- Biosciences at Rice University, Houston, TX, USA
| |
Collapse
|
30
|
Kraft B, Williams E, Lemakos VA, Travis J, Hughes KA. Genetic Color Morphs in the Eastern Mosquitofish Experience Different Social Environments in the Wild and Laboratory. Ethology 2016. [DOI: 10.1111/eth.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Brittany Kraft
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Emily Williams
- Department of Biology New York University New York NY USA
| | - Valerie A. Lemakos
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Joseph Travis
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Kimberly A. Hughes
- Department of Biological Science Florida State University Tallahassee FL USA
| |
Collapse
|
31
|
Manenti T, Sørensen JG, Moghadam NN, Loeschcke V. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes. Heredity (Edinb) 2016; 117:149-54. [PMID: 27273321 DOI: 10.1038/hdy.2016.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
Laboratory selection in thermal regimes that differed in the amplitude and the predictability of daily fluctuations had a marked effect on stress resistance and life history traits in Drosophila simulans. The observed evolutionary changes are expected to be the result of both direct and correlated responses to selection. Thus, a given trait might not evolve independently from other traits because of genetic correlations among these traits. Moreover, different test environments can induce novel genetic correlations because of the activation of environmentally dependent genes. To test whether and how genetic correlations among stress resistance and life history traits constrain evolutionary adaptation, we used three populations of D. simulans selected for 20 generations in constant, predictable and unpredictable daily fluctuating thermal regimes and tested each of these selected populations in the same three thermal regimes. We explored the relationship between genetic correlations between traits and the evolutionary potential of D. simulans by comparing genetic correlation matrices in flies selected and tested in different thermal test regimes. We observed genetic correlations mainly between productivity, body size, starvation and desiccation tolerance, suggesting that adaptation to the three thermal regimes was affected by correlations between these traits. We also found that the correlations between some traits such as body size and productivity or starvation tolerance and productivity were determined by test regime rather than selection regime that is expected to limit genetic adaptation to thermal regimes in these traits. The results of this study suggest that several traits and several environments are needed to explore adaptive responses, as genetic and environmentally induced correlations between traits as results obtained in one environment cannot be used to predict the response of the same population in another environment.
Collapse
Affiliation(s)
- T Manenti
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - J G Sørensen
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - N N Moghadam
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - V Loeschcke
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Schneider J, Atallah J, Levine JD. Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc 2016; 92:1027-1038. [PMID: 26990016 DOI: 10.1111/brv.12267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this 'social environment effect' by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group-level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Jade Atallah
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
33
|
|
34
|
|
35
|
Lihoreau M, Clarke IM, Buhl C, Sumpter DJT, Simpson SJ. Collective selection of food patches in Drosophila. J Exp Biol 2016; 219:668-75. [PMID: 26747899 DOI: 10.1242/jeb.127431] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/11/2015] [Indexed: 02/03/2023]
Abstract
The fruit fly Drosophila melanogaster has emerged as a model organism for research on social interactions. Although recent studies have described how individuals interact on foods for nutrition and reproduction, the complex dynamics by which groups initially develop and disperse have received little attention. Here we investigated the dynamics of collective foraging decisions by D. melanogaster and their variation with group size and composition. Groups of adults and larvae facing a choice between two identical, nutritionally balanced food patches distributed themselves asymmetrically, thereby exploiting one patch more than the other. The speed of the collective decisions increased with group size, as a result of flies joining foods faster. However, smaller groups exhibited more pronounced distribution asymmetries than larger ones. Using computer simulations, we show how these non-linear phenomena can emerge from social attraction towards occupied food patches, whose effects add up or compete depending on group size. Our results open new opportunities for exploring complex dynamics of nutrient selection in simple and genetically tractable groups.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ireni M Clarke
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Camille Buhl
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - David J T Sumpter
- Department of Mathematics, Uppsala University, Uppsala 751 06, Sweden
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
36
|
Stein LR, Trapp RM, Bell AM. Do reproduction and parenting influence personality traits? Insights from threespine stickleback. Anim Behav 2016; 112:247-254. [PMID: 26955065 PMCID: PMC4778261 DOI: 10.1016/j.anbehav.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although one of the hallmarks of personality traits is their consistency over time, we might expect personality traits to change during life history shifts. Becoming a parent is a major life history event, when individuals undergo dramatic behavioural and physiological changes. Here we employ a longitudinal experiment to ask whether personality changes in response to the experience of parenting in male threespine sticklebacks, Gasterosteus aculeatus. Life history theory predicts that males should be less risk averse after successfully parenting, and the neuroendocrinology of parenting suggests that parenting could reorganize the hormonal landscape and behaviour of fathers. We randomly assigned males to either an experimental group (reproduced and parented) or a control group (did not reproduce and parent), and repeatedly measured a personality trait ('boldness') and 11-ketotestosterone levels (11-kT, the major androgen in fishes) in individual males. In the control group, males became bolder over time. However, in the experimental group, boldness did not change. Furthermore, 11-kT changed dramatically in the experimental group, and changes in 11-kT in parents were associated with boldness after parenting ceased. Our study is one of the first to assess proximate and ultimate explanations for changes in personality as a function of reproduction and parenting.
Collapse
Affiliation(s)
- Laura R. Stein
- Department of Biology, Colorado State University, Fort Collins, CO, U.S.A
| | - Rebecca M. Trapp
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| | - Alison M. Bell
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| |
Collapse
|
37
|
Anderson BB, Scott A, Dukas R. Social behavior and activity are decoupled in larval and adult fruit flies. Behav Ecol 2015. [DOI: 10.1093/beheco/arv225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Foley B, Saltz J, Nuzhdin S, Marjoram P. A Bayesian Approach to Social Structure Uncovers Cryptic Regulation of Group Dynamics in Drosophila melanogaster. Am Nat 2015; 185:797-808. [PMID: 25996864 PMCID: PMC4610401 DOI: 10.1086/681084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the mechanisms that give rise to social structure is central to predicting the evolutionary and ecological outcomes of social interactions. Modeling this process is challenging, because all individuals simultaneously behave in ways that shape their social environments--a process called social niche construction (SNC). In earlier work, we demonstrated that aggression acts as an SNC trait in fruit flies (Drosophila melanogaster), but the mechanisms of that process remained cryptic. Here, we analyze how individual social group preferences generate overall social structure. We use a combination of agent-based simulation and approximate Bayesian computation to fit models to empirical data. We confirm that genetic variation in aggressive behavior influences social group structure. Furthermore, we find that female decamping due to male behavior may play an underappreciated role in structuring social groups. Male-male aggression may sometimes destabilize groups, but it may also be an SNC behavior for shaping desirable groups for females. Density intensifies female social preferences; thus, the role of female behavior in shaping group structure may become more important at high densities. Our ability to model the ontogeny of group structure demonstrates the utility of the Bayesian model-based approach in social behavioral studies.
Collapse
Affiliation(s)
- B.R. Foley
- Molecular and Computational Biology, Dept. of Biological Sciences, USC, Los Angeles, California 90089, USA
| | - J.B. Saltz
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - S.V. Nuzhdin
- Molecular and Computational Biology, Dept. of Biological Sciences, USC, Los Angeles, California 90089, USA
| | - P. Marjoram
- Dept. of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, California 90089, USA
| |
Collapse
|
39
|
Snell-Rood EC, Steck M. Experience drives the development of movement-cognition correlations in a butterfly. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Laskowski KL, Pearish S, Bensky M, Bell AM. Predictors of Individual Variation in Movement in a Natural Population of Threespine Stickleback ( Gasterosteus aculeatus). ADV ECOL RES 2015; 52:65-90. [PMID: 29046595 PMCID: PMC5642938 DOI: 10.1016/bs.aecr.2015.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Species abundances and distributions are inherently tied to individuals' decisions about movement within their habitat. Therefore, integrating individual phenotypic variation within a larger ecological framework may provide better insight into how populations structure themselves. Recent evidence for consistent individual differences in behaviour prompts the hypothesis that variation in behavioural types might be related to variation in movement in natural environments. In a multiyear mark-recapture study, we found that individual sticklebacks exhibited consistent individual differences in behaviour both within a standardized testing arena designed to measure exploratory behaviour and within a river. Therefore, we asked whether individual differences in movement in a natural river were related to an individual's exploratory behavioural type. We also considered whether body condition and/or the individual's habitat or social environment use was related to movement. There was no evidence that an individual's exploratory behavioural type was related to movement within the river. Instead, an individual's habitat use and body condition interacted to influence natural movement patterns. Individuals in good condition were more likely to move further in the river, but only if they inhabited a vegetated complex part of the river; body condition had no influence on movement in those individuals inhabiting open areas of the river. Our results suggest that individual traits could help improve predictions about how populations may distribute themselves within patchy and complex environments.
Collapse
|
41
|
Keiser CN, Modlmeier AP, Singh N, Jones DK, Pruitt JN. Exploring How a Shift in the Physical Environment Shapes Individual and Group Behavior across Two Social Contexts. Ethology 2014. [DOI: 10.1111/eth.12256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carl N. Keiser
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh PA USA
| | | | - Nishant Singh
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh PA USA
| | - Devin K. Jones
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh PA USA
| | - Jonathan N. Pruitt
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
42
|
Durisko Z, Kemp R, Mubasher R, Dukas R. Dynamics of social behavior in fruit fly larvae. PLoS One 2014; 9:e95495. [PMID: 24740198 PMCID: PMC3989340 DOI: 10.1371/journal.pone.0095495] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior.
Collapse
Affiliation(s)
- Zachary Durisko
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
- Social Aetiology of Mental Illness (SAMI) CIHR Training Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- * E-mail:
| | - Rebecca Kemp
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Rameeshay Mubasher
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
43
|
Laskowski KL, Bell AM. Strong personalities, not social niches, drive individual differences in social behaviours in sticklebacks. Anim Behav 2014; 90:287-295. [PMID: 25076789 PMCID: PMC4112482 DOI: 10.1016/j.anbehav.2014.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Understanding the mechanisms responsible for consistent individual differences in behaviour is a recent challenge for behavioural ecology. Although theory is rapidly developing in this area, there are few empirical tests. There are at least two hypotheses to explain why individuals behave differently from one another in a dynamic social environment. The social niche specialization hypothesis proposes that repeated social interactions generate consistent individual differences in social behaviour. The behavioural type hypothesis proposes that an individual's social behaviour reflects its behavioural type. We tested these two hypotheses by manipulating the opportunity for repeated social interactions in groups of three spine stickleback, Gasterosteus aculeatus, and by measuring the behavioural types of the same individuals in three contexts: when in a novel environment, when presented with an opportunity to associate with conspecifics and when confronted by an intruder. We found no evidence that repeated social interactions increased between-individual variation in social foraging behaviour. Instead, individuals' social foraging behaviour was related to their behavioural type, specifically their shoaling behaviour. In addition, the behavioural types of the members of a group strongly influenced a group's average foraging behaviour. Together, these results do not support the hypothesis that social dynamics within groups generates individual differences in behaviour. Instead, they suggest the reverse: individual differences in behaviour drive group-level dynamics.
Collapse
Affiliation(s)
- Kate L. Laskowski
- Department of Biology & Ecology of Fishes, Leibniz Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| | - Alison M. Bell
- School of Integrative Biology, University of Illinois, Urbana, IL, U.S.A
| |
Collapse
|
44
|
Saltz JB. Genetic composition of social groups influences male aggressive behaviour and fitness in natural genotypes of Drosophila melanogaster. Proc Biol Sci 2013; 280:20131926. [PMID: 24068359 PMCID: PMC3790486 DOI: 10.1098/rspb.2013.1926] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 11/12/2022] Open
Abstract
Indirect genetic effects (IGEs) describe how an individual's behaviour-which is influenced by his or her genotype-can affect the behaviours of interacting individuals. IGE research has focused on dyads. However, insights from social networks research, and other studies of group behaviour, suggest that dyadic interactions are affected by the behaviour of other individuals in the group. To extend IGE inferences to groups of three or more, IGEs must be considered from a group perspective. Here, I introduce the 'focal interaction' approach to study IGEs in groups. I illustrate the utility of this approach by studying aggression among natural genotypes of Drosophila melanogaster. I chose two natural genotypes as 'focal interactants': the behavioural interaction between them was the 'focal interaction'. One male from each focal interactant genotype was present in every group, and I varied the genotype of the third male-the 'treatment male'. Genetic variation in the treatment male's aggressive behaviour influenced the focal interaction, demonstrating that IGEs in groups are not a straightforward extension of IGEs measured in dyads. Further, the focal interaction influenced male mating success, illustrating the role of IGEs in behavioural evolution. These results represent the first manipulative evidence for IGEs at the group level.
Collapse
Affiliation(s)
- Julia B. Saltz
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way RRI-316, Los Angeles, CA 90089, USA
| |
Collapse
|
45
|
Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol Evol 2013; 29:8-14. [PMID: 24126050 DOI: 10.1016/j.tree.2013.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/07/2013] [Accepted: 09/19/2013] [Indexed: 01/15/2023]
Abstract
Niche construction occurs when the traits of an organism influence the environment that it experiences. Research has focused on niche-constructing traits that are fixed within populations or species. However, evidence increasingly demonstrates that niche-constructing traits vary among genotypes within populations. Here, we consider the potential implications of genetic variation in niche construction for evolutionary genetics. Specifically, genetic variation in niche-constructing traits creates a correlation between genotype and environment. Because the environment influences which genes and genetic interactions underlie trait variation, genetic variation in niche construction can alter inferences about the heritability, pleiotropy, and epistasis of traits that are phenotypically plastic. The effects of niche construction on these key evolutionary parameters further suggest novel ways by which niche construction can influence evolution.
Collapse
|
46
|
Stamps JA, Saltz JB, Krishnan V. Genotypic differences in behavioural entropy: unpredictable genotypes are composed of unpredictable individuals. Anim Behav 2013; 86:641-649. [PMID: 24098058 PMCID: PMC3788645 DOI: 10.1016/j.anbehav.2013.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intra-genotypic variability (IGV) occurs when individuals with the same genotype, raised in the same environment and then tested under the same conditions, express different trait values. Game theoretical and bet-hedging models have suggested two ways that a single genotype might generate variable behaviour when behavioural variation is discrete rather than continuous: behavioural polyphenism (a genotype produces different types of individuals, each of which consistently expresses a different type of behaviour) or stochastic variability (a genotype produces one type of individual who randomly expresses different types of behaviour over time). We first demonstrated significant differences across 14 natural genotypes of male Drosophila melanogaster in the variability (as measured by entropy) of their microhabitat choice, in an experiment in which each fly was allowed free access to four different types of habitat. We then tested four hypotheses about ways that within-individual variability might contribute to differences across genotypes in the variability of microhabitat choice. There was no empirical support for three hypotheses (behavioural polymorphism, consistent choice, or time-based choice), nor could our results be attributed to genotypic differences in activity levels. The stochastic variability hypothesis accurately predicted the slope and the intercept of the relationship across genotypes between entropy at the individual level and entropy at the genotype level. However, our initial version of the stochastic model slightly but significantly overestimated the values of individual entropy for each genotype, pointing to specific assumptions of this model that might need to be adjusted in future studies of the IGV of microhabitat choice. This is among a handful of recent studies to document genotypic differences in behavioural IGV, and the first to explore ways that genotypic differences in within-individual variability might contribute to differences among genotypes in the predictability of their behaviour.
Collapse
Affiliation(s)
| | - Julia B. Saltz
- Molecular and Computational Biology, University of Southern California
| | - V.V. Krishnan
- School of Engineering, San Francisco State University
| |
Collapse
|
47
|
Taff CC, Freeman-Gallant CR, Dunn PO, Whittingham LA. Spatial distribution of nests constrains the strength of sexual selection in a warbler. J Evol Biol 2013; 26:1392-405. [DOI: 10.1111/jeb.12141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/05/2013] [Accepted: 02/03/2013] [Indexed: 11/28/2022]
Affiliation(s)
- C. C. Taff
- Animal Behavior Graduate Group and Department of Evolution & Ecology; University of California; Davis CA USA
| | | | - P. O. Dunn
- Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | - L. A. Whittingham
- Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| |
Collapse
|
48
|
Bleakley BH, Welter SM, McCauley-Cole K, Shuster SM, Moore AJ. Cannibalism as an interacting phenotype: precannibalistic aggression is influenced by social partners in the endangered Socorro Isopod (Thermosphaeroma thermophilum). J Evol Biol 2013; 26:832-42. [PMID: 23516960 DOI: 10.1111/jeb.12098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
Models for the evolution of cannibalism highlight the importance of asymmetries between individuals in initiating cannibalistic attacks. Studies may include measures of body size but typically group individuals into size/age classes or compare populations. Such broad comparisons may obscure the details of interactions that ultimately determine how socially contingent characteristics evolve. We propose that understanding cannibalism is facilitated by using an interacting phenotypes perspective that includes the influences of the phenotype of a social partner on the behaviour of a focal individual and focuses on variation in individual pairwise interactions. We investigated how relative body size, a composite trait between a focal individual and its social partner, and the sex of the partners influenced precannibalistic aggression in the endangered Socorro isopod, Thermosphaeroma thermophilum. We also investigated whether differences in mating interest among males and females influenced cannibalism in mixed sex pairs. We studied these questions in three populations that differ markedly in range of body size and opportunities for interactions among individuals. We found that relative body size influences the probability of and latency to attack. We observed differences in the likelihood of and latency to attack based on both an individual's sex and the sex of its partner but found no evidence of sexual conflict. The instigation of precannibalistic aggression in these isopods is therefore a property of both an individual and its social partner. Our results suggest that interacting phenotype models would be improved by incorporating a new conditional ψ, which describes the strength of a social partner's influence on focal behaviour.
Collapse
Affiliation(s)
- B H Bleakley
- Department of Biology, Stonehill College, Easton, MA 02357, USA.
| | | | | | | | | |
Collapse
|
49
|
Laskowski KL, Bell AM. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol Lett 2013; 16:746-53. [PMID: 23489482 DOI: 10.1111/ele.12105] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/01/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
Within the same population, individuals often differ in how they respond to changes in their environment. A recent series of models predicts that competition in a heterogeneous environment might promote between-individual variation in behavioural plasticity. We tested groups of sticklebacks in patchy foraging environments that differed in the level of competition. We also tested the same individuals across two different social groups and while alone to determine the social environment's influence on behavioural plasticity. In support of model predictions, individuals consistently differed in behavioural plasticity when the presence of conspecifics influenced the potential payoffs of a foraging opportunity. Whether individuals maintained their level of behavioural plasticity when placed in a new social group depended on the environmental heterogeneity. By explicitly testing predictions of recent theoretical models, we provide evidence for the types of ecological conditions under which we would expect, and not expect, variation in behavioural plasticity to be favoured.
Collapse
Affiliation(s)
- Kate L Laskowski
- University of Illinois, School of Integrative Biology, Urbana, IL 61801, USA.
| | | |
Collapse
|
50
|
Pearish S, Hostert L, Bell AM. Behavioral type-environment correlations in the field: a study of three-spined stickleback. Behav Ecol Sociobiol 2013; 67:765-774. [PMID: 24688167 DOI: 10.1007/s00265-013-1500-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral type-environment correlations occur when specific behavioral types of individuals are more common in certain environments. Behavioral type-environment correlations can be generated by several different mechanisms that are probably very common such as niche construction and phenotypic plasticity. Moreover, behavioral type-environment correlations have important ecological and evolutionary implications. However, few studies have examined behavioral type-environment correlations in natural populations. In this study, we asked whether some behavioral types of three-spined stickleback were more likely to occur in certain social environments (alone or in a shoal with other stickleback) or in certain microhabitats in a river (in the open or under cover). We found that individuals that were in shoals with other stickleback at the time of collection from the field emerged from a refuge more quickly compared to individuals that were found alone. In addition, fish that were alone in an open microhabitat explored more of a pool compared to fish that were alone in cover, but this difference did not occur among fish that were in shoals at the time of collection. Subsequent analyses of gut contents suggested that differences in microhabitat use were consistent over time. Our study provides some of the first evidence for behavioral type-environment correlations in a natural population of non-human animals.
Collapse
Affiliation(s)
- Simon Pearish
- School of Integrative Biology, University of Illinois, Urbana, Urbana, IL 61801, USA
| | - Lauren Hostert
- School of Integrative Biology, University of Illinois, Urbana, Urbana, IL 61801, USA
| | - Alison M Bell
- School of Integrative Biology, University of Illinois, Urbana, Urbana, IL 61801, USA
| |
Collapse
|