1
|
Surina B, Balant M, Glasnović P, Radosavljević I, Fišer Ž, Fujs N, Castro S. Population size as a major determinant of mating system and population genetic differentiation in a narrow endemic chasmophyte. BMC PLANT BIOLOGY 2023; 23:383. [PMID: 37553615 PMCID: PMC10411015 DOI: 10.1186/s12870-023-04384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Mating system is one of the major determinants of intra- and interspecific genetic structure, but may vary within and between plant populations. Our study model included all known populations of Moehringia tommasinii (Caryophyllaceae), a narrow endemic plant inhabiting rock crevices in the northwestern Adriatic, and some populations of co-occurring and widespread M. muscosa, an ecologically divergent relative with an overlapping flowering period. We performed reciprocal crosses within and between taxa and used molecular markers to assess the extent of gene flow within and between populations and taxa. Using coefficient of inbreeding, population size, seed weight, pollen-to-ovule ratio, and flower display size, we also looked for evidence of a selfing syndrome. RESULTS A surprisingly high variation in mating systems was observed among populations of M. tommasinii. These populations exhibited genetic structuring, with their size positively correlated with both seed weight and pollen production. Although a selfing syndrome could not be confirmed as the majority of selfing resulted from allogamous treatments, the occurrence of selfing was notable. In the presence of M. muscosa, at a site where both species coexist closely, a distinct pattern of fruit production was observed in M. tommasinii following various pollination treatments. Molecular and morphometric data provided evidence of hybridization followed by local extinction at this site. CONCLUSIONS Population size proved to be the most important factor affecting the mating system in genetically structured populations of M. tommasinii. Lighter seeds and lower pollen production observed in populations with pronounced selfing do not provide enough evidence for the selfing syndrome. Detected gene flow between M. tommasinii and the sympatric M. muscosa suggested weak reproductive barriers between the taxa, which could pose a conservation problems for the former species. Hybridization leading to local extinction may also resulted in floral polymorphism and disruption of mating patterns of M. tommasinii.
Collapse
Affiliation(s)
- Boštjan Surina
- Natural History Museum Rijeka, Lorenzov prolaz 1, 51000, Rijeka, Croatia.
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia.
| | - Manica Balant
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038, Barcelona, Spain
| | - Peter Glasnović
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Ivan Radosavljević
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Živa Fišer
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Nataša Fujs
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Sílvia Castro
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
2
|
Duhamel M, Carpentier F, Begerow D, Hood ME, Rodríguez de la Vega RC, Giraud T. Onset and stepwise extensions of recombination suppression are common in mating-type chromosomes of Microbotryum anther-smut fungi. J Evol Biol 2022; 35:1619-1634. [PMID: 35271741 PMCID: PMC10078771 DOI: 10.1111/jeb.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Sex chromosomes and mating-type chromosomes can display large genomic regions without recombination. Recombination suppression often extended stepwise with time away from the sex- or mating-type-determining genes, generating evolutionary strata of differentiation between alternative sex or mating-type chromosomes. In anther-smut fungi of the Microbotryum genus, recombination suppression evolved repeatedly, linking the two mating-type loci and extended multiple times in regions distal to the mating-type genes. Here, we obtained high-quality genome assemblies of alternative mating types for four Microbotryum fungi. We found an additional event of independent chromosomal rearrangements bringing the two mating-type loci on the same chromosome followed by recombination suppression linking them. We also found, in a new clade analysed here, that recombination suppression between the two mating-type loci occurred in several steps, with first an ancestral recombination suppression between one of the mating-type locus and its centromere; later, completion of recombination suppression up to the second mating-type locus occurred independently in three species. The estimated dates of recombination suppression between the mating-type loci ranged from 0.15 to 3.58 million years ago. In total, this makes at least nine independent events of linkage between the mating-type loci across the Microbotryum genus. Several mating-type locus linkage events occurred through the same types of chromosomal rearrangements, where similar chromosome fissions at centromeres represent convergence in the genomic changes leading to the phenotypic convergence. These findings further highlight Microbotryum fungi as excellent models to study the evolution of recombination suppression.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| | - Dominik Begerow
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | | | | | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
3
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
4
|
Hartmann FE, Snirc A, Cornille A, Godé C, Touzet P, Van Rossum F, Fournier E, Le Prieur S, Shykoff J, Giraud T. Congruent population genetic structures and divergence histories in anther‐smut fungi and their host plants
Silene italica
and the
Silene nutans
species complex. Mol Ecol 2020; 29:1154-1172. [DOI: 10.1111/mec.15387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Alodie Snirc
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Amandine Cornille
- Genetique Quantitative et Evolution–Le Moulon AgroParisTech CNRS INRAE Universite Paris‐Saclay Gif‐sur‐Yvette France
| | - Cécile Godé
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Pascal Touzet
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Fabienne Van Rossum
- Meise Botanic Garden Meise Belgium
- Fédération Wallonie–Bruxelles Brussels Belgium
| | | | - Stéphanie Le Prieur
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Jacqui Shykoff
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Tatiana Giraud
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| |
Collapse
|
5
|
Hartmann FE, Rodríguez de la Vega RC, Carpentier F, Gladieux P, Cornille A, Hood ME, Giraud T. Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:431-457. [PMID: 31337277 DOI: 10.1146/annurev-phyto-082718-095947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anther-smut fungi provide a powerful system to study host-pathogen specialization and coevolution, with hundreds of Microbotryum species specialized on diverse Caryophyllaceae plants, castrating their hosts through manipulation of the hosts' reproductive organs to facilitate disease transmission. Microbotryum fungi have exceptional genomic characteristics, including dimorphic mating-type chromosomes, that make this genus anexcellent model for studying the evolution of mating systems and their influence on population genetics structure and adaptive potential. Important insights into adaptation, coevolution, host specialization, and mating system evolution have been gained using anther-smut fungi, with new insights made possible by the recent advent of genomic approaches. We illustrate with Microbotryum case studies how using a combination of comparative genomics, population genomics, and transcriptomics approaches enables the integration of different evolutionary perspectives across different timescales. We also highlight current challenges and suggest future studies that will contribute to advancing our understanding of the mechanisms underlying adaptive processes in populations of fungal pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | | | - Fantin Carpentier
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Pierre Gladieux
- UMR BGPI, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Amandine Cornille
- Génétique Quantitative et Evolution-Le Moulon, INRA; Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, Massachusetts 01002-5000, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
6
|
Abbate JL, Gladieux P, Hood ME, de Vienne DM, Antonovics J, Snirc A, Giraud T. Co-occurrence among three divergent plant-castrating fungi in the same Silene host species. Mol Ecol 2018; 27:10.1111/mec.14805. [PMID: 30030861 PMCID: PMC6340787 DOI: 10.1111/mec.14805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Abstract
The competitive exclusion principle postulates that different species can only coexist in sympatry if they occupy distinct ecological niches. The goal of this study was to understand the geographical distribution of three species of Microbotryum anther-smut fungi that are distantly related but infect the same host plants, the sister species Silene vulgaris and S. uniflora, in Western Europe. We used microsatellite markers to investigate pathogen distribution in relation to host specialization and ecological factors. Microbotryum violaceo-irregulare was only found on S. vulgaris at high elevations in the Alps. Microbotryum lagerheimii could be subdivided into two genetically differentiated clusters, one on S. uniflora in the UK and the second on S. vulgaris in the Alps and Pyrenees. The most abundant pathogen species, M. silenes-inflatae, could be subdivided into four genetic clusters, co-occurring in the Alps, the UK and the Pyrenees, and was found on both S. vulgaris and S. uniflora. All three fungal species had high levels of homozygosity, in agreement with the selfing mating system generally observed in anther-smut fungi. The three pathogen species and genetic clusters had large range overlaps, but occurred at sites with different elevations, temperatures and precipitation levels. The three Microbotryum species thus do not appear to be maintained by host specialization or geographic allopatry, but instead may occupy different ecological niches in terms of environmental conditions.
Collapse
Affiliation(s)
- Jessica L. Abbate
- UMR MIVEGEC, IRD 224, CNRS, Université de Montpellier, F-34394 Montpellier, France
- UMR UMMISCO, IRD 209, UPMC, F-93143 Bondy, France
| | - Pierre Gladieux
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
- INRA, UMR BGPI, Bâtiment K; Campus International de Baillarguet, F-34398, Montpellier, France
| | - Michael E. Hood
- Biology Department, McGuire Life Sciences Building, Amherst College, Rts 9 & 116, Amherst, MA USA 01002-5000
| | - Damien M. de Vienne
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, F-69622 Villeurbanne, France
- Université de Lyon, F-69000 Lyon, France
| | - Janis Antonovics
- University of Virginia, Dept. of Biology, Gilmer Hall, Charlottesville, VA 22904, USA
| | - Alodie Snirc
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
| | - Tatiana Giraud
- Laboratoire Ecologie Systématique et Evolution, Univ. Paris Sud, CNRS, AgroParisTech, Université Paris Saclay, Orsay, F-91400 France
| |
Collapse
|
7
|
|
8
|
Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G, Snirc A, Le Prieur S, Jeziorski C, Branca A, Giraud T. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol Ecol 2017; 26:2041-2062. [DOI: 10.1111/mec.13976] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Affiliation(s)
- H. Badouin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - P. Gladieux
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
- UMR BGPI; Campus International de Baillarguet; INRA; 34398 Montpellier France
| | - J. Gouzy
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; INRA; 31326 Castanet-Tolosan France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; CNRS; 31326 Castanet-Tolosan France
| | - S. Siguenza
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; INRA; 31326 Castanet-Tolosan France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; CNRS; 31326 Castanet-Tolosan France
| | - G. Aguileta
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - A. Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - S. Le Prieur
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - C. Jeziorski
- Genotoul; GeT-PlaGe; INRA Auzeville 31326 Castanet-Tolosan France
- UAR1209; INRA Auzeville 31326 Castanet-Tolosan France
| | - A. Branca
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| | - T. Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; 91400 Orsay France
| |
Collapse
|
9
|
Guillemin ML, Valero M, Morales Collio K, Pinochet Sanchez R, Henríquez Espinosa M, Silva AX. Microsatellite markers and cytoplasmic sequences reveal contrasting pattern of spatial genetic structure in the red algae species complex Mazzaella laminarioides. JOURNAL OF PHYCOLOGY 2016; 52:806-816. [PMID: 27317474 DOI: 10.1111/jpy.12440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
Mazzaella laminarioides is a common haploid-diploid red alga that forms dense beds. This alga has a wide distributional range, covering 3,500 km of the Chilean coast, but is restricted to high rocky intertidal zones. Recently, the existence of three highly divergent genetic lineages was demonstrated for this taxon, and two cytoplasmic markers were used to determine that these lineages are distributed in strict parapatry. Here, using 454 next-generation sequencing, we developed polymorphic microsatellite loci that cross amplify in all three cytoplasmic lineages. Six sites (i.e., two sites within each lineage) were analyzed using nine microsatellite loci. Our work shows that, although substantial cytoplasmic differentiation occurs within M. laminarioides, the microsatellite loci did not retrieve three nuclear genetic clusters as expected. Indeed, while the northernmost and southernmost cytoplasmic lineages form two strongly divergent nuclear groups characterized by diagnostic alleles, the third cytoplasmic lineage did not form a third nuclear independent group. It is possible that inter-lineage gene exchange has occurred, particularly at sites along the contact zone between the different cytoplasmic lineages. This nuclear-cytoplasmic incongruence in M. laminarioides could be explained by incomplete lineage sorting of the nuclear genes or asymmetric introgressive hybridization between the lineages. Finally, highly significant heterozygote deficiencies (suggesting occurrence of intergametophytic selfing) were observed in the three small northernmost sites while the large southernmost sites generally approached panmixia.
Collapse
Affiliation(s)
- Marie-Laure Guillemin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
- CNRS, Sorbonne Universités, UPMC University Paris VI, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Myriam Valero
- CNRS, Sorbonne Universités, UPMC University Paris VI, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Place G. Tessier, 296888, Roscoff, France
| | - Kennia Morales Collio
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Ramona Pinochet Sanchez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Miguel Henríquez Espinosa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Andrea X Silva
- AUSTRAL-omics, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| |
Collapse
|
10
|
Tollenaere C, Susi H, Laine AL. Evolutionary and Epidemiological Implications of Multiple Infection in Plants. TRENDS IN PLANT SCIENCE 2016; 21:80-90. [PMID: 26651920 DOI: 10.1016/j.tplants.2015.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 05/04/2023]
Abstract
Recent methodological advances have uncovered tremendous microbial diversity cohabiting in the same host plant, and many of these microbes cause disease. In this review we highlight how the presence of other pathogen species, or other pathogen genotypes, within a plant can affect key components of host-pathogen interactions: (i) within-plant virulence and pathogen accumulation, through direct and host-mediated mechanisms; (ii) evolutionary trajectories of pathogen populations, through virulence evolution, generation of novel genetic combinations, and maintenance of genetic diversity; and (iii) disease dynamics, with multiple infection likely to render epidemics more devastating. The major future challenges are to couple a community ecology approach with a molecular investigation of the mechanisms operating under coinfection and to evaluate the evolution and effectiveness of resistance within a coinfection framework.
Collapse
Affiliation(s)
- Charlotte Tollenaere
- Interactions Plantes-Microorganismes et Environnement (IPME), Institut de Recherches pour le Développement (IRD) - Cirad - Université de Montpellier, 34394 Montpellier, France; Laboratoire Mixte International Patho-Bios, IRD-INERA (Institut de l'Environnement et de Recherches Agricoles), BP171, Bobo-Dioulasso, Burkina Faso
| | - Hanna Susi
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Xu L, Petit E, Hood ME. Variation in mate-recognition pheromones of the fungal genus Microbotryum. Heredity (Edinb) 2015; 116:44-51. [PMID: 26306729 PMCID: PMC4675872 DOI: 10.1038/hdy.2015.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/05/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Abstract
Mate recognition is an essential life-cycle stage that exhibits strong conservation in function, whereas diversification of mating signals can contribute directly to the integrity of species boundaries through assortative mating. Fungi are simple models, where compatibility is based on the recognition of pheromone peptides by corresponding receptor proteins, but clear patterns of diversification have not emerged from the species examined, which are few compared with mate signaling studies in plant and animal systems. In this study, candidate loci from Microbotryum species were used to characterize putative pheromones that were synthesized and found to be functional across multiple species in triggering a mating response in vitro. There is no significant correlation between the strength of a species' response and its genetic distance from the pheromone sequence source genome. Instead, evidence suggests that species may be strong or weak responders, influenced by environmental conditions or developmental differences. Gene sequence comparisons reveals very strong purifying selection on the a1 pheromone peptide and corresponding receptor, but significantly less purifying selection on the a2 pheromone peptide that corresponds with more variation across species in the receptor. This represents an exceptional case of a reciprocally interacting mate-recognition system in which the two mating types are under different levels of purifying selection.
Collapse
Affiliation(s)
- L Xu
- Department of Biology, Amherst College, Amherst, MA, USA
| | - E Petit
- Department of Biology, Amherst College, Amherst, MA, USA
| | - M E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| |
Collapse
|
12
|
Buide ML, del Valle JC, Pissatto M, Narbona E. Night life on the beach: selfing to avoid pollinator competition between two sympatric Silene species. ANNALS OF BOTANY 2015; 116:201-11. [PMID: 26070638 PMCID: PMC4512190 DOI: 10.1093/aob/mcv078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/24/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Evolution of autonomous selfing may be advantageous because it allows for reproductive assurance. In co-flowering plants competing for pollinators, the least common and/or attractive could suffer pollen limitations. Silene niceensis and S. ramosissima are taxonomically related species sharing the same habitat, although S. ramosissima is less abundant and has a more restricted distribution. They also have the same a priori nocturnal pollinator syndrome, and show an overlapping flowering phenology. The aim of this study was to investigate whether a selfing strategy in S. ramosissima allows it to avoid pollinator competition and/or interspecific pollen transfer with S. niceensis, which would thus enable both species to reach high levels of fruit and seed set. METHODS The breeding system, petal colour, flower life span and degree of overlap between male and female phases, floral visitor abundance and visitation rates were analysed in two sympatric populations of S. niceensis and S. ramosissima in southern Spain. KEY RESULTS Autonomous selfing in S. ramosissima produced very high fruit and seed set, which was also similar to open-pollinated plants. Silene niceensis showed minimum levels of autonomous selfing, and pollen/ovule ratios were within the range expected for the breeding system. In contrast to S. niceensis, flower life span was much shorter in S. ramosissima, and male and female organs completely overlapped in space and time. Upper surface petals of both species showed differing brightness, chroma and hue. Flowers of S. niceensis were actively visited by moths, hawkmoths and syrphids, whereas those of S. ramosissima were almost never visited. CONCLUSIONS The findings show that different breeding strategies exist between the sympatric co-flowering S. niceensis and S. ramosissima, the former specializing in crepuscular-nocturnal pollination and the latter mainly based on autonomous selfing. These two strategies allow both species to share the restricted dune habitat in which they exist, with a high female reproductive success due to the absence of pollinator competition and/or interspecific pollen flow.
Collapse
Affiliation(s)
- M Luisa Buide
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de de Utrera, km 1, 41013, Sevilla, Spain
| | - José Carlos del Valle
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de de Utrera, km 1, 41013, Sevilla, Spain
| | - Mônica Pissatto
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de de Utrera, km 1, 41013, Sevilla, Spain
| | - Eduardo Narbona
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de de Utrera, km 1, 41013, Sevilla, Spain
| |
Collapse
|
13
|
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, Aguileta G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME, Schultz DJ, Cuomo CA. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 2015; 16:461. [PMID: 26076695 PMCID: PMC4469406 DOI: 10.1186/s12864-015-1660-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. Results We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14 % of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. Conclusions The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1660-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Joelle Amselem
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. .,Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France.
| | - Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Sebastien Duplessis
- INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. .,UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France.
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France. .,Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France.
| | - Helene Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Jared Andrews
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Dominique Razeeq
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain.
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA.
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
14
|
Shoji JY, Charlton ND, Yi M, Young CA, Craven KD. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes. PLoS One 2015; 10:e0121875. [PMID: 25837972 PMCID: PMC4383479 DOI: 10.1371/journal.pone.0121875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/18/2015] [Indexed: 01/18/2023] Open
Abstract
Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.
Collapse
Affiliation(s)
- Jun-ya Shoji
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Nikki D. Charlton
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Mihwa Yi
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Carolyn A. Young
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Kelly D. Craven
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
- * E-mail:
| |
Collapse
|
15
|
Pintye A, Ropars J, Harvey N, Shin HD, Leyronas C, Nicot PC, Giraud T, Kiss L. Host phenology and geography as drivers of differentiation in generalist fungal mycoparasites. PLoS One 2015; 10:e0120703. [PMID: 25803832 PMCID: PMC4372539 DOI: 10.1371/journal.pone.0120703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
The question as to why parasites remain generalist or become specialist is a key unresolved question in evolutionary biology. Ampelomyces spp., intracellular mycoparasites of powdery mildew fungi, which are themselves plant pathogens, are a useful model for studies of this issue. Ampelomyces is used for the biological control of mildew. Differences in mycohost phenology promote temporal isolation between sympatric Ampelomyces mycoparasites. Apple powdery mildew (APM) causes spring epidemics, whereas other powdery mildew species on plants other than apple cause epidemics later in the season. This has resulted in genetic differentiation between APM and non-APM strains. It is unclear whether there is genetic differentiation between non-APM Ampelomyces lineages due to their specialization on different mycohosts. We used microsatellites to address this question and found no significant differentiation between non-APM Ampelomyces strains from different mycohosts or host plants, but strong differentiation between APM and non-APM strains. A geographical structure was revealed in both groups, with differences between European countries, demonstrating restricted dispersal at the continent scale and a high resolution for our markers. We found footprints of recombination in both groups, possibly more frequent in the APM cluster. Overall, Ampelomyces thus appears to be one of the rare genuine generalist pathogenic fungi able to parasitize multiple hosts in natural populations. It is therefore an excellent model for studying the evolution of pathogens towards a generalist rather than host-specific strategy, particularly in light of the tritrophic interaction between Ampelomyces mycoparasites, their powdery mildew fungal hosts and the mildew host plants.
Collapse
Affiliation(s)
- Alexandra Pintye
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | - Jeanne Ropars
- CNRS (Centre National de la Recherche Scientifique), Ecologie, Systematique et Evolution (ESE), Orsay, France
- Univ Paris Sud, Ecology, Systematique et Evolution (ESE), Orsay, France
| | - Nick Harvey
- Genetic Marker Services, 7 Brighton, United Kingdom
| | - Hyeon-Dong Shin
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Christel Leyronas
- Institut National de la Recherche Agronomique (INRA), Unite de Recherche UR407, Unité de Pathologie Végétale, Domaine St. Maurice, Montfavet, France
| | - Philippe C. Nicot
- Institut National de la Recherche Agronomique (INRA), Unite de Recherche UR407, Unité de Pathologie Végétale, Domaine St. Maurice, Montfavet, France
| | - Tatiana Giraud
- CNRS (Centre National de la Recherche Scientifique), Ecologie, Systematique et Evolution (ESE), Orsay, France
- Univ Paris Sud, Ecology, Systematique et Evolution (ESE), Orsay, France
- * E-mail: (TG); (LK)
| | - Levente Kiss
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA), Budapest, Hungary
- * E-mail: (TG); (LK)
| |
Collapse
|
16
|
Experimental hybridization and backcrossing reveal forces of reproductive isolation in Microbotryum. BMC Evol Biol 2013; 13:224. [PMID: 24112452 PMCID: PMC3853205 DOI: 10.1186/1471-2148-13-224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
Background Hybridization and reproductive isolation are central to the origin and maintenance of species, and especially for sympatric species, gene flow is often inhibited through barriers that depend upon mating compatibility factors. The anther-smut fungi (genus Microbotryum) serve as models for speciation in the face of sympatry, and previous studies have tested for but not detected assortative mating. In addition, post-mating barriers are indicated by reduced fitness of hybrids, but sources of those barriers (i.e. ecological maladaptation or genetic incompatibilities) have not yet been detected. Here, backcrossing experiments, specifically controlling for the fungal species origins of the mating compatibility factors, were used to investigate reproductive isolation in the recently-derived species Microbotryum lychnidis-dioicae and Microbotryum silenes-dioicae. Results Assortative mating was detected during backcrossing and was manifested by the preferential conjugation of the hybrid-produced gametes with non-hybrid gametes containing mating compatibility factors from the same parental species. Patterns of post-mating performance supported either a level of extrinsic isolation mechanism, where backcross progeny with a higher proportion of the pathogen genome adapted to the particular host environment were favored, or an infection advantage attributed to greater genetic contribution to the hybrid from the M. lychnidis-dioicae genome. Conclusion The use of controlled backcrossing experiments reveals significant species-specific mating type effects on conjugations between recently-derived sister species, which are likely to play important roles in both maintaining species separation and the nature of hybrids lineages that emerge in sympatry between Microbotryum species.
Collapse
|
17
|
Abstract
Reproductive isolation is an essential ingredient of speciation, and much has been learned in recent years about the evolution of reproductive isolation and the genetics of reproductive barriers in animals and plants. Fungi have been neglected on these aspects, despite being tractable model eukaryotes. Here, we used a model fitting approach to look at the importance of different barriers to gene flow to explain the decrease of reproductive compatibility with genetic distance in fungi. We found support for the occurrence of reinforcement in the presyngamy compatibility among basidiomycetes. In contrast, no evidence for reinforcement was detected in ascomycetes, concurring with the idea that host/habitat adaptation in this group can pleiotropically cause reproductive isolation. We found no evidence of a snowballing accumulation of postsyngamic reproductive incompatibilities in either ascomycetes or the complex of anther smut fungi. Together with previous studies, our results suggest that ecologically based barriers to gene flow and karyotypic differences may have an important role in hybrid inviability and sterility in fungi. Interestingly, hybrid sterility appeared to evolve faster than hybrid inviability in fungi.
Collapse
|
18
|
Gibson AK, Hood ME, Giraud T. Sibling competition arena: selfing and a competition arena can combine to constitute a barrier to gene flow in sympatry. Evolution 2012; 66:1917-30. [PMID: 22671556 DOI: 10.1111/j.1558-5646.2011.01563.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Closely related species coexisting in sympatry provide critical insight into the mechanisms underlying speciation and the maintenance of genetic divergence. Selfing may promote reproductive isolation by facilitating local adaptation, causing reduced hybrid fitness in parental environments. Here, we propose a novel mechanism by which selfing can further impair interspecific gene flow: selfing may act to ensure that nonhybrid progeny systematically co-occur whenever hybrid genotypes are produced. Under a competition arena, the fitness differentials between nonhybrid and hybrid progeny are then magnified, preventing development of interspecific hybrids. We investigate whether this "sibling competition arena" can explain the coexistence in sympatry of closely related species of the plant fungal pathogens (Microbotryum) causing anther-smut disease. The probabilities of intrapromycelial mating (automixis), outcrossing, and sibling competition were manipulated in artificial inoculations to evaluate their contribution to reproductive isolation. We report that both intrapromycelial selfing and sibling competition significantly reduced rates of hybrid infection beyond that expected based solely upon selfing rates and noncompetitive fitness differentials between hybrid and nonhybrid progeny. Our results thus suggest that selfing and a sibling competition arena can combine to constitute a barrier to gene flow and diminish selection for additional barriers to gene flow in sympatry.
Collapse
Affiliation(s)
- A K Gibson
- Laboratoire Ecologie, Systématique et Evolution, Université Paris Sud, 91405 Orsay, France.
| | | | | |
Collapse
|