1
|
Lin YP, Lu CY, Lee CR. The Past Contribution and Future Fate of Genetic Variants under Climate Change in an Island Population of Musa itinerans. Am Nat 2023; 202:558-570. [PMID: 37792919 DOI: 10.1086/726015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractGenetic variation within species is crucial for sessile species to adapt to novel environments when facing dramatic climate changes. However, the debate continues whether standing ancestral variation adaptive to current environmental variability is sufficient to guarantee future suitability. Using wild banana Musa itinerans, we investigated the relative contribution of standing ancestral variation versus new mutations to environmental adaptation and inferred their future fate. On the continental island of Taiwan, local populations immigrated from the Southeast Asian continent during the ice age and have been isolated since then. This allows the classification of genetic variants into standing ancestral variation (polymorphic in Taiwan and the continent) and new mutations (polymorphic only in Taiwan). For temperature-related variables where Taiwan is mainly within the ancestral climatic range, standing ancestral variation had a slightly stronger association than new mutations. New mutations were more important for precipitation-related variables, where northeastern Taiwan had much more winter rainfall than most of continental Southeast Asia. Upon future climate change, new mutations showed higher genetic offset in regions of abrupt transition between allele frequency and local environments, suggesting their greater spatial heterogeneity of future vulnerability.
Collapse
|
2
|
Moger-Reischer RZ, Glass JI, Wise KS, Sun L, Bittencourt DMC, Lehmkuhl BK, Schoolmaster DR, Lynch M, Lennon JT. Evolution of a minimal cell. Nature 2023; 620:122-127. [PMID: 37407813 PMCID: PMC10396959 DOI: 10.1038/s41586-023-06288-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life1,2. Here we report on how an engineered minimal cell3,4 contends with the forces of evolution compared with the Mycoplasma mycoides non-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations in ftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology5,6. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells2,7-9.
Collapse
Affiliation(s)
| | - J I Glass
- J. Craig Venter Institute, La Jolla, CA, USA
| | - K S Wise
- J. Craig Venter Institute, La Jolla, CA, USA
| | - L Sun
- J. Craig Venter Institute, La Jolla, CA, USA
- Novartis Gene Therapy, San Diego, CA, USA
| | - D M C Bittencourt
- J. Craig Venter Institute, La Jolla, CA, USA
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - B K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - D R Schoolmaster
- US Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - M Lynch
- Arizona State University, Tempe, AZ, USA
| | - J T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Freitas O, Wahl LM, Campos PRA. Robustness and predictability of evolution in bottlenecked populations. Phys Rev E 2021; 103:042415. [PMID: 34005989 DOI: 10.1103/physreve.103.042415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
Deterministic and stochastic evolutionary processes drive adaptation in natural populations. The strength of each component process is determined by the population size: deterministic components prevail in very large populations, while stochastic components are the driving mechanisms in small ones. Many natural populations, however, experience intermittent periods of growth, moving through states in which either stochastic or deterministic processes prevail. This growth is often countered by population bottlenecks, which abound in both natural and laboratory populations. Here we investigate how population bottlenecks shape the process of adaptation. We demonstrate that adaptive trajectories in populations experiencing regular bottlenecks can be naturally scaled in time units of generations; with this scaling the time courses of adaptation, fitness variance, and genetic diversity all become relatively insensitive to the timing of population bottlenecks, provided the bottleneck size exceeds a few thousand individuals. We also include analyses at the genotype level to investigate the impact of population bottlenecks on the predictability and distribution of evolutionary pathways. Irrespective of the timing of population bottlenecks, we find that predictability increases with population size. We also find that predictability of the adaptive pathways increases in increasingly rugged fitness landscapes. Overall, our work reveals that both the adaptation rate and the predictability of evolutionary trajectories are relatively robust to population bottlenecks.
Collapse
Affiliation(s)
- Osmar Freitas
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| | - Lindi M Wahl
- Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
| | - Paulo R A Campos
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| |
Collapse
|
4
|
Reia SM, Campos PRA. Analysis of statistical correlations between properties of adaptive walks in fitness landscapes. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192118. [PMID: 32218986 PMCID: PMC7029893 DOI: 10.1098/rsos.192118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The fitness landscape metaphor has been central in our way of thinking about adaptation. In this scenario, adaptive walks are idealized dynamics that mimic the uphill movement of an evolving population towards a fitness peak of the landscape. Recent works in experimental evolution have demonstrated that the constraints imposed by epistasis are responsible for reducing the number of accessible mutational pathways towards fitness peaks. Here, we exhaustively analyse the statistical properties of adaptive walks for two empirical fitness landscapes and theoretical NK landscapes. Some general conclusions can be drawn from our simulation study. Regardless of the dynamics, we observe that the shortest paths are more regularly used. Although the accessibility of a given fitness peak is reasonably correlated to the number of monotonic pathways towards it, the two quantities are not exactly proportional. A negative correlation between predictability and mean path divergence is established, and so the decrease of the number of effective mutational pathways ensures the convergence of the attraction basin of fitness peaks. On the other hand, other features are not conserved among fitness landscapes, such as the relationship between accessibility and predictability.
Collapse
Affiliation(s)
- Sandro M. Reia
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Paulo R. A. Campos
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
Wong A. Epistasis and the Evolution of Antimicrobial Resistance. Front Microbiol 2017; 8:246. [PMID: 28261193 PMCID: PMC5313483 DOI: 10.3389/fmicb.2017.00246] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The fitness effects of a mutation can depend, sometimes dramatically, on genetic background; this phenomenon is often referred to as “epistasis.” Epistasis can have important practical consequences in the context of antimicrobial resistance (AMR). For example, genetic background plays an important role in determining the costs of resistance, and hence in whether resistance will persist in the absence of antibiotic pressure. Furthermore, interactions between resistance mutations can have important implications for the evolution of multi-drug resistance. I argue that there is a need to better characterize the extent and nature of epistasis for mutations and horizontally transferred elements conferring AMR, particularly in clinical contexts. Furthermore, I suggest that epistasis should be an important consideration in attempts to slow or limit the evolution of AMR.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, Ottawa ON, Canada
| |
Collapse
|
6
|
Martin CH, Erickson PA, Miller CT. The genetic architecture of novel trophic specialists: larger effect sizes are associated with exceptional oral jaw diversification in a pupfish adaptive radiation. Mol Ecol 2016; 26:624-638. [PMID: 27873369 DOI: 10.1111/mec.13935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, Campus Box 3280, 120 South Rd, Chapel Hill, NC 27599-3280, USA
| | - Priscilla A Erickson
- Molecular and Cell Biology Department, University of California, Berkeley, CA 94720, USA.,Department of Biology, University of Virginia, 229 Gilmer Hall, 485 McCormick Road, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Craig T Miller
- Molecular and Cell Biology Department, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Fisher KJ, Lang GI. Experimental evolution in fungi: An untapped resource. Fungal Genet Biol 2016; 94:88-94. [PMID: 27375178 DOI: 10.1016/j.fgb.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Historically, evolutionary biology has been considered an observational science. Examining populations and inferring evolutionary histories mold evolutionary theories. In contrast, laboratory evolution experiments make use of the amenability of traditional model organisms to study fundamental processes underlying evolution in real time in simple, but well-controlled, environments. With advances in high-throughput biology and next generation sequencing, it is now possible to propagate hundreds of parallel populations over thousands of generations and to quantify precisely the frequencies of various mutations over time. Experimental evolution combines the ability to simultaneously monitor replicate populations with the power to vary individual parameters to test specific evolutionary hypotheses, something that is impractical or infeasible in natural populations. Many labs are now conducting laboratory evolution experiments in nearly all model systems including viruses, bacteria, yeast, nematodes, and fruit flies. Among these systems, fungi occupy a unique niche: with a short generation time, small compact genomes, and sexual cycles, fungi are a particularly valuable and largely untapped resource for propelling future growth in the field of experimental evolution. Here, we describe the current state of fungal experimental evolution and why fungi are uniquely positioned to answer many of the outstanding questions in the field. We also review which fungal species are most well suited for experimental evolution.
Collapse
Affiliation(s)
- Kaitlin J Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
8
|
Gifford DR, Toll-Riera M, MacLean RC. Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa. Evolution 2016; 70:1659-66. [PMID: 27230588 DOI: 10.1111/evo.12958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
The idea that interactions between mutations influence adaptation by driving populations to low and high fitness peaks on adaptive landscapes is deeply ingrained in evolutionary theory. Here, we investigate the impact of epistasis on evolvability by challenging populations of two Pseudomonas aeruginosa clones bearing different initial mutations (in rpoB conferring rifampicin resistance, and the type IV pili gene network) to adaptation to a medium containing l-serine as the sole carbon source. Despite being initially indistinguishable in fitness, populations founded by the two ancestral genotypes reached different fitness following 300 generations of evolution. Genome sequencing revealed that the difference could not be explained by acquiring mutations in different targets of selection; the majority of clones from both ancestors converged on one of the following two strategies: (1) acquiring mutations in either PA2449 (gcsR, an l-serine-metabolism RpoN enhancer binding protein) or (2) protease genes. Additionally, populations from both ancestors converged on loss-of-function mutations in the type IV pili gene network, either due to ancestral or acquired mutations. No compensatory or reversion mutations were observed in RNA polymerase (RNAP) genes, in spite of the large fitness costs typically associated with mutations in rpoB. Although current theory points to sign epistasis as the dominant constraint on evolvability, these results suggest that the role of magnitude epistasis in constraining evolvability may be underappreciated. The contribution of magnitude epistasis is likely to be greatest under the biologically relevant mutation supply rates that make back mutations probabilistically unlikely.
Collapse
Affiliation(s)
- Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom. .,Current Address: Faculty of Life Sciences, University of Manchester, Michael Smith Building, Dover St., Manchester, M13 9PL, United Kingdom.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom.,Current Address: Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
9
|
Dittmar EL, Oakley CG, Conner JK, Gould BA, Schemske DW. Factors influencing the effect size distribution of adaptive substitutions. Proc Biol Sci 2016; 283:20153065. [PMID: 27053750 PMCID: PMC4843649 DOI: 10.1098/rspb.2015.3065] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022] Open
Abstract
The distribution of effect sizes of adaptive substitutions has been central to evolutionary biology since the modern synthesis. Early theory proposed that because large-effect mutations have negative pleiotropic consequences, only small-effect mutations contribute to adaptation. More recent theory suggested instead that large-effect mutations could be favoured when populations are far from their adaptive peak. Here we suggest that the distributions of effect sizes are expected to differ among study systems, reflecting the wide variation in evolutionary forces and ecological conditions experienced in nature. These include selection, mutation, genetic drift, gene flow, and other factors such as the degree of pleiotropy, the distance to the phenotypic optimum, whether the optimum is stable or moving, and whether new mutation or standing genetic variation provides the source of adaptive alleles. Our goal is to review how these factors might affect the distribution of effect sizes and to identify new research directions. Until more theory and empirical work is available, we feel that it is premature to make broad generalizations about the effect size distribution of adaptive substitutions important in nature.
Collapse
Affiliation(s)
- Emily L Dittmar
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| | - Christopher G Oakley
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey K Conner
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| | - Billie A Gould
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
John S, Seetharaman S. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects. PLoS One 2016; 11:e0151795. [PMID: 26990188 PMCID: PMC4798746 DOI: 10.1371/journal.pone.0151795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments.
Collapse
Affiliation(s)
- Sona John
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
- * E-mail:
| | - Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
11
|
Bailey SF, Bataillon T. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature? Mol Ecol 2016; 25:203-18. [PMID: 26346808 PMCID: PMC5019151 DOI: 10.1111/mec.13378] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/26/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023]
Abstract
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches.
Collapse
Affiliation(s)
- Susan F. Bailey
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| | - Thomas Bataillon
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| |
Collapse
|
12
|
Wong A, Seguin K. Effects of genotype on rates of substitution during experimental evolution. Evolution 2015; 69:1772-85. [DOI: 10.1111/evo.12700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Alex Wong
- Department of Biology; Carleton University; Ottawa Ontario Canada
| | - Kimberley Seguin
- Department of Biology; Carleton University; Ottawa Ontario Canada
| |
Collapse
|
13
|
Couce A, Tenaillon OA. The rule of declining adaptability in microbial evolution experiments. Front Genet 2015; 6:99. [PMID: 25815007 PMCID: PMC4356158 DOI: 10.3389/fgene.2015.00099] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
One of the most recurrent observations after two decades of microbial evolution experiments regards the dynamics of fitness change. In a given environment, low-fitness genotypes are recurrently observed to adapt faster than their more fit counterparts. Since adaptation is the main macroscopic outcome of Darwinian evolution, studying its patterns of change could potentially provide insight into key issues of evolutionary theory, from fixation dynamics to the genetic architecture of organisms. Here, we re-analyze several published datasets from experimental evolution with microbes and show that, despite large differences in the origin of the data, a pattern of inverse dependence of adaptability with fitness clearly emerges. In quantitative terms, it is remarkable to observe little if any degree of idiosyncrasy across systems as diverse as virus, bacteria and yeast. The universality of this phenomenon suggests that its emergence might be understood from general principles, giving rise to the exciting prospect that evolution might be statistically predictable at the macroscopic level. We discuss these possibilities in the light of the various theories of adaptation that have been proposed and delineate future directions of research.
Collapse
|
14
|
Blanquart F, Achaz G, Bataillon T, Tenaillon O. Properties of selected mutations and genotypic landscapes under Fisher's geometric model. Evolution 2014; 68:3537-54. [PMID: 25311558 DOI: 10.1111/evo.12545] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
The fitness landscape-the mapping between genotypes and fitness-determines properties of the process of adaptation. Several small genotypic fitness landscapes have recently been built by selecting a handful of beneficial mutations and measuring fitness of all combinations of these mutations. Here, we generate several testable predictions for the properties of these small genotypic landscapes under Fisher's geometric model of adaptation. When the ancestral strain is far from the fitness optimum, we analytically compute the fitness effect of selected mutations and their epistatic interactions. Epistasis may be negative or positive on average depending on the distance of the ancestral genotype to the optimum and whether mutations were independently selected, or coselected in an adaptive walk. Simulations show that genotypic landscapes built from Fisher's model are very close to an additive landscape when the ancestral strain is far from the optimum. However, when it is close to the optimum, a large diversity of landscape with substantial roughness and sign epistasis emerged. Strikingly, small genotypic landscapes built from several replicate adaptive walks on the same underlying landscape were highly variable, suggesting that several realizations of small genotypic landscapes are needed to gain information about the underlying architecture of the fitness landscape.
Collapse
Affiliation(s)
- François Blanquart
- Bioinformatics Research Centre, University of Aarhus, 8000C, Aarhus, Denmark.
| | | | | | | |
Collapse
|
15
|
Seetharaman S, Jain K. Length of adaptive walk on uncorrelated and correlated fitness landscapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032703. [PMID: 25314469 DOI: 10.1103/physreve.90.032703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 06/04/2023]
Abstract
We consider the adaptation dynamics of an asexual population that walks uphill on a rugged fitness landscape which is endowed with a large number of local fitness peaks. We work in a parameter regime where only those mutants that are a single mutation away are accessible, as a result of which the population eventually gets trapped at a local fitness maximum and the adaptive walk terminates. We study how the number of adaptive steps taken by the population before reaching a local fitness peak depends on the initial fitness of the population, the extreme value distribution of the beneficial mutations, and correlations among the fitnesses. Assuming that the relative fitness difference between successive steps is small, we analytically calculate the average walk length for both uncorrelated and correlated fitnesses in all extreme value domains for a given initial fitness. We present numerical results for the model where the fitness differences can be large and find that the walk length behavior differs from that in the former model in the Fréchet domain of extreme value theory. We also discuss the relevance of our results to microbial experiments.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
16
|
Abstract
Much of the current theory of adaptation is based on Gillespie's mutational landscape model (MLM), which assumes that the fitness values of genotypes linked by single mutational steps are independent random variables. On the other hand, a growing body of empirical evidence shows that real fitness landscapes, while possessing a considerable amount of ruggedness, are smoother than predicted by the MLM. In the present article we propose and analyze a simple fitness landscape model with tunable ruggedness based on the rough Mount Fuji (RMF) model originally introduced by Aita et al. in the context of protein evolution. We provide a comprehensive collection of results pertaining to the topographical structure of RMF landscapes, including explicit formulas for the expected number of local fitness maxima, the location of the global peak, and the fitness correlation function. The statistics of single and multiple adaptive steps on the RMF landscape are explored mainly through simulations, and the results are compared to the known behavior in the MLM model. Finally, we show that the RMF model can explain the large number of second-step mutations observed on a highly fit first-step background in a recent evolution experiment with a microvirid bacteriophage.
Collapse
|
17
|
Abstract
The rates and properties of new mutations affecting fitness have implications for a number of outstanding questions in evolutionary biology. Obtaining estimates of mutation rates and effects has historically been challenging, and little theory has been available for predicting the distribution of fitness effects (DFE); however, there have been recent advances on both fronts. Extreme-value theory predicts the DFE of beneficial mutations in well-adapted populations, while phenotypic fitness landscape models make predictions for the DFE of all mutations as a function of the initial level of adaptation and the strength of stabilizing selection on traits underlying fitness. Direct experimental evidence confirms predictions on the DFE of beneficial mutations and favors distributions that are roughly exponential but bounded on the right. A growing number of studies infer the DFE using genomic patterns of polymorphism and divergence, recovering a wide range of DFE. Future work should be aimed at identifying factors driving the observed variation in the DFE. We emphasize the need for further theory explicitly incorporating the effects of partial pleiotropy and heterogeneity in the environment on the expected DFE.
Collapse
Affiliation(s)
- Thomas Bataillon
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
18
|
Seetharaman S, Jain K. Adaptive walks and distribution of beneficial fitness effects. Evolution 2014; 68:965-75. [PMID: 24274696 DOI: 10.1111/evo.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
Abstract
We study the adaptation dynamics of a maladapted asexual population on rugged fitness landscapes with many local fitness peaks. The distribution of beneficial fitness effects is assumed to belong to one of the three extreme value domains, viz. Weibull, Gumbel, and Fréchet. We work in the strong selection-weak mutation regime in which beneficial mutations fix sequentially, and the population performs an uphill walk on the fitness landscape until a local fitness peak is reached. A striking prediction of our analysis is that the fitness difference between successive steps follows a pattern of diminishing returns in the Weibull domain and accelerating returns in the Fréchet domain, as the initial fitness of the population is increased. These trends are found to be robust with respect to fitness correlations. We believe that this result can be exploited in experiments to determine the extreme value domain of the distribution of beneficial fitness effects. Our work here differs significantly from the previous ones that assume the selection coefficient to be small. On taking large effect mutations into account, we find that the length of the walk shows different qualitative trends from those derived using small selection coefficient approximation.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | | |
Collapse
|
19
|
Using Aspergillus nidulans to identify antifungal drug resistance mutations. EUKARYOTIC CELL 2013; 13:288-94. [PMID: 24363365 DOI: 10.1128/ec.00334-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic fungal infections contribute to at least 10% of deaths in hospital settings. Most antifungal drugs target ergosterol (polyenes) or its biosynthetic pathway (azoles and allylamines), or beta-glucan synthesis (echinocandins). Antifungal drugs that target proteins are prone to the emergence of resistant strains. Identification of genes whose mutations lead to targeted resistance can provide new information on those pathways. We used Aspergillus nidulans as a model system to exploit its tractable sexual cycle and calcofluor white as a model antifungal agent to cross-reference our results with other studies. Within 2 weeks from inoculation on sublethal doses of calcofluor white, we isolated 24 A. nidulans adaptive strains from sectoring colonies. Meiotic analysis showed that these strains had single-gene mutations. In each case, the resistance was specific to calcofluor white, since there was no cross-resistance to caspofungin (echinocandin). Mutation sites were identified in two mutants by next-generation sequencing. These were confirmed by reengineering the mutation in a wild-type strain using a gene replacement strategy. One of these mutated genes was related to cell wall synthesis, and the other one was related to drug metabolism. Our strategy has wide application for many fungal species, for antifungal compounds used in agriculture as well as health care, and potentially during protracted drug therapy once drug resistance arises. We suggest that our strategy will be useful for keeping ahead in the drug resistance arms race.
Collapse
|
20
|
Perfeito L, Sousa A, Bataillon T, Gordo I. Rates of fitness decline and rebound suggest pervasive epistasis. Evolution 2013; 68:150-62. [PMID: 24372601 PMCID: PMC3912910 DOI: 10.1111/evo.12234] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
Abstract
Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of −0.01, and an effective number of traits nine in mutS−E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.
Collapse
Affiliation(s)
- L Perfeito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; The authors contributed equally to this work
| | | | | | | |
Collapse
|
21
|
López-Villavicencio M, Debets AJM, Slakhorst M, Giraud T, Schoustra SE. Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model. J Evol Biol 2013; 26:1968-78. [PMID: 23848947 DOI: 10.1111/jeb.12196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023]
Abstract
Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be sufficient to maintain sex in the short term are met in nature. Our study addresses a largely overlooked hypothesis, proposing that sex could be maintained in the short term by advantages due to functions linked with sex, but not related to recombination. These advantages would be so essential that sex could not be lost in the short term. Here, we used the fungus Aspergillus nidulans to experimentally test predictions of this hypothesis. Specifically, we were interested in (i) the short-term deleterious effects of recombination, (ii) possible nonrecombinatorial advantages of sex particularly through the elimination of mutations and (iii) the outcrossing rate under choice conditions in a haploid fungus able to reproduce by both outcrossing and haploid selfing. Our results were consistent with our hypotheses: we found that (i) recombination can be strongly deleterious in the short term, (ii) sexual reproduction between individuals derived from the same clonal lineage provided nonrecombinatorial advantages, likely through a selection arena mechanism, and (iii) under choice conditions, outcrossing occurs in a homothallic species, although at low rates.
Collapse
Affiliation(s)
- M López-Villavicencio
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | |
Collapse
|
22
|
Jasmin JN, Zeyl C. Life-history evolution and density-dependent growth in experimental populations of yeast. Evolution 2012. [PMID: 23206137 DOI: 10.1111/j.1558-5646.2012.01711.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the evolution of the correlation between growth rate r and yield K in experimental lineages of the yeast Saccharomyces cerevisiae. First, we isolated a single clone every approximately 250 generations from each of eight populations selected in a glucose-limited medium for 5000 generations at approximately 6.6 population doublings per day (20 clones per line × 8 lines) and measured its growth rate and yield in a new, galactose-limited medium (with ∼1.3 doubling per day). For most lines, r on galactose increased throughout the 5000 generations of selection on glucose whereas K on galactose declined. Next, we selected these 160 glucose-adapted clones in the galactose environment for approximately 120 generations and measured changes in r and K in galactose. In general, growth rate increased and yield declined, and clones that initially grew slowly on galactose improved more than did faster clones. We found a negative correlation between r and K among clones both within each line and across all clones. We provide evidence that this relationship is not heritable and is a negative environmental correlation rather than a genetic trade-off.
Collapse
Affiliation(s)
- Jean-Nicolas Jasmin
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA.
| | | |
Collapse
|
23
|
Schenk MF, Szendro IG, Krug J, de Visser JAGM. Quantifying the adaptive potential of an antibiotic resistance enzyme. PLoS Genet 2012; 8:e1002783. [PMID: 22761587 PMCID: PMC3386231 DOI: 10.1371/journal.pgen.1002783] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/09/2012] [Indexed: 12/30/2022] Open
Abstract
For a quantitative understanding of the process of adaptation, we need to understand its "raw material," that is, the frequency and fitness effects of beneficial mutations. At present, most empirical evidence suggests an exponential distribution of fitness effects of beneficial mutations, as predicted for Gumbel-domain distributions by extreme value theory. Here, we study the distribution of mutation effects on cefotaxime (Ctx) resistance and fitness of 48 unique beneficial mutations in the bacterial enzyme TEM-1 β-lactamase, which were obtained by screening the products of random mutagenesis for increased Ctx resistance. Our contributions are threefold. First, based on the frequency of unique mutations among more than 300 sequenced isolates and correcting for mutation bias, we conservatively estimate that the total number of first-step mutations that increase Ctx resistance in this enzyme is 87 [95% CI 75-189], or 3.4% of all 2,583 possible base-pair substitutions. Of the 48 mutations, 10 are synonymous and the majority of the 38 non-synonymous mutations occur in the pocket surrounding the catalytic site. Second, we estimate the effects of the mutations on Ctx resistance by determining survival at various Ctx concentrations, and we derive their fitness effects by modeling reproduction and survival as a branching process. Third, we find that the distribution of both measures follows a Fréchet-type distribution characterized by a broad tail of a few exceptionally fit mutants. Such distributions have fundamental evolutionary implications, including an increased predictability of evolution, and may provide a partial explanation for recent observations of striking parallel evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Martijn F. Schenk
- Institute for Genetics, University of Cologne, Köln, Germany
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Ivan G. Szendro
- Institute for Theoretical Physics, University of Cologne, Köln, Germany
| | - Joachim Krug
- Institute for Theoretical Physics, University of Cologne, Köln, Germany
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Köln, Germany
| | | |
Collapse
|
24
|
Rogers SM, Tamkee P, Summers B, Balabahadra S, Marks M, Kingsley DM, Schluter D. Genetic signature of adaptive peak shift in threespine stickleback. Evolution 2012; 66:2439-50. [PMID: 22834743 PMCID: PMC4433314 DOI: 10.1111/j.1558-5646.2012.01622.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition of an evolving population to a new adaptive optimum is predicted to leave a signature in the distribution of effect sizes of fixed mutations. If they affect many traits (are pleiotropic), large effect mutations should contribute more when a population evolves to a farther adaptive peak than to a nearer peak. We tested this prediction in wild threespine stickleback fish (Gasterosteus aculeatus) by comparing the estimated frequency of large effect genetic changes underlying evolution as the same ancestor adapted to two lake types since the end of the ice age. A higher frequency of large effect genetic changes (quantitative trait loci) contributed to adaptive evolution in populations that adapted to lakes representing a more distant optimum than to lakes in which the optimum phenotype was nearer to the ancestral state. Our results also indicate that pleiotropy, not just optimum overshoot, contributes to this difference. These results suggest that a series of adaptive improvements to a new environment leaves a detectable mark in the genome of wild populations. Although not all assumptions of the theory are likely met in natural systems, the prediction may be robust enough to the complexities of natural environments to be useful when forecasting adaptive responses to large environmental changes.
Collapse
Affiliation(s)
- Sean M Rogers
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dettman JR, Rodrigue N, Melnyk AH, Wong A, Bailey SF, Kassen R. Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol 2012; 21:2058-77. [PMID: 22332770 DOI: 10.1111/j.1365-294x.2012.05484.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experimental evolution (EE) combined with whole-genome sequencing (WGS) has become a compelling approach to study the fundamental mechanisms and processes that drive evolution. Most EE-WGS studies published to date have used microbes, owing to their ease of propagation and manipulation in the laboratory and relatively small genome sizes. These experiments are particularly suited to answer long-standing questions such as: How many mutations underlie adaptive evolution, and how are they distributed across the genome and through time? Are there general rules or principles governing which genes contribute to adaptation, and are certain kinds of genes more likely to be targets than others? How common is epistasis among adaptive mutations, and what does this reveal about the variety of genetic routes to adaptation? How common is parallel evolution, where the same mutations evolve repeatedly and independently in response to similar selective pressures? Here, we summarize the significant findings of this body of work, identify important emerging trends and propose promising directions for future research. We also outline an example of a computational pipeline for use in EE-WGS studies, based on freely available bioinformatics tools.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Sousa A, Magalhães S, Gordo I. Cost of antibiotic resistance and the geometry of adaptation. Mol Biol Evol 2011; 29:1417-28. [PMID: 22144641 PMCID: PMC3339317 DOI: 10.1093/molbev/msr302] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The distribution of effects of beneficial mutations is key to our understanding of biological adaptation. Yet, empirical estimates of this distribution are scarce, and its functional form is largely unknown. Theoretical models of adaptation predict that the functional form of this distribution should depend on the distance to the optimum. Here, we estimate the rate and distribution of adaptive mutations that compensate for the effect of a single deleterious mutation, which causes antibiotic resistance. Using a system with multiple molecular markers, we estimate the distribution of fitness effects of mutations at two distances from the adaptive peak in 60 populations of Escherichia coli. We find that beneficial mutations, which can contribute to compensatory evolution, occur at very high rates, of the order of 10−5 per genome per generation and can be detected within a few tens of generations. They cause an average fitness increase of 2.5% and 3.6%, depending on the cost of resistance, which is expected under Fisher's geometrical model of adaptation. Moreover, we provide the first description of the distribution of beneficial mutations, segregating during the process of compensatory evolution, to antibiotic resistances bearing different costs. Hence, these results have important implications to understanding the spread and maintenance of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|